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Motivation

Concerns about electric vehicles in early 2010’s:

• Do they work in practice? Extreme weather, durability...

• Can I find a charging station? Network effect.
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This paper

Key features of the model:

– Small players choose when to adopt a new innovation.

– After adoption, get a flow payoff that depends on:
▶ Unknown but fixed state → Informational externality.
▶ Amount of adopted players → Dynamic payoff externality.

Main insights:

– Good learning technology leads to slower learning.
▶ Holds under positive payoff externalities.
▶ Better learning technology → more informational free-riding.

– Technical: can solve the equilibria by looking at a simple
problem that ignores actions in the future.
▶ Closed-form solution to a complex dynamic problem.
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Literature

– Payoff externalities, no social learning:
▶ Katz-Shapiro 1986, Jovanovic-Lach 1989, and Farrell-Saloner

1986... Industry equilibrium: Leahy 1993, Baldursson-Karatzas
1996.

– Social learning, no payoff externalities:
▶ Large games with experimentation: Frick-Ishii 2020,

Laiho-Murto-Salmi 2022.

– Two-player attrition games:
▶ Decamps-Mariotti 2004, Thijssen-Huisman-Kort 2006,

Akcigit-Liu 2016, Kwon-Xu-Agrawal-Muthulingam 2016,
Margaria 2020.

– Tipping points (following Kemp 1976):
▶ Many applications, e.g. investments in productive capital (Rob

1990) and resource consumption (Diekert 2017)...
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Today

1. Model and solution concept (formal)

2. Statement of the main result (informal)

3. Argument for the main result (very informal)

4. How to make the argument formal...
▶ ... and the interesting results that follow
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Model

– Continuous time t ∈ [0,∞), discount rate r.

– A continuum of identical and risk neutral players choose when
to irreversibly stop (adopt the innovation).

– Flow payoff after stopping

duit = π(qt, ω)dt+ noise

depends on:
▶ qt ∈ [0, 1] fraction of stopped players.
▶ Unknown state of the world, ω ∈ {H,L}; prior belief

Pr(ω = H) = x0.

▶ Assume: π(q,H) > 0, π(q, L) < 0, and π abs. cont. for all q.
In this talk: πq(q, ω) ≥ 0.
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Model: learning

. . .

State of
the world

+

+

=noise

noise

Experience
= Signal from

one adopter

Aggregate information in the game:

dUt ∼ N(qtπ(qt, ω)dt, qtσ
2dt).

– Interpretation: fix the total informativeness of the game and
take the limit as the number of players → ∞. Discrete model .

– Signal-to-noise ratio λσ(qt) :=
√
qt(π(qt,H)−π(qt,L))

σ ; assume
λ′
σ(qt) > 0.

– Unconditional belief dynamics: dXt = λσ(qt)xt (1− xt) dWt.

▶ Wt is a standard Wiener process.
▶ Notation: upper case letters for random variables and lower

case letters for realizations.
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Markov Perfect Equilibrium

– Markov strategy ξi : [0, 1]× [0, 1] → [0, 1], from the belief and
the stock of adopters to adoption probability.

– When all players follow Markov strategies, the stock Qt is an
increasing process adapted to Ut.

Player’s stopping problem:

v(qt, xt) = sup
τ

EQt

[∫ ∞

τ

e−r(s−t)π(Qs, ω)ds|(qt, xt)

]
.

Definition
A stock process Qt is an equilibrium if

(i) v(qt, xt) = EQt

[∫∞
τ

e−r(s−t)π(qs, ω)ds|(qt, xt)
]
whenever dQt > 0,

(ii) v(qt, xt) ≥ EQt

[∫∞
τ

e−r(s−t)π(qs, ω)ds|(qt, xt)
]
whenever dQt = 0.
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Benchmark result

Proposition
Assume no payoff externalities: π independent of q. In equilibrium,
the evolution of the belief is independent of the learning
technology σ.

→ Players postpone stopping under a better learning
technology so much that it exactly balances out the effect of
better technology.
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(Almost) proof of the benchmark result

Suppose the equilibrium under learning technology σ is
characterized as:

belief

adopters

learning t. σ
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The same speed
of learning in eqm



Main result

Proposition (informal Formal statement )

Assume strictly positive payoff externalities, and let σ′ < σ. Then,
learning is strictly faster in the ‘maximal equilibrium’ under σ than
in any equilibrium under σ′.

→ Faster learning and higher welfare under worse learning
technology.
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(Not a) proof of the main result

belief

adopters

learning t. σ

11 / 14



(Not a) proof of the main result

belief

adopters

learning t. σ

same flow of info:
λσ′(q′) = λσ(q)

σ′ < σ

11 / 14



(Not a) proof of the main result

belief

adopters

learning t. σ

same flow of info:
λσ′(q′) = λσ(q)

adopt?

σ′ < σ

11 / 14



(Not a) proof of the main result

belief

adopters

learning t. σ

same flow of info:
λσ′(q′) = λσ(q)

NO

σ′ < σ
learning t. σ′

11 / 14

Smaller stock and
less information



(Not a) proof of the main result

belief

adopters

learning t. σ

same flow of info:
λσ′(q′) = λσ(q)

σ′ < σ
learning t. σ′

11 / 14

Smaller stock and
less information

→ Learning amplifies the need to subsidize new technologies
with network effects.



(Not a) proof of the main result

belief

adopters

learning t. σ

same flow of info:
λσ′(q′) = λσ(q)

σ′ < σ
learning t. σ′

What is missing in the argument?

• Existence and uniqueness.
• The argument is too static: ignores future adopters...

11 / 14

Smaller stock and
less information



How to formalize the argument

1. Show that the equilibrium can be solved by considering a
‘myopic problem’ where players ignore future actions.
▶ Intuition: future stopping happens only when the current

stopping player would like to stop too.
▶ Proof by applying the iterative elimination of strictly

dominated strategies.

2. (Explicitly solve the equilibrium → cutoff rule for the
‘maximal equilibrium’)

3. Formalize ‘faster learning’: the maximal and minimal values of
the belief are more extreme.

4. Complete the argument by showing that a lower cutoff implies
slower learning.
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Selected insights from the paper (1)

– Adoption of new technologies with positive network effects:
▶ Better learning technology may slow down learning and hurt

welfare.
▶ Multiplicity of equilibria arises when ‘coordination is more

important than informational free-riding’.

– Equilibrium characterization works with any form of payoff
externality.
▶ Entry to a market of unknown size → negative payoff

externality between the firms.
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Selected insights from the paper (2)

Methodological aspect:

– Gradual learning is a good tool to analyze the joint effect of
informational and payoff externalities.

– The solution technique is likely to generalize to other
(endogenous) state diffusion processes.
▶ E.g. the stock of adopters affects technological improvement.

Work in progress:

– Heterogeneous players
▶ Inner-point optimum for learning technology.
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Formal analysis: individual consumer’s
problem

sup
τ

EQt

[∫ ∞

τ
e−r(s−t)π(Qs, ω)ds|(qt, xt)

]
– Optimal stopping problem with two-dimensional state.

▶ The equilibrium ties the dimensions together. illustration

– Future expectations:
▶ Faster learning.
▶ Payoff externality.

We show that the equilibria can be found by considering ‘myopic’
optimization.

– Find optimal stopping time with fixed Qt ≡ q.
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Myopic problem

Optimal stopping time with fixed Qt ≡ q:

Definition (Myopic problem)

The myopic optimal stopping problem against a fixed stock q is

sup
τ

EQt≡q

[∫ ∞

τ
e−r(s−t)π(q, ω)ds|xt

]
,

where the belief evolves according to dXt = λ(q)Xt (1−Xt) dWt.

– Standard one-dimensional stopping problem with parameter q.

– Solution is a cutoff rule: stop if x ≥ x̄(q).

x̄(q) :=
−β(q)π(q, L)

(β(q)− 1)π(q,H)− β(q)π(q, L)
,

where β(q) := 1
2

(
1 +

√
1 + 8r

λ(q)

)
.
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Equivalence

– Define: x̂(q) := max{x ∈ [0, 1] : x ≤ x̄(q′) ∀q′ ≥ q}.
▶ The function x̂ is the largest monotone function that has

values below x̄.

Proposition 1
In any equilibrium, dQt > 0 if xt > x̄(q) and dQt = 0 if xt < x̂(q).

– In an equilibrium, players can ignore future expansions.

– Why? Because future expansions happen only when the player
himself would stop too.
▶ The equivalence between the actual and the myopic problem is

an equilibrium property: would not hold against an arbitrary
process Qt.

Proof →
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Equilibrium

Proposition 1 graphically (notice that the axes are flipped!):

q

x

1

1

x̄

x̂

waiting region

adoption region

?
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Proposition 1: proof sketch for x > x̄(q)

• Notice that the optimal stopping problem is equivalent to
evaluating the following payoff:

EQt

[∫ τ

t
e−r(s−t)π(Qs, ω)ds|xt, qt

]
▶ Stop if positive for all τ .

• For x > x̄(q), it is optimal to stop when Q is fixed and hence:

EQt≡q

[∫ τ

t
e−r(s−t)π(q, ω)ds|xt, qt

]
≥ 0 for all τ .

• Assume no-one stops → the optimal stopping condition is
identical to the case with fixed Qt ≡ q.
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Proposition 1: proof sketch for x < x̂(q)

• Iterative elimination of strictly dominated strategies:

1

q∗(1)

stock (q)

belief (x)

x̂

x̃q(1) = x0(q)

x̃q(q
′): cutoff with information flow q and payoffs π(q′, ω). Genaralization
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Equilibrium

Proposition 1 graphically:

q

x

1

1

x̄

x̂

waiting region

adoption region

?

→ Equilibrium is unique when x̄ is monotone.

7 / 25



Non-monotone cutoff belief

The myopic cutoff x̄ is increasing in q:

– With negative and without payoff externalities.

– If the learning technology is good (noise term σ small).
▶ Informational externality dominates payoff externality.

The myopic cutoff x̄ is decreasing in q if positive payoff
externalities and little learning.

→ Non-monotone cutoff when positive payoff externality and
intermediate learning. Multiplicity of equilibria

8 / 25



Maximal and minimal equilibria

Definition

• The maximal cutoff rule is characterized by the cutoff rule x̂:
for any (x, q), dQ = q′− q where q′ = max{s ≥ q : x̂(q) = x}.

• The minimal cutoff rule is characterized by the cutoff rule x̄:
for any (x, q), dQ = q′ − q where q′ = min{s ≥ q : x̄(q) = x}.

Lemma: Qt defined by the minimal and maximal cutoff rules are
equilibria.

Corollary: the maximal (minimal) cutoff equilibrium is the
equilibrium with the fastest (slowest) adoptions.
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Better learning technology

Recall the law-of-motion for the belief:

dXt = λσ(Qt)Xt(1−Xt)dWt, (1)

Proposition 2 (formal)

Let σ′ < σ. The following holds for all realization of Wiener
process Wt in (1) under strictly positive payoff externalities:

(i) Suppose the belief equals x ∈ (0, x̂σ(1)] at time t′ > 0 in the
maximal equilibrium under learning technology σ′. Then the
belief equals x at some t < t′ in the maximal equilibrium
under learning technology σ.

(ii) Suppose the belief equals x ∈ (0, x̄σ(1)] at time t′ > 0 in the
minimal equilibrium under learning technology σ′. Then the
belief equals x at some t < t′ in the minimal equilibrium
under learning technology σ.

10 / 25



Proposition 2: proof sketch for maximal

– We already argued informally that the cutoff under σ′ must be
above the cutoff that leads to the same amount of
information: λσ′(q′) = λσ(q).
▶ The equivalence with the myopic problem formalized the

argument.

– Higher cutoff belief implies less variation for the belief:

1. Static comparison yields:λσ′(q′(x0)) < λσ(q(x0)).
2. Because xt and x′

t reach new maxima always at the same time,
the max of xt stays above the max of x′

t as long as λ′
t < λt.

3. λ′
t cannot reach λt as long as x′

t < x̂σ(1) because then
q(xt) > q′(xt) > q′(x′

t) (the first equation need not hold if
xt > x̂σ(1)).
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Better learning technology

Corollary
Assume strictly positive payoff externalities, and let σ′ < σ.

• The players are strictly better off in the maximal equilibrium
under σ than in any equilibrium under σ′ for all initial beliefs
x0 ∈ (x̂σ(0), x̂σ(1)].

• The players are strictly worse off in the minimal equilibrium
under σ′ than in any equilibrium under σ for all initial beliefs
x0 ∈ (x̄σ(0),maxq∈[0,1] x̄σ(q)].
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Adoption patterns

Assume positive payoff externalities and intermediate learning
technology:

– Belief dynamics create an S-shaped adoption curve.

– Better learning technology makes adoption more back-loaded.
▶ Higher cutoff.
▶ Slower learning.

– Stronger payoff externality makes adoption more back-loaded
because of increasing payoff.
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Heterogeneous players

Why to look at heterogeneity:

– Important in applications.
▶ Robustness.
▶ How to allocate subsidies.

– Some players strictly prefer waiting:
▶ Direct benefit from endogenous learning in eqm.

Work in progress...
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Extension: heterogeneous consumers

The same model as before, except:

– Players have types θ ∼ U(0, 1).

– Flow payoff after stopping: π(θ; q, ω).
▶ Assume: πθ(θ; q, ω) ≥ 0 for all θ, q, ω.

– Skimming property holds: higher types stop first.
▶ One-to-one mapping between the stock and the type:

θ(q) := 1− q.
▶ Flow payoff when θ(q) stops: π(θ(q); q, ω) =: πω(q).
▶ πω(q) can be increasing or decreasing or any mixture.
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Equilibrium with heterogeneity

Proposition 1 generalizes: the equilibria are characterized by

x̄(q) :=
−β(q)π(θ(q); q, L)

(β(q)− 1)π(θ(q); q,H)− β(q)π(θ(q); q, L)
,

where β(q) := 1
2

(
1 +

√
1 + 8r

λ(q)

)
.
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MPE process Qt: illustration
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Expansion boundary

Back to main .
18 / 25

In continuous time model, the belief process is continuous a.s. and
“jumps” are infinitesimally small.

q∗(1)

1

stock (q)

belief (x)

x0

stochastic
time pathstochastic
time path



Multiplicity of equilibria

Suppose x̄ is not monotone.

q

x

q′′q′

1

1

x̄

x̂

x0

Players may coordinate to (q′, x0) or to (q′′, x0) from (0, x0).
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Other equilibria

q

x

q′′q′

1

1

x̄

x̂

x0

• Can construct eqm where players coordinate to (q′, x0) for
beliefs just above x0 and to (q′′, x0) for beliefs just below.
▶ The number of adopters is non-monotone in the belief.

Back to main .
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References: Pictures of EV

– RENAULT: By M 93, Wikipedia curid=18496311

– NISSAN: By TTTNIS - Own work, Wikipedia curid=61748245

– VW: By M 93, Wikipedia curid=33508549

– TESLA: By Vauxford - Own work, Wikipedia curid=76762503
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Discrete approximation

– Discrete time: dt, 2dt, 3dt, . . . .

– There are n players.

– In every period, each player who has stopped receives a
conditionally iid. payoff:

uit ∼ N

(
π(q, ω)dt

n
,
σ2dt

n

)
.

– Let the current number of stopped agents be k:

k∑
i=1

uit ∼ N

(
π(q, ω)dt

k

n
, σ2dt

k

n

)
.

– The continuous time learning process follows as a limit when
n → ∞ and dt → 0.
▶ The stock captures the fraction of stopped players: q = k/n.

Back to main .
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Proof of Proposition 1: generalization
to arbitrary externalities

– Define x̃q(q
′): cutoff with information flow q and payoffs

max s ∈ [q, q′]π(s, ω).
▶ Now, x̃q(q

′) is weakly decreasing in q′ for all forms of π.

Back to main .
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Better learning technology

Recall the law-of-motion for the belief:

dXt = λσ(Qt)Xt(1−Xt)dWt, (2)

Proposition 2
Let σ′ < σ. The following holds for all realization of Wiener
process Wt in (2) under strictly positive payoff externalities:

(i) Suppose the belief equals x ∈ (0, x̂σ(1)] at time t′ > 0 in the
maximal equilibrium under learning technology σ′. Then the
belief equals x at some t < t′ in the maximal equilibrium
under learning technology σ.

(ii) Suppose the belief equals x ∈ (0, x̄σ(1)] at time t′ > 0 in the
minimal equilibrium under learning technology σ′. Then the
belief equals x at some t < t′ in the minimal equilibrium
under learning technology σ.

Back to main .
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Better learning technology

Recall the law-of-motion for the belief:

dXt = λσ(Qt)Xt(1−Xt)dWt, (3)

Proposition (formal)

Let σ′ < σ. The following holds for all realization of Wiener
process Wt in (3) under strictly positive payoff externalities:

• Suppose the belief equals x ∈ (0, x̂σ(1)] at time t′ > 0 in the
maximal equilibrium under learning technology σ′. Then the
belief equals x at some t < t′ in the maximal equilibrium
under learning technology σ.

Back to main .
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