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MOTIVATION

Concerns about electric vehicles in early 2010'’s:

e Do they work in practice? Extreme weather, durability...

e Can | find a charging station? Network effect.
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THIS PAPER

Key features of the model:

— Small players choose when to adopt a new innovation.
— After adoption, get a flow payoff that depends on:

» Unknown but fixed state — Informational externality.
» Amount of adopted players — Dynamic payoff externality.
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THIS PAPER

Key features of the model:

— Small players choose when to adopt a new innovation.
— After adoption, get a flow payoff that depends on:

» Unknown but fixed state — Informational externality.
» Amount of adopted players — Dynamic payoff externality.

Main insights:
— Good learning technology leads to slower learning.

» Holds under positive payoff externalities.
» Better learning technology — more informational free-riding.

— Technical: can solve the equilibria by looking at a simple
problem that ignores actions in the future.

» Closed-form solution to a complex dynamic problem.
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LITERATURE

Payoff externalities, no social learning:

» Katz-Shapiro 1986, Jovanovic-Lach 1989, and Farrell-Saloner
1986... Industry equilibrium: Leahy 1993, Baldursson-Karatzas
1996.

Social learning, no payoff externalities:

» Large games with experimentation: Frick-Ishii 2020,

Laiho-Murto-Salmi 2022.
Two-player attrition games:

» Decamps-Mariotti 2004, Thijssen-Huisman-Kort 2006,
Akcigit-Liu 2016, Kwon-Xu-Agrawal-Muthulingam 2016,
Margaria 2020.

Tipping points (following Kemp 1976):

» Many applications, e.g. investments in productive capital (Rob

1990) and resource consumption (Diekert 2017)...
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Ll A

ToDAY

Model and solution concept (formal)
Statement of the main result (informal)
Argument for the main result (very informal)

How to make the argument formal...
» ... and the interesting results that follow
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MODEL

— Continuous time ¢ € [0, 00), discount rate 7.

— A continuum of identical and risk neutral players choose when
to irreversibly stop (adopt the innovation).

— Flow payoff after stopping
dul = 7(q;,w)dt + noise

depends on:
» ¢ € [0,1] fraction of stopped players.
» Unknown state of the world, w € {H, L}; prior belief
Pr(w=H) = x.
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MODEL

— Continuous time ¢ € [0, 00), discount rate 7.

— A continuum of identical and risk neutral players choose when
to irreversibly stop (adopt the innovation).

— Flow payoff after stopping

dul = 7(q;,w)dt + noise

depends on:
» ¢ € [0,1] fraction of stopped players.
» Unknown state of the world, w € {H, L}; prior belief
Pr(w=H) = x.
» Assume: (g, H) >0, w(¢q,L) <0, and 7 abs. cont. for all g.
In this talk: 74(q,w) > 0.
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State of
the world

MODEL: LEARNING

Experience

+

Signal from
one adopter
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MODEL: LEARNING

State of + = | Experience

the world

_| Signal from
+ one adopter

noise

Aggregate information in the game:
dU; ~ N(q7(qe, w)dt, gzo?dt).

— Interpretation: fix the total informativeness of the game and
take the limit as the number of players — oo. CEEEINED.

\/qit(ﬂ-(qth)fﬂ-(qt?L)) .

o 1

— Signal-to-noise ratio A\, (g:) := assume

)\g(qt) > 0.
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MODEL: LEARNING

State of + = | Experience

the world

_| Signal from
+ one adopter

noise

Aggregate information in the game:
dU; ~ N(q7(qe, w)dt, gzo?dt).

— Interpretation: fix the total informativeness of the game and
take the limit as the number of players — oo. CEEEINED.

— Signal-to-noise ratio A\, (g) := \/qit(ﬂ(q“?fﬂ(qt’m); assume

)\g(qt) > 0.

— Unconditional belief dynamics: dX; = Ao (q)x (1 — x) dW.

» W, is a standard Wiener process.
» Notation: upper case letters for random variables and lower
case letters for realizations.
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MARKOV PERFECT EQUILIBRIUM

— Markov strategy &; : [0,1] x [0,1] — [0, 1], from the belief and
the stock of adopters to adoption probability.
— When all players follow Markov strategies, the stock Q; is an
increasing process adapted to Us.
Player’s stopping problem:

o0
v(qe, 21) = supEo, [ [ erton@u stz

T
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MARKOV PERFECT EQUILIBRIUM

— Markov strategy &; : [0,1] x [0,1] — [0, 1], from the belief and
the stock of adopters to adoption probability.

— When all players follow Markov strategies, the stock Q; is an
increasing process adapted to Us.

Player’s stopping problem:

oo
v(gt, z¢) = sup Eg, {/ e_T(S_t)W(QS,w)dquhmt)] .

DEFINITION
A stock process (); is an equilibrium if

(1) v(ge,z¢) =Eq, [f:o eiT(Sft)w(qs,w)ds|(qt7wt)] whenever d@; > 0,

(11) v(ge,z¢) > Eo, [f;o ef"(sft)n(qs,w)ds|(qt7:ct)] whenever dQ); = 0.
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BENCHMARK RESULT

PROPOSITION

Assume no payoff externalities: 7 independent of q. In equilibrium,
the evolution of the belief is independent of the learning
technology o.

— Players postpone stopping under a better learning
technology so much that it exactly balances out the effect of
better technology.
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(ALMOST) PROOF OF THE BENCHMARK RESULT

Suppose the equilibrium under learning technology o is

characterized as:

adopters

learning t. o

belief
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(ALMOST) PROOF OF THE BENCHMARK RESULT

Suppose the equilibrium under learning technology o is
characterized as:

adopters
learning t. o
same flow of info:
Ao (@) = Ao ()
o <o
) The same speed
same infg

of learning in eqm

belief
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MAIN RESULT

PROPOSITION (INFORMAL @INSEETTED)

Assume strictly positive payoff externalities, and let o' < o. Then,
learning is strictly faster in the ‘maximal equilibrium’ under o than
in any equilibrium under o’.

— Faster learning and higher welfare under worse learning
technology.
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(NOT A) PROOF OF THE MAIN RESULT
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belief
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(NOT A) PROOF OF THE MAIN RESULT

adopters

learning t. o
same flow of info:

Ao (q') = Ao (q)
learning t. o’

Smaller stock and
less information

belief

— Learning amplifies the need to subsidize new technologies

with network effects.
11/14



(NOT A) PROOF OF THE MAIN RESULT
adopters

learning t. o

same flow of info:
Aot (d") = Aa ()
learning t. o’

Smaller stock and
less information

belief

What is missing in the argument?
e Existence and uniqueness.

e The argument is too static: ignores future adopters... 1114



How TO FORMALIZE THE ARGUMENT

. Show that the equilibrium can be solved by considering a
‘myopic problem’ where players ignore future actions.

» Intuition: future stopping happens only when the current
stopping player would like to stop too.

» Proof by applying the iterative elimination of strictly
dominated strategies.

. (Explicitly solve the equilibrium — cutoff rule for the

‘maximal equilibrium’)

. Formalize ‘faster learning’: the maximal and minimal values of

the belief are more extreme.

. Complete the argument by showing that a lower cutoff implies
slower learning.

12/14



SELECTED INSIGHTS FROM THE PAPER (1)

— Adoption of new technologies with positive network effects:
» Better learning technology may slow down learning and hurt
welfare.
» Multiplicity of equilibria arises when ‘coordination is more
important than informational free-riding'.
— Equilibrium characterization works with any form of payoff
externality.
» Entry to a market of unknown size — negative payoff
externality between the firms.
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SELECTED INSIGHTS FROM THE PAPER (2)

Methodological aspect:
— Gradual learning is a good tool to analyze the joint effect of
informational and payoff externalities.

— The solution technique is likely to generalize to other
(endogenous) state diffusion processes.

» E.g. the stock of adopters affects technological improvement.

Work in progress:
— Heterogeneous players
» Inner-point optimum for learning technology.
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FORMAL ANALYSIS: INDIVIDUAL CONSUMER’S
PROBLEM

sup Eq, [/ efr(sft)ﬂ'(Qs,w)dqut,xt)

— Optimal stopping problem with two-dimensional state.
» The equilibrium ties the dimensions together.
— Future expectations:

» Faster learning.
» Payoff externality.
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FORMAL ANALYSIS: INDIVIDUAL CONSUMER’S
PROBLEM

sup Eq, [/ efr(sft)ﬂ'(Qs,w)dqut,xt)

— Optimal stopping problem with two-dimensional state.
» The equilibrium ties the dimensions together.
— Future expectations:

» Faster learning.
» Payoff externality.

We show that the equilibria can be found by considering ‘myopic’

optimization.

— Find optimal stopping time with fixed Q; = g.
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MYOPIC PROBLEM

Optimal stopping time with fixed Q; = g:

DEFINITION (MYOPIC PROBLEM )
The myopic optimal stopping problem against a fixed stock ¢ is

sup Eg,=4 [/ e_r(s_t)w(q,w)ds\xt )

T

where the belief evolves according to dX; = A(q) X, (1 — X;) dW,.

— Standard one-dimensional stopping problem with parameter gq.

— Solution is a cutoff rule: stop if x > Z(q).

2/25



MYOPIC PROBLEM

Optimal stopping time with fixed Q; = g:
DEFINITION (MYOPIC PROBLEM )
The myopic optimal stopping problem against a fixed stock ¢ is

sup Eg,=4 [/ e_r(s_t)w(q,w)ds\xt )

T

where the belief evolves according to dX; = A(q) X, (1 — X;) dW,.

— Standard one-dimensional stopping problem with parameter gq.

— Solution is a cutoff rule: stop if x > Z(q).
() = —B(g)m(q, L)
(B(g) = 1) w(q, H) — B(g)m(q, L)’

where 3(q) := % (1 +4/1+ ,\%Z))-
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EQUIVALENCE

— Define: #(q) := max{z € [0,1] : 2 < Z(¢') V¢ > ¢}.
» The function & is the largest monotone function that has
values below T.

3/25



EQUIVALENCE

— Define: #(q) := max{z € [0,1] : 2 < Z(¢') V¢ > ¢}.
» The function & is the largest monotone function that has
values below T.

PROPOSITION 1
In any equilibrium, dQ: > 0 if x; > Z(q) and dQ; = 0 if z; < Z(q).

— In an equilibrium, players can ignore future expansions.
— Why? Because future expansions happen only when the player
himself would stop too.

» The equivalence between the actual and the myopic problem is
an equilibrium property: would not hold against an arbitrary
process ();.

Proof —
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EQUILIBRIUM

Proposition 1 graphically (notice that the axes are flipped!):

X

adoption region

waiting region
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PROPOSITION 1: PROOF SKETCH FOR x > Z(q)

e Notice that the optimal stopping problem is equivalent to
evaluating the following payoff:

Eq, [/ e*T(S*t)W(QS,w)ds\xt,qt
t

» Stop if positive for all 7.
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PROPOSITION 1: PROOF SKETCH FOR x > Z(q)

e Notice that the optimal stopping problem is equivalent to
evaluating the following payoff:

Eq, [/ eT(St)W(QS,w)ds\xt,qt}
t

» Stop if positive for all 7.

e For x > Z(q), it is optimal to stop when @ is fixed and hence:
T
Eg,=q {/ eT(St)ﬂ(q,w)ds]a;t,qt] >0 forallr.
t

e Assume no-one stops — the optimal stopping condition is
identical to the case with fixed Q; = q.
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PROPOSITION 1: PROOF SKETCH FOR x < Z(q)

e |terative elimination of strictly dominated strategies:

belief ()

stock (q)

Z4(q'): cutoff with information flow ¢ and payoffs 7(¢’, w).

6/25



PROPOSITION 1: PROOF SKETCH FOR x < Z(q)

e |terative elimination of strictly dominated strategies:

belief ()

‘ stock (q)

Z4(q'): cutoff with information flow ¢ and payoffs 7(¢’, w).

6/25



PROPOSITION 1: PROOF SKETCH FOR x < Z(q)

e |terative elimination of strictly dominated strategies:

belief ()

~-=- Z4(q)

strictly dominated

‘ stock (q)

Q>

Z4(q'): cutoff with information flow ¢ and payoffs 7(¢’, w).

6/25
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,
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PROPOSITION 1: PROOF SKETCH FOR x < Z(q)

e |terative elimination of strictly dominated strategies:

belief ()
,Tq(1) = wo(q)
. 3 7
z1(q) e
’ S--- T4(q)
4 (g),' strictly dominated

Z4(q'): cutoff with information flow ¢ and payoffs 7(¢’, w).

stock (q)
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EQUILIBRIUM

Proposition 1 graphically:

x

adoption region

waiting region

— Equilibrium is unique when Z is monotone.
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NON-MONOTONE CUTOFF BELIEF

The myopic cutoff Z is increasing in q:
— With negative and without payoff externalities.
— If the learning technology is good (noise term o small).
» Informational externality dominates payoff externality.
The myopic cutoff Z is decreasing in ¢ if positive payoff
externalities and little learning.

— Non-monotone cutoff when positive payoff externality and

intermediate learning.
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MAXIMAL AND MINIMAL EQUILIBRIA

DEFINITION
e The maximal cutoff rule is characterized by the cutoff rule Z:
for any (z,q), dQ = ¢' — q where ¢ = max{s > ¢ : &(q) = z}.
e The minimal cutoff rule is characterized by the cutoff rule Z:
for any (z,q), dQ = ¢’ — ¢ where ¢ = min{s > ¢ : T(q) = x}.

Lemma: @, defined by the minimal and maximal cutoff rules are
equilibria.

Corollary: the maximal (minimal) cutoff equilibrium is the
equilibrium with the fastest (slowest) adoptions.
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BETTER LEARNING TECHNOLOGY
Recall the law-of-motion for the belief:

dXi = Ao (Qe) Xt (1 — X3)dWy, (1)

PROPOSITION 2 (FORMAL)

Let o/ < o. The following holds for all realization of Wiener
process Wy in (1) under strictly positive payoff externalities:

(1) Suppose the belief equals x € (0,%,(1)] at time ' > 0 in the
maximal equilibrium under learning technology o’. Then the
belief equals x at some t < t' in the maximal equilibrium
under learning technology o.

(11) Suppose the belief equals x € (0,%,(1)] at time ' > 0 in the
minimal equilibrium under learning technology o’. Then the
belief equals x at some t < t' in the minimal equilibrium
under learning technology o.
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PROPOSITION 2: PROOF SKETCH FOR MAXIMAL

— We already argued informally that the cutoff under o’ must be
above the cutoff that leads to the same amount of
information: A,/ (¢") = Ay (q).

» The equivalence with the myopic problem formalized the
argument.
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PROPOSITION 2: PROOF SKETCH FOR MAXIMAL

— We already argued informally that the cutoff under o’ must be
above the cutoff that leads to the same amount of
information: A,/ (¢") = Ay (q).

» The equivalence with the myopic problem formalized the
argument.

— Higher cutoff belief implies less variation for the belief:

1. Static comparison yields: A,/ (¢’ (o)) < As(g(z0)).
2. Because z; and z; reach new maxima always at the same time,
the max of z; stays above the max of z} as long as A} < A;.
3. A} cannot reach \; as long as x} < Z,(1) because then
q(z¢) > ¢'(xe) > ¢'(x}) (the first equation need not hold if
Ty > IIATG-(].))
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BETTER LEARNING TECHNOLOGY

COROLLARY
Assume strictly positive payoff externalities, and let o’/ < o.

e The players are strictly better off in the maximal equilibrium
under o than in any equilibrium under o’ for all initial beliefs
xo € (25(0),24(1)].

e The players are strictly worse off in the minimal equilibrium
under o’ than in any equilibrium under o for all initial beliefs

VRS (ja(o)arﬂaxqeﬂll}fa(Q)y
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ADOPTION PATTERNS

Assume positive payoff externalities and intermediate learning
technology:
— Belief dynamics create an S-shaped adoption curve.

— Better learning technology makes adoption more back-loaded.

» Higher cutoff.
» Slower learning.

— Stronger payoff externality makes adoption more back-loaded
because of increasing payoff.
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HETEROGENEOUS PLAYERS

Why to look at heterogeneity:
— Important in applications.

» Robustness.
» How to allocate subsidies.

— Some players strictly prefer waiting:

» Direct benefit from endogenous learning in eqm.

Work in progress...
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EXTENSION: HETEROGENEOUS CONSUMERS

The same model as before, except:
— Players have types 0 ~ U(0,1).
— Flow payoff after stopping: 7(6;q,w).
» Assume: 7y(6;q,w) > 0 for all 8, q, w.
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EXTENSION: HETEROGENEOUS CONSUMERS

The same model as before, except:
— Players have types 0 ~ U(0,1).
— Flow payoff after stopping: 7(6;q,w).
» Assume: 7y(6;q,w) > 0 for all 8, q, w.

— Skimming property holds: higher types stop first.
» One-to-one mapping between the stock and the type:
0(q):=1—q.
» Flow payoff when 6(q) stops: 7(6(q); ¢, w) =: 7, (q).
» 7,(q) can be increasing or decreasing or any mixture.

15/25



EQUILIBRIUM WITH HETEROGENEITY

Proposition 1 generalizes: the equilibria are characterized by

_ —B(a)m(0(q); ¢, L)
(B(q) — 1) 7(0(q); ¢, H) — B(q)7w(0(q); ¢, L)’
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MPE PROCESS (J;: ILLUSTRATION

Increasing boundary, discrete time illustration:

belief (x)

adoption region

waiting region

stock (q)
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EXPANSION BOUNDARY

In continuous time model, the belief process is continuous a.s. and
“jumps” are infinitesimally small.

belief ()

stochastic
time path

stock (q)

Back to €ED.
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MULTIPLICITY OF EQUILIBRIA

Suppose T is not monotone.

X

Lo

/ !

q q 1

Players may coordinate to (¢’, z) or to (¢”,zg) from (0, zo).

19/25



OTHER EQUILIBRIA

o

q/ ql/ 1

e Can construct eqm where players coordinate to (¢’, zg) for
beliefs just above zy and to (¢”, x() for beliefs just below.
» The number of adopters is non-monotone in the belief.

Back to €ED.
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DISCRETE APPROXIMATION

— Discrete time: dt,2dt, 3dt, . ...
— There are n players.

— In every period, each player who has stopped receives a
conditionally iid. payoff:

ui ~ N (ﬂ(q,w)dt’ UZdt> .

n n

— Let the current number of stopped agents be k:

k
, k k
Zu% ~ N (ﬂ(q,w)dtn,Jthn> .
i=1

— The continuous time learning process follows as a limit when
n — oo and dt — 0.

» The stock captures the fraction of stopped players: ¢ = k/n.
Back to @D.
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PROOF OF PROPOSITION 1: GENERALIZATION
TO ARBITRARY EXTERNALITIES

— Define Z4(¢'): cutoff with information flow ¢ and payoffs
max s € [q, ¢ |7(s,w).
» Now, Z,(¢’) is weakly decreasing in ¢’ for all forms of 7.

Back to @ED.
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BETTER LEARNING TECHNOLOGY

Recall the law-of-motion for the belief:

dXt — )\J(Qt)Xt(l - Xt)th, (2)

PROPOSITION 2
Let o/ < o. The following holds for all realization of Wiener
process Wy in (2) under strictly positive payoff externalities:

(1) Suppose the belief equals x € (0,%,(1)] at time t' > 0 in the
maximal equilibrium under learning technology o’. Then the
belief equals x at some t < t' in the maximal equilibrium
under learning technology o.

(11) Suppose the belief equals x € (0,%,(1)] at time ' > 0 in the
minimal equilibrium under learning technology o’. Then the
belief equals x at some t < t' in the minimal equilibrium
under learning technology o.

Back to @ED.
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BETTER LEARNING TECHNOLOGY

Recall the law-of-motion for the belief:

dX; = Mo (Qe) X (1 — X3)dWy, (3)

PROPOSITION (FORMAL)
Let 0/ < . The following holds for all realization of Wiener
process Wy in (3) under strictly positive payoff externalities:

e Suppose the belief equals x € (0,%,(1)] at time t' > 0 in the
maximal equilibrium under learning technology o’. Then the
belief equals x at some t < t' in the maximal equilibrium
under learning technology o .

Back to €ED.
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