The Economic Costs of the War in Donbas for the Affected Ukrainian Regions

Frantisek Masek & Renan Serenini

Sapienza University of Rome

Introduction	Data and Methods	Results	Robustness checks	Conclusions
●○	0000	0000	000000	00

Introduction	Data and Methods	Results	Robustness checks	Conclusions
○●	0000	0000	000000	00

• In 2014 Russia invaded three regions of Ukraine:

Introduction	Data and Methods	Results	Robustness checks	Conclusions
○●	0000	0000	000000	

• In 2014 Russia invaded three regions of Ukraine:

• We estimate the effect of the invasion on the Gross Regional Product per capita (GRP), disposable income per capita, and the unemployment rates of **Donetsk and Luhansk**.

Introduction	Data and Methods	Results	Robustness checks	Conclusions
○●	0000	0000	000000	

• In 2014 Russia invaded three regions of Ukraine:

- We estimate the effect of the invasion on the Gross Regional Product per capita (GRP), disposable income per capita, and the unemployment rates of **Donetsk and Luhansk**.
- To estimate the Average Treatment Effect for the Treated (ATT), we deploy the Synthetic Difference-in-Differences estimator developed by Arkhangelsky et al.(2021).

Introduction	Data and Methods	Results	Robustness checks	Conclusions
00	•000	0000	000000	

Data and Methods

Introduction 00	Data and Methods ○●○○	Results 0000	Robustness checks	Conclusions
Data				
Data				

• Official data from the State Statistics Service of Ukraine

• Series:

- Disposable income per capita (2003 2019)
- Gross Regional Product per capita (2004 2019)
- Unemployment rate (2008 2019)
- Gross fixed capital formation (2003 2019)
- Series are available for 24 out of 27 Ukrainian regions: Crimea and Sevastopol have not published data and the city of Kyiv was omitted given its unique economic status.

Introduction 00	Data and Methods 00●0	Results 0000	Robustness checks	Conclusions 00
Methods				

To estimate the treatment effect, we deploy a recent extension of the Synthetic Control Method, the Synthetic Difference-in-Differences.

Introduction 00	Data and Methods 00●0	Results 0000	Robustness checks	Conclusions
Methods				

To estimate the treatment effect, we deploy a recent extension of the Synthetic Control Method, the Synthetic Difference-in-Differences.

The Synthetic Control Method

• It estimates the causal effect of an intervention by creating a weighted combination of similar untreated units as a counterfactual comparison to the treated unit.

Introduction 00	Data and Methods 000●	Results 0000	Robustness checks	Conclusions
Methods				

The Synthetic Difference-in-differences

• A new approach that is "competitive with (or dominates) SCM and DiD in situations where these methods would have been used in the past."

Introduction 00	Data and Methods 000●	Results 0000	Robustness checks	Conclusions
Methods				

The Synthetic Difference-in-differences

• A new approach that is "competitive with (or dominates) SCM and DiD in situations where these methods would have been used in the past."

Introduction	Data and Methods	Results	Robustness checks	Conclusions
		0000		

Results

Introduction 00	Data and Methods 0000	Results ○●○○	Robustness checks	Conclusions
Results - The	ATT			

Table: The average treatment effects for the treated units and the standard errors for each variable of interest

	Income	GRP	Unemployment
Estimate	-3362 (USD)	-4853 (USD)	+5.56 (pp)
Standard error	(164)	(467)	(0.77)

Note: Per capita GRP and per capita disposable income are in constant 2011 USD, and the unemployment rate is in percentage points.

Introduction 00	Data and Methods 0000	Results 00●0	Robustness checks	Conclusions

Results - SDID graphs

Introduction 00	Data and Methods 0000	Results 000●	Robustness checks	Conclusions

Results - A possible mechanism

• We try to identify one of the possible underlying mechanisms through which the fall in income and GRP may have taken place.

Results - A possible mechanism

- We try to identify one of the possible underlying mechanisms through which the fall in income and GRP may have taken place.
- The impact on gross fixed capital formation was over 2.5 billion USD (65% lower than it would likely have been without the impact of war).

Introduction	Data and Methods	Results	Robustness checks	Conclusions
00	0000	000●	000000	

Results - A possible mechanism

- We try to identify one of the possible underlying mechanisms through which the fall in income and GRP may have taken place.
- The impact on gross fixed capital formation was over 2.5 billion USD (65% lower than it would likely have been without the impact of war).

Introduction	Data and Methods	Results	Robustness checks	Conclusions
00	0000	0000	●00000	

Robustness checks

Introduction	Data and Methods	Results	Robustness checks	Conclusions
00	0000	0000	o●oooo	

Robustness check - Sensitiveness to estimation method

• To ascertain that our results are relatively insensitive to the choice of SDiD estimator, we also run the estimation using conventional DiD and SCM.

Introduction	Data and Methods	Results	Robustness checks	Conclusions
			00000	

Robustness check - Sensitiveness to estimation method

• To ascertain that our results are relatively insensitive to the choice of SDiD estimator, we also run the estimation using conventional DiD and SCM.

	Income	GRP	Unemployment	Investments
SDiD				
Estimate	-3362 (USD)	-4853 (USD)	+5.56 (pp)	-2.56 (bn. USD)
Standard error	(164)	(467)	(0.77)	(0.236)
SCM				
Estimate	-3497 (USD)	-5557 (USD)	+5.81 (pp)	-2.67 (bn. USD)
Standard error	(167)	(554)	(0.98)	(0.174)
DiD				
Estimate	-2569 (USD)	-4198 (USD)	+5.81 (pp)	-1.08 (bn. USD)
Standard error	(430)	(1219)	(0.86)	(0.578)

Introduction	Data and Methods	Results	Robustness checks	Conclusions
00	0000	0000	00●000	

Robustness check - Decomposition of the treatment effect weights

• We apply the decomposition developed by Chaisemartin and D'Haultfoeuille (2020) for our case of two treated units to check whether they satisfy the "no-sign reversal" feature.

Robustness check - Decomposition of the treatment effect weights

- We apply the decomposition developed by Chaisemartin and D'Haultfoeuille (2020) for our case of two treated units to check whether they satisfy the "no-sign reversal" feature.
- Given that we have six post-treatment periods, we estimate twelve treatment effects, with non showing negative weights.
- We repeat the exercise for all four variables of interest, and the results hold for all of them.
- Consequently, we believe that the TWFE approach is not problematic from this perspective in this case.

Introduction 00	Data and Methods	Results 0000	Robustness checks	Conclusions

Robustness checks - Separated effect

• Thus far, we have worked with the ATT on the whole Donbas. We now estimate the effects separately, omitting one region to estimate the other.

Introduction 00	Data and Methods 0000	Results 0000	Robustness checks	Conclusions

Robustness checks - Separated effect

• Thus far, we have worked with the ATT on the whole Donbas. We now estimate the effects separately, omitting one region to estimate the other.

	Income	GRP	Unemployment	Investments
Luhansk				
Estimate	-3416 (USD)	-4727 (USD)	+6.98 (pp)	-1.38 (bn. USD)
Standard error	(208)	(580)	(1.15)	(0.299)
Donetsk				
Estimate	-3315 (USD)	-4992 (USD)	+4.14 (pp)	-3.65 (bn. USD)
Standard error	(196)	(756)	(1.10)	(0.358)

Introduction	Data and Methods	Results	Robustness checks	Conclusions
00	0000	0000	0000●0	

Robustness checks - Possible SUTVA violation

- Spatial spillovers could bias the results from SDID.
- Recent research in the DiD literature has proposed alternatives to estimate this kind of effect.
- We consider one of these approaches, the Spatial Diff-in-Diff from Butts (2020), and modify it to be applied to the Synthetic Diff-in-Diff.

Introduction	Data and Methods	Results	Robustness checks	Conclusions
00	0000	0000	00000●	

Robustness checks - Possible SUTVA violation

• The indirect treatment effects (spillovers) are not significant for any of the variables of interest.

	Income	GRP	Unemployment	Investments
Direct	-3187 (USD)	-5012 (USD)	+ 5.51 (pp)	-2.39 (bn. USD)
Standard error	(299)	(402)	(0.32)	(0.330)
Indirect (W)	240 (USD)	303 (USD)	-0.16 (pp)	-0.02 (bn. USD)
Standard error	(323)	(435)	(0.34)	(0.356)

Introduction	Data and Methods	Results	Robustness checks	Conclusions
00	0000	0000		●0
Conclusion				

- Literature about the regional effects of 2014 Russian invasion on Donbas is still lacking.
- With a recent method from the comparative case literature we estimate the economic effects on GRP, income and labor market conditions.
- We propose one of the key channels that drives the economic slump faced after 2014 in the region.
- To validate our methods, we run robustness check for the validity of the method and search for indirect effects that could bias the results.

Introduction	Data and Methods	Results	Robustness checks	Conclusions
00	0000	0000		○●

THANK YOU!

Paper, data and codes for replication: github.com/serenini/Ukraine

e-mail: frantisek.masek@uniroma1.it / renan.serenini@uniroma1.it