Optimal Portfolio Choice With Longevity, Critical Illness and Long-Term Care Insurance

Cheng Wan^{1,2*} Hazel Bateman² Katja Hanewald²

¹Chair of Integrative Risk Management and Economics, ETH Zurich

²ARC Centre of Excellence in Population Ageing Research (CEPAR), UNSW Sydney

EEA-ESEM 2023 Barcelona, August 28 - Sep 1

^{*}chengwan@ethz.ch

Agenda

- Introduction
- 2 Institutional Background
- 3 Model
- **4** Calibration
- 6 Results
- **6** Conclusion

Motivation

Rapid population ageing & growing awareness of health risks due to COVID-19 Developing countries: basic public insurance \rightarrow catastrophic medical expenditures

- Government public insurance system not adequate, how to expand?
- Individuals retirement risks (longevity, medical, aged care), how to manage them?

Challenging task!

- Survival probabilities, health risks (illness and care), economic environment
- Societal changes: female labour force participation, migration, etc.

Role of retirement insurance?

Annuity Puzzle

Theory - Annuities are part of an optimal portfolio Practice - Voluntary annuitisation rates are low

Many explanations (e.g., Benartzi et al., 2011) - three key reasons

- **Precautionary savings** due to uncertain health-related expenditures (e.g., De Nardi et al., 2010; Peijnenburg et al., 2017)
- Health shocks and correlated financial costs (Laitner et al., 2018; Reichling and Smetters, 2015)
- Adverse selection (e.g., Braun et al., 2019; Finkelstein and Poterba, 2004)

Remarks

- Not wise to plan retirement <u>only</u> with retirement income products <u>health</u> risks matter!
- Limited research considering longevity and health-contingent insurance simultaneously

Our Paper

Predict the **optimal portfolio** for a retiree in a developing retirement system Based on a new multi-period and multi-state life-cycle model

- Risks: critical illness, long-term care, longevity, stochastic medical and care expenditures.
- Public insurance: pension, medical insurance, welfare assistance (means-tested subsidy)
- Portfolio: annuity, critical illness insurance, long-term care insurance, savings account
- Health state-dependent utility of consumption

Model calibrated to urban China

Key Results

- 1 High annuity demand for retirees with a low pension
- 2 High critical illness insurance demand for retirees with an average pension
- 3 Positive long-term care insurance demand across economic profiles
- 4 Higher long-term care insurance demand for females

Main Contributions

- First paper to include **critical illness insurance** in a retirement portfolio in a life-cycle model
 - Existing studies only consider longevity and/or long-term care insurance (Ameriks et al., 2019; Horneff et al., 2020; Koijen et al., 2016; Laitner et al., 2018; Peijnenburg et al., 2017; Reichling and Smetters, 2015; S. Wu et al., 2016)
 - Only critical illness insurance (Hambel, 2020)
- Predict optimal retirement portfolio choice for retirees in urban China
 - Males and females, typical wealth and pension levels
 - Comprehensive tests: state-dependent utility, other preferences, health transitions, pricing, and subsidy

Retirement Provision in China: Longevity Insurance

Public - main programs:

- Employee pension (monthly amount CNY 3,000 or USD 400)
- Resident pension (rural and urban, CNY 150 1,000)

Private

- Enterprise annuity (in large SOEs)
- "Annuities" yes, but
 - Short-term investment products
 - Complex and costly
- New policy: Individual Retirement Account (2022)

Retirement Provision in China: Health and care

Health insurance

- Employee **Basic** Medical Insurance + Resident **Basic** Medical Insurance
 - Critical illness: catastrophic financial/health shock

Long-term care insurance

- Mainly informal, but pilot programs in 80 cities
 - Different requirements, benefits, and funding models
 - Sustainability

Private

- "Critical illness insurance" (lump sum, age limit, rarely long-term)
- "Long-term care insurance" (short-term investment products)

Retirement Provision in China: Summary

Public insurance

- Large variation (pension income)
- Limited cover (health-related risks)
- Sustainability

Private insurance

- Lack of suitable products for retirees
- Costly

Model: Setting (1/3)

Demographics and socioeconomics

- Male and female urban employee, retired at ages 60 and 55, respectively
- Period(t): from retirement to death (max age 105), 46 or 51 years/periods
- ullet Retires with given retirement savings M_1 and public pension P_t
- Enrolled in public health insurance

Preference

• Health state-dependent utility of consumption via weight η_{H_t} (De Nardi et al., 2010; Finkelstein, Luttmer, et al., 2013; Peijnenburg et al., 2017)

$$u(c_t, H_t) = \frac{\eta_{H_t}}{c_t^{1-\gamma}}/(1-\gamma) \tag{1}$$

Model: Setting (2/3)

Health transitions (exogenous)

- 4 health states H_t at period t: 1 healthy, 2 critically ill (CI), 3 long-term care (LTC) dependent (3+ ADLs*), 4 dead
- Markov process with transition probabilities at period t: $\pi_t(H_t=i,H_{t+1}=j)=\operatorname{Prob}(H_{t+1}=j|H_t=i)$
- No recovery from poor health states to healthy

Health costs (exogenous)

- Incur random cost due to critical illness whenever critically ill
 - Distribution of cost: independent of age
- Incur random cost due to long-term care whenever LTC dependent
 - Distribution of cost: age-dependent

Model: Setting (3/3)

Portfolio

- Life annuity
 - Pays fixed amount $Annuity_t$ p.a.
- Critical illness insurance (CII)
 - ullet Pays lump sum CII_t when the insured is critically ill for the first time
- Long-term care insurance (LTCI)
 - Pays fixed amount $LTCI_t$ p.a. when the insured is LTC dependent
- Savings account
 - Real interest rates on savings: 2%

Pricing: discounted expected costs + 15% loading

No stock market: < 3% participation rate among the old (CHARLS, 2018)

Model: Decision and Transition

At retirement: decide insurance portfolio and pay premiums, one-off choice

Other periods, i.e., from t to t + 1:

- ullet Begin with end of last period wealth M_t
- Receive pension and annuity income: $+P_t + Annuity_t$
- Depending on health state H_t :
 - $-CostLTC_t + LTCI_t$
 - $-CostCI_t + CII_t$ (if first time)
- Receive subsidy S (means-tested, consumption floor)
- Choose consumption C_t
- Accrue interest *R*

Final period: choose consumption and leave bequest

Model: Objective

The individual chooses insurance allocation and consumption to maximise their lifetime utility. Bellman function:

$$\begin{cases} V_t(M_t, H_t) = \max_{c_t, \omega_a, \omega_c, \omega_l} E_t \bigg\{ u(c_t, H_t) + \beta \bigg[\sum_{H_{t+1}=1}^4 \pi_t(H_t, H_{t+1}) V_{t+1}(M_{t+1}, H_{t+1}) \bigg] \bigg\} & \text{s.t.} \\ V_t(M_t, 4) = v(M_t) \equiv b M_t^{1-\gamma} / (1-\gamma) \\ A_t = M_t + P_t + Annuity_t + CII_t + LTCI_t - CostCI_t - CostLTC_t - c_t, \\ M_{t+1} = R \cdot A_t, \\ A_t \geqslant 0, \\ c_t \geqslant S, \\ \omega_a, \omega_c, \omega_l \ge 0, \\ \omega_a + \omega_c + \omega_l \leqslant 1. \end{cases}$$

 Solved numerically by backward induction with the endogenous grid-points method(Carroll, 2006) + simulations to find optimal allocations

Calibration (1/2)

Data source

- China Health and Retirement Longitudinal Study (CHARLS)
 - Estimate long-term care probabilities, costs (informal care), and insurance pricing
 - Similar to the Health and Retirement Study (HRS) and the Survey of Health, Aging and Retirement in Europe (SHARE)
 - Four waves (2011, 2013, 2015, and 2018)
- Official mortality and health curves
- Hospital data about critical illness expenditures (Fang et al., 2018; D. Wu et al., 2018)
- Preferences parameters (Friedman and Warshawsky, 1990; İmrohoroğlu and Zhao, 2018; X. Wang and C. Wang, 2020)
- Government reports about pension, subsidy

Calibration (2/2)

Health transitions

Based on official mortality and illness curves and CHARLS data

Health costs

- $CostCI \sim \text{Lognormal} \Big(11.86,\, 0.92^2\Big)$, Mean: CNY 216,000
- $CostLTC({\sf Age}) \sim {\sf Lognormal}\Big(6.13+0.02 \times {\sf Age},\ 1.46^2\Big)$, Mean: CNY 4,400 at age 60

Preferences

- 'Risk aversion' $\gamma = 3$
- Time preference $\beta = 0.999$
- Bequest strength b = 50
- Health-dependent utility weights: $\eta_{H_t=Cl}=1.2$, $\eta_{H_t=LTC}=0.7$

Results: Optimal Allocation - Males

Optimal allocation of retirement savings, male

Welfare gain: 1) use simulations to find equivalent wealth needed (without purchasing insurance) to achieve the same utility (with optimal insurance); 2) calculate the increase relative to the initial wealth

- Optimal portfolio strongly depends on wealth and pension
 - High wealth: demand for CII, LTCI and annuity, and self insurance!
 - Low wealth: demand for CII or annuity depending on pension
- Large welfare gains, especially for low wealth/pension

Results: Optimal Allocation - Males and Females

Optimal allocation of retirement savings, female

Results: Optimal Allocation - The Average

What about the average case?

For an individual with an average pension (CNY 3,000) and average wealth (CNY 640,000), interpolate and weight our results:

• Annuity (3%) + CII (48%) + LTCI (14%) + Savings (25%)

Remarks

- Health-related risks alone could solve the annuity puzzle
- Health-related risks addressed, then think about longevity risk

Results: Optimal Allocation - Summary and Discussion

Insurance demand

- Substantial CII demand for retirees with an average pension
- High annuity demand for retirees with a low pension (in line with "full annuitisation")
- Positive LTCI demand across all economic profiles (similar to Ameriks et al., 2020)
- Females: much higher LTCI demand (conservative, e.g., widow)

Welfare gains

Much larger for poor retirees, role of financial education?

Next...

- Real choices? Only stated preferences (Wan et al., 2022)
- Collective models

Results: Sensitivity (1/2)

- Health transition
 - Higher transitions between CI and LTC
- Pricing
 - Product priced wrt. separate health assumptions (standalone product) vs the same health transitions matrix (bundled product)
 - Health assumptions for pricing, consistent or inconsistent with the health transitions in the utility function
- Preferences
 - Lower/higher marginal utility of consumption
 - Risk aversion, time preference, bequest motives
- Subsidy
 - Lower/higher monthly subsidy

Results: Sensitivity (2/2)

Main results generally robust

Notable changes

- Health transition
 - Higher transition rates between CI and LTC decrease annuity demand
 - Larger impact for poor retirees
- Pricing (ink)
 - Annuity demand increases substantially (for wealthy retirees)
- Preferences (link 1) (link 2)
 - State-dependent utility: moderate; can decrease/increase annuity demand
 - Other preferences: more stable demand for CII and LTCI than for annuity
- Subsidy
 - LTCI demand converted to annuity demand (only for poor retirees)

Conclusion: Takeaways

First paper to include a life annuity, critical illness insurance, and long-term care insurance in a life-cycle model.

• For an individual with health state-dependent utility function, facing random health transitions and random health costs (illness and care).

Key findings:

- High CII demand for retirees with an average pension
- High annuity demand for retirees with a low pension
- Positive LTCI demand across economic profiles, much larger for females
- Potential self-insurance for wealthy retirees
- Larger welfare impact of insurance on poor retirees

Conclusion: Implications

For policymakers and insurers in developing countries

- 1 Once income is *enough*, policies to reduce illness shocks are more efficient
- 2 Prepare for coming LTC demand: unique, higher for females
- 3 Financial education for poor retirees
- 4 Bundling health and longevity insurance could increase annuity demand

The authors acknowledge the support from

- the ARC Centre of Excellence in Population Ageing Research (CEPAR)
- the Katana computational cluster in UNSW Sydney

Thank you for your interest in our research!

Contact: chengwan@ethz.ch

- Ameriks, J., Briggs, J., Caplin, A., Shapiro, M. D., & Tonetti, C. (2019).
 Long-Term-Care Utility and Late-in-Life Saving [Publisher: The University of Chicago Press]. *Journal of Political Economy*, 128(6), 2375–2451.
 Ameriks, J., Briggs, J., Caplin, A., Shapiro, M. D., & Tonetti, C. (2020).
- Long-Term-Care Utility and Late-in-Life Saving. *Journal of Political Economy*, 128(6), 2375–2451.

 Benartzi, S., Previtero, A., & Thaler, R. H. (2011). Annuitization Puzzles.
- Journal of Economic Perspectives, 25(4), 143–164.

 Braun, R. A., Kopecky, K. A., & Koreshkova, T. (2019). Old, Frail, and
- Uninsured: Accounting for Features of the U.S. Long-Term Care Insurance Market. *Econometrica*, 87(3), 981–1019.
- Carroll, C. D. (2006). The method of endogenous gridpoints for solving dynamic stochastic optimization problems. *Economics Letters*, *91*(3), 312–320.
- De Nardi, M., French, E., & Jones, J. B. (2010). Why Do the Elderly Save? The Role of Medical Expenses. *Journal of Political Economy*, 118(1), 39–75.
 Fang, P., Pan, Z., Zhang, X., Bai, X., Gong, Y., & Yin, X. (2018). The effect of critical illness insurance in China. *Medicine*, 97(27).

- Finkelstein, A., Luttmer, E. F. P., & Notowidigdo, M. J. (2013). What Good is Wealth Without Health? The Effect of Health on the Marginal Utility of Consumption. *Journal of the European Economic Association*, 11(suppl_1), 221–258.
- Finkelstein, A., & Poterba, J. (2004). Adverse Selection in Insurance Markets: Policyholder Evidence from the U.K. Annuity Market. *Journal of Political Economy*, 112(1), 183–208.
- Friedman, B., & Warshawsky, M. (1990). The Cost of Annuities: Implications for Saving Behavior and Bequests. *The Quarterly Journal of Economics*, 105(1), 135–154.
- Hambel, C. (2020). Health shock risk, critical illness insurance, and housing services. *Insurance: Mathematics and Economics*, *91*, 111–128.
- Horneff, V., Maurer, R., & Mitchell, O. S. (2020). Putting the pension back in 401(k) retirement plans: Optimal versus default deferred longevity income annuities. *Journal of Banking & Finance*, 114, 105783.

- imrohoroğlu, A., & Zhao, K. (2018). The chinese saving rate: Long-term care risks, family insurance, and demographics. *Journal of Monetary Economics*, *96*, 33–52.

 Koijen, R. S., Van Nieuwerburgh, S., & Yogo, M. (2016). Health and Mortality
- Delta: Assessing the Welfare Cost of Household Insurance Choice. *The Journal of Finance*, 71(2), 957–1010.

 Laitner, J., Silverman, D., & Stolyarov, D. (2018). The Role of Annuitized
- Wealth in Post-retirement Behavior. American Economic Journal:

 Macroeconomics, 10(3), 71–117.

 Polinophyra K. Nijman T. & Worker B. J. (2017). Health Cost Pick: A
- Peijnenburg, K., Nijman, T., & Werker, B. J. (2017). Health Cost Risk: A Potential Solution to the Annuity Puzzle. *The Economic Journal*, 127(603), 1598–1625.
- Reichling, F., & Smetters, K. (2015). Optimal Annuitization with Stochastic Mortality and Correlated Medical Costs. *American Economic Review*, 105(11), 3273–3320.
- Wan, C., Bateman, H., Fang, H., & Hanewald, K. (2022). The demand for annuities, critical illness and long-term care insurance: Evidence from an

- online survey (CEPAR Working Paper). ARC Centre of Excellence in Population Ageing Research. Sydney, Australia.
- Wang, X., & Wang, C. (2020). How Does Health Status Affect Marginal Utility of Consumption? Evidence from China. *International Journal of Environmental Research and Public Health*, 17(7).
- Wu, D., Yu, F., & Nie, W. (2018). Improvement of the reduction in catastrophic health expenditure in China's public health insurance [Publisher: Public Library of Science]. *PLOS ONE*, *13*(4), e0194915.
- Wu, S., Bateman, H., & Stevens, R. (2016). Optimal Portfolio Choice with Health-Contingent Income Products: The Value of Life Care Annuities (CEPAR Working Paper No. 2016/17). ARC Centre of Excellence in Population Ageing Research. Sydney, Australia.

Sensitivity - Health Transition

Test three transitions between CI and LTC

- 1 CI to LTC: twice of the baseline transition
- 2 LTC to CI: twice of the baseline transition
- 3 Both transitions higher

Results

- Benchmark results generally robust to transitions between CI and LTC states, larger impact for retirees with low wealth & low pension
- Annuity demand decreases when transitions to CI and LTC states rise
- Largest change of allocation: Annuity (80% 100%, low wealth & average pension), CII (30% 35%, high wealth & average pension), LTCI (0 20%, low wealth & low pension)

Sensitivity - Pricing

Previous: each insurance priced separately wrt. their own health tables

Now: priced with the same health transition matrix for all three products

- Health transitions for pricing
 - consistent with health transitions in the utility function
 - inconsistent with health transitions in the utility function
- Tested with the previous three health transition assumptions

Results

- Main results confirmed, robust to pricing and inconsistent health dynamics
- Annuity demand increases substantially: 10% ightarrow 35% (high wealth & average pension)

Health State-Dependent Utility (1/2)

Note: payments can be used in every state

- Moderate impact on percentages
- Optimal portfolio still largely determined by wealth and pension
- Changes reflect different weights:
 - Higher CII demand
 - Lower LTCI demand
 - Higher Annuity demand?

Health State-Dependent Utility (2/2)

- Similar moderate impact. More pronounced for poor retirees
- ullet Higher weights in poor health states o lower annuity demand, vice versa

Sensitivity - Other Preferences

Vary preference parameters

- "Risk aversion": $\gamma = 2, 3, 9$
- Time preference: $\beta = 0.96, 0.999$
- Strength of bequest motives: b = 0, 10, 50, 100

Results (group with high wealth & average pension)

- More stable demand for CII and LTCI, than for annuity
- More 'risk averse' → higher insurance demand (high wealth and average pension);
 higher annuity and CII demand, lower LTCI demand (low wealth and low pension)
- More patient \rightarrow more annuity (0 \rightarrow 10%)
- Stronger bequest motives \rightarrow less annuity (30% \rightarrow 0)

Companion Paper

Key findings:

- Large variation in stated demand by individual factors and COVID-19 experience.
- Most preferred retirement insurance: half critical illness insurance + half LTCI + a monthly annuity of ca. 20% of disposable urban income.
- Access to critical illness insurance and LTCI can release the precautionary savings to purchase annuity, and the effect depends on the cover of the health insurance.
- Lower CII demand and higher annuity demand, compared with the theoretical best
 underestimation of health-related risks or preference to use annuity as a buffer.
- Higher financial competence and more risk averse linked to higher CII / LTCI demand, but lower annuity demand.

Retirement Provision in China: Longevity Insurance

Public - main programs:

- Employee pension (monthly amount CNY 3,000 or USD 400)
- Resident pension (rural and urban, CNY 150 1,000)

Private

- Enterprise annuity (in large SOEs)
- Annuities
 - Short-term wealth management products
 - Complex saving products with guaranteed income, costly
- 2022 Nov: government-supported program (3rd pillar)
 - Individual Retirement Account (IRA), tax benefits (EET)
 - USD 1.7 trillion by 2025

Retirement Provision in China: Health Insurance

Public - main programs:

- Employee Basic Medical Insurance + Resident Basic Medical Insurance
- Both include:
 - Basic insurance for critical illness
 - Overall, limited reimbursement (e.g., 50%)
 - Many advanced treatments not covered
 - Can have a large financial/health shock

Private

- Critical illness insurance (lump sum, age limit, rarely long-term)
- Medical insurance (reimbursement, age limit, rarely long-term; government-supported new programs)
- Mutual-aid programs (e.g., age limit, closed: Xianghu Bao from Alibaba)

Retirement Provision in China: Long-Term Care Insurance

Mainly informal care: family and relatives

Public - pilot phase

- About 80 pilot programs: different requirements, benefits, and funding models
 - Based on activities of daily living (ADL), instrumental ADL, cognition
 - Institutional care, community and home-based care
 - Contribution: individuals, employers, government, lottery funds
- Funding to be separated from the public health insurance

Private

"Long-term care insurance" (mostly short-term investment products)

Retirement Provision in China: Outlook and Summary

Recent reform and regulation directions

- Sustainability: Increasing pension ages + Government employees start to contribute to access pension
- IRA + government-supported medical insurance
- More cooperation between the government and insurers
- More insurance products, rather than investment products
- More conservative discount rates

Summary

- Public insurance large variation (pension), lack of cover (health risks), sustainability
- Private insurance lack of suitable products for retirees, costly