Symbiotic Competition and Intellectual Property

Rafael R. Guthmann and David M. Rahman Universidad Alberto Hurtado and University of Minnesota August 31, 2023

Introduction

Patent History, Economics and Policy

- Intellectual property has been studied and awarded for centuries
 - First codified patent system in 15C Venice pretty much prevails
 - Smith, Jefferson, Pigou, Marshall, Arrow, etc., etc.
- Nordhaus (1969): The optimal life of a patent T^* balances
 - Benefit: Profit from a patent motivates innovation
 - Cost: Inefficiency due to monopoly
- Patents protect innovators from imitators appropriating their ideas without attribution and reducing their profit through competition, thus dissuading investment in innovation
- Current global standard: Patents last 20 years

Macro/IO View of Patents

- Main goal in this paper is to estimate T*
- We extend Nordhaus's model to incorporate
 - Process innovations and knowledge spillovers: Virtuous cycle of productivity growth via mutual imitation and follow-on innovations
 - Macro framework: Semi-endogenous growth with a continuum of heterogeneous industries and imperfectly elastic labor supply
- New costs emerge in addition to previous benefits and costs
 - Opportunity cost of forgone symbiotic productivity growth from virtuous spillover cycles
 - Industries with higher spillovers contribute more to growth than those with lower spillovers
 - Now more spillovers may shorten patents
- We calibrate our model to US data
 - T^* lies between 8 and 14 years
 - Nordhaus's market power effect on *T*^{*} has the same magnitude as that of symbiotic competition and both effects are substantial

Model

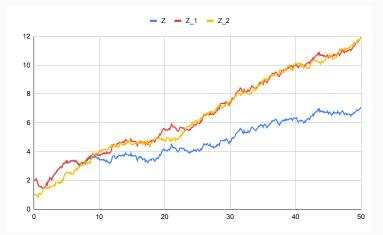
Symbiotic Productivity Growth

- Two firms, 1 and 2; industry under patent with duration $\mathcal{T} \in [0,\infty]$
- At time t, each firm j has the linear technology

$$y_{jt} = A_{jt}\ell_{jt}$$

where ℓ_{jt} is labor input, $A_{jt} = \exp(Z_{jt})$, and Z_{jt} is log productivity

• During the life of the patent (t < T), firm 1 is a monopolist and


$$dZ_{1t} = \mu dt + \sigma dW_{1t}$$

• Once the patent expires $(t \ge T)$, a firm's log productivity Z_{jt} obeys

$$dZ_{jt} = \begin{cases} (\mu + \theta)dt + \sigma dW_{jt} & \text{if } Z_{jt} < Z_{-jt} \\ \mu dt + \sigma dW_{jt} & \text{if } Z_{jt} \ge Z_{-jt} \end{cases}$$
(*)

- $\mu > 0$: productivity growth due to "learning by doing"
- $\theta > 0$: catch-up from knowledge spillovers, or "imitation"
- W₁ and W₂ are iid, capturing "process innovations"

Productivity Sample Path

- Productivity grows faster under competition than under monopoly
- Growth is driven by the catch-up of laggards
- Firms engage in neck-and-neck competition—productivity gap hovers around 0 but sometimes veers away

• Average productivity $X = \frac{1}{2}(Z_1 + Z_2)$ obeys the law of motion

$$dX_t = (\mu + \theta/2)dt + \sigma dW_{xt}$$

• Productivity gap $Y = \frac{1}{2}(Z_1 - Z_2)$ obeys the law of motion

$$dY_t = -\theta \operatorname{sgn}(Y_t) dt + \sigma dW_{yt}$$

• Y is a stationary process with double-exponential long-run pdf

$$\frac{1}{2}(\theta/\sigma^2)e^{-(\theta/\sigma^2)|y|}$$

General Equilibrium

Households

• Continuum of identical households with mass

$$N_t = N_0 e^{gt}$$

• A household's utility over output and labor streams is

$$\int_0^\infty e^{-rt} \left[c_t - \frac{1}{1+1/\phi} \eta_t \ell_t^{1+1/\phi} \right] dt$$

- ct is consumption of final good
- *l_t* is labor supplied
- η_t is used later to keep labor constant in the balanced growth path
- ϕ is the Frisch elasticity of labor supply
- Labor is used to produce
 - New varieties of intermediate goods; "research" ℓ_{rt}
 - The intermediate goods themselves; "production" ℓ_{pt}

$$\ell_t = \ell_{rt} + \ell_{pt}$$

• No borrowing or lending, goods cannot be stored

- Blueprints encode new varieties of intermediate goods
- There is a continuum, with unit mass, of blueprint-producing firms
- A firm that employs $\ell_{rt}N_t$ units of labor during [t, t + dt)
 - Obtains a blueprint with probability $\gamma \ell_{rt} N_t dt$
 - Doesn't with probability $1 \gamma \ell_{rt} N_t dt$
- Blueprints die of obsolescence at rate $\boldsymbol{\delta}$
- Stock of blueprints is B_t , with $B_0 > 0$ given

$$dB_t = (\gamma \ell_{rt} N_t - \delta B_t) dt$$

• Continuum of existing blueprints are labeled $i \in [0, B_t]$

Patents and Intermediate Good Production

- When a blueprint producing firm creates a blueprint *i* ∈ [0, B_{t0}] at t₀, it forms a new intermediate good producing firm *i*1 that operates with technology y_{i1t} = A_{i1t}ℓ_{i1t}
- Blueprints become patented immediately upon creation
- Before its patent expires, firm i1 sets a monopoly price p_{i1t} satisfying

$$\frac{p_{i1t} - c_{i1t}}{p_{i1t}} = 1 - \alpha$$

• After *i*1's patent expires, duopoly prices p_{i1t} and p_{i2t} satisfy

$$\frac{p_{ijt}-c_{ijt}}{p_{ijt}}=\frac{(1-\alpha)(1-\beta)}{(1-\rho_j)(1-\alpha)+\rho_j(1-\beta)}$$

where

$$\rho_{j} = p_{ijt}^{-\beta/(1-\beta)} / \left[p_{i1t}^{-\beta/(1-\beta)} + p_{i2t}^{-\beta/(1-\beta)} \right]$$

and $c_{ijt} = w_t / A_{ijt}$ is ij's marginal cost of production at time t

• Initial conditions: $(Z_{i_1,t_0}, Z_{i_2,t_0+T})$ match long run distribution of Y

Final Good Producers

• A continuum, with unit mass, of final good producers buy inputs (y_{ijt}) and produce output y_t with the CRS technology

$$y_t = \left[\int_0^{B_t} \left(y_{i1t}^{\beta} + \varepsilon_{it}y_{i2t}^{\beta}\right)^{\alpha/\beta} di\right]^{1/c}$$

where $\alpha \leq \beta < 1$ and

$$\varepsilon_{it} = \begin{cases} 0 & \text{if blueprint } i \text{ is under patent at time } t \text{ and} \\ 1 & \text{otherwise} \end{cases}$$

 Profit-maximizing final good producers demand each y_{ijt} as a function of market prices and total quantity produced y_t according to

$$y_{i1t}^m = y_t p_{i1t}^{-1/(1-\alpha)}$$

for a monopolist *i*1 and

$$y_{ijt}^{d} = y_t p_{ijt}^{-1/(1-\beta)} \left[p_{i1t}^{-\beta/(1-\beta)} + p_{i2t}^{-\beta/(1-\beta)} \right]^{-(\beta-\alpha)/[\beta(1-\alpha)]}$$

for a duopolist ij, with the price of the final good normalized to 1

Dividends

- Write intermediate good-producing firms' profit flow as
 - $\Pi_{i1t}^m = \max_p \{ y_{i1t}^m(p)(p c_{i1t}) \}$
 - $\Pi^d_{ijt} = \max_p \{ y^d_{ijt}(p, p_{ikt})(p c_{ijt}) \}$
- Π^d_{i2t} is paid to households as a dividend; the representative household gets

$$\Pi_t = \int_0^{B_t} \varepsilon_{it} \Pi_{i2t}^d di$$

- Π^m_{i1t}, Π^d_{i1t} is paid to blueprint producers to pay for labor used to
 produce the blueprint in the first place
- This pins down wages

Labor Market Equilibrium

- Labor per capita is supplied by households: $\ell_{\it pt}$ and $\ell_{\it rt}$
- Intermediate good producers demand labor at given wages

$$L_{pt} = \int_0^{B_t} (y_{i1t}/A_{i1t}) + \varepsilon_{it} (y_{i2t}/A_{i2t}) di$$

where $N_t \ell_{pt} = L_{pt}$ in labor market equilibrium

- To find ℓ_{rt} , use households' optimality condition
- To complete the model, let $\overline{\Pi}_{i1t} = EPV_{i1t}$ (profit):

$$\bar{\Pi}_{i1t} = \mathbb{E}_t \left[\int_t^{t+T} e^{-(r+\delta_f)(s-t)} \Pi_{i1s}^m ds + \int_{t+T}^{\infty} e^{-(r+\delta_f)(s-t)} \Pi_{i1s}^d ds \right]$$

• Research firms: risk neutral, flow profit equals $\gamma \ell_{rt} \bar{\Pi}_{it} - w_t \ell_{rt}$, so

$$w_t = \gamma \overline{\Pi}_{i1t}$$

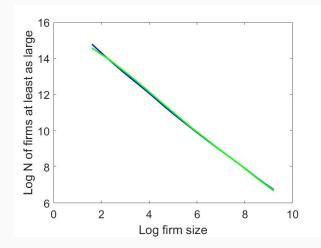
- An equilibrium in this economy is standard: prices and allocations such that all households and firms optimize and markets clear
- A BGP is an equilibrium where output and the stock of varieties grow at a constant rate over time
- If η_t is such that ℓ_t is constant over time then BGP exists
- In the balanced growth path
 - Endogenous growth rate in the BGP equals the population growth rate *g*, as usual (Romer)
 - · Productivity growth in industries affects output levels in the BGP
 - Patent policy generally exhibits inverted-U shape
- Our quantitative results below focus on the BGP

Calibration

Calibrated Parameters

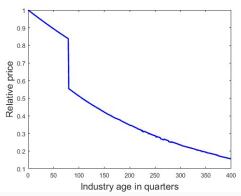
Externally calibrated parameters					
ϕ	3	Frisch elasticity of labor supply			
g	0.95%	Population growth rate			
r	3%	Discount rate			
δ_f	8%	Exit rate of firms			
$[\mu,\overline{\mu}]$	$[0, 7E[\mu]]$	Support of the distribution of μ			
$[\overline{\underline{\theta}},\overline{\theta}]$	$[0, 10E[\theta]]$	Support of the distribution of productivity spillovers			

Internally calibrated parameters					
$E[\mu]$	0.96%	Growth rate in productivity of a leading firm			
$E[\theta]$	1.35μ	Productivity spillovers from leader to follower			
σ	0.068	Size of the shocks to firms' productivity			
β	0.62	Parameter for within-industry elasticity of substitution			
α	0.75	Parameter for elasticity of substitution across industries			
δ	2.2%	Depreciation rate of blueprints			
$\sigma_{\mu}^{2} \ \sigma_{\theta}^{2}$	0.20	Variance of μ			
σ_{θ}^2	0.38	Variance of θ			


Targeted Moments and Values

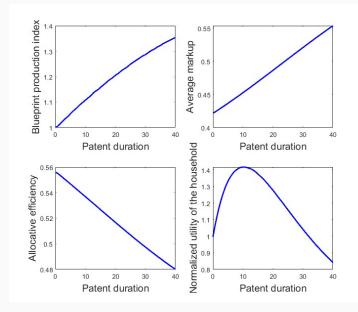
	Target	Model
Annual GDP growth rate	pprox 2.5%	2.48%
Average markup	pprox 0.50	0.493
Standard deviation of productivity	33%	31.9%
Price drop upon patent expiration	pprox 35%	36.6%

- GDP growth rate is average for the US over the past 30 years
- Average markup is consistent with the literature (De Loecker et al. 2020, Vlokhoven 2022, Haltiwanger et al. 2022)
- Standard deviation of productivity is from OECD (2020)
- Average growth rate of firms' labor productivity is 1.6% per year
- Spillovers are set so the relative growth rate of laggard firms is between 2 and 3 times higher than leading firms
- μ and θ have a truncated log-normal distribution

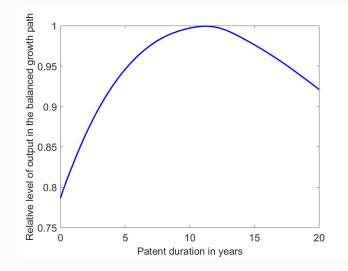

Size Distribution of Firms

We calibrate our model of heterogeneous spillovers to minimize the average error with respect to the size distribution of firms:

Price Drop upon Patent Expiration


In line with Vondeling et al. (2018), our calibration implies a price drop upon the expiration of a patent of about 34%

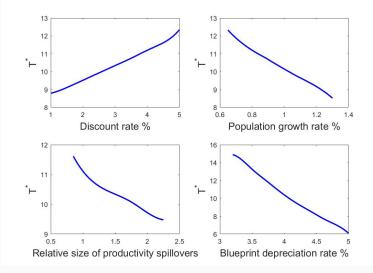
- Example of expected prices posted across industry ages
- Price drops discontinuously when a patent expires after 80 quarters


Results

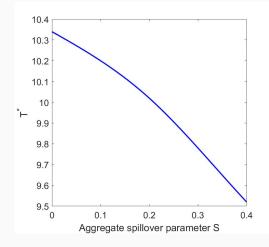
Investment, Markups, Efficiency and Welfare

The Case Against Patents

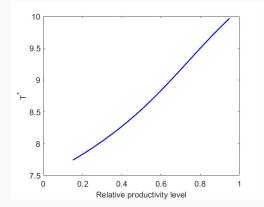
No patents yield lower utility than the status quo policy of T = 20 years



Decomposing the Optimal Life of a Patent


Nordhaus's market power effect (\approx 20 years) is comparable to the symbiotic effect with spillover heterogeneity (\approx 18 years)

Robustness



Endogenous Growth

We consider extending the model to incorporate endogenous growth à la Lucas (1988) but find a small effect, in line with Jones (1995)

Endogenous Firm-Level TFP Growth

Extending the model to allow for endogenous μ has a modest effect on T^* in our calibration (x axis is the ratio of μ in monopoly over duopoly)

Conclusion

Summary and Conclusions

- We introduce an endogenous growth model with dynamic, mutual imitation dubbed "symbiotic competition"
- $T^* \in [8, 14]$ years in our calibration
- Contra Boldrin and Levine's (2013) claim that patents are wasteful
 - We agree that profit from developing new technologies provides enough incentives for much innovation even without patents
 - But in our model intellectual property protection may improve welfare
 - Without patents, consumption is typically about 60 to 90% of the maximum level at optimal patent length in the balanced growth path
 - In our calibration, "no patents" is worse than "patents last 20 years"
- Knowledge spillovers create a counterweight to Nordhaus (1969)
 - Easier imitation can lead to shorter patents
 - Spillover heterogeneity: high-spillover industries matter more for reducing the life of a patent than low-spillover ones
 - Symbiotic effect \approx market power effect on $\mathcal{T}^*\approx$ 20 years