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Our contribution

Traditional pre-tests in Difference-in-Differences view absence of
evidence of a violation of the Parallel Trends Assumption as
evidence of absence.
We provide equivalence tests that allow researchers to find
evidence in favor of the parallel trends assumption and thus
increase the credibility of their treatment effect estimates.
We provide several tests for bounds of the maximum, average,
and root mean square differences in trends between treatment
and control.
All tests are based on simple regressions and can thus be flexibly
adapted (e.g. for heterogeneous treatment effects).
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Motivation

Consider the canonical DiD case with 2 groups and T + 1
pre-treatment periods.
In T + 2, some individuals are treated (Gi = 1) whereas others or
not (Gi = 0). T + 1 is the base period.
We observe a balanced panel of n ∈ N individuals.
The potential outcome of unit i in period t is Yi,t(1) when
treated and Yi,t(0) when untreated.
Our object of interest is the average treatment effect on the
treated (ATT)

πATT := E[Yi,T+2(1)− Yi,T+2(0)|Gi = 1].

3 / 22



We assume “no-anticipation”, i.e.

E[Yi,t|Gi] = E[Yi,t(0)|Gi] + πATTGi ∗ DT+2,

where DT+2 is a dummy for the post-treatment period T + 2.
Further assume a flexible generative model

E[Yi,t(0)|Gi] = αi + λt + Giγt.

Combining both assumptions,

Yi,t = αi + λt + Giγt + πATTGi ∗ DT+2 + ϵi,t,

where ϵi,t = Yi,t − E[Yi,t|Gi].
⇒ Without further restrictions on γt, we cannot point-identify

πATT.

4 / 22



The fundamental assumption leading to the DiD estimator is the
(augmented) parallel trends assumption:

E[Yi,t(0)−Yi,T+1(0)|Gi = 1] = E[Yi,t(0)−Yi,T+1(0)|Gi = 0], (1)

for t = 1, ...,T + 2.
→ In the absence of treatment, treatment and control would have

experienced the same trends.
This implies that γt − γT+1 = 0 for all t = 1, ...,T + 2.
The augmented PTA over-identifies πATT, as identification only
requires parallel trends between the post-treatment and the base
period, i.e. γT+2 − γT+1 = 0.
However, the PTA pre-treatment (testable) is regarded as
informative for the plausibility of the PTA post-treatment
(untestable).
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Estimate the “two-way fixed effects” (TWFE) model

Yi,t = αi + λt +

T+2∑
l=1

l ̸=T+1

θlGi ∗ Dl + ϵi,t, (2)

where

θl = γl − γT+1, for l = 1, ...,T and θT+2 = γT+2 − γT+1 + πATT.

Thus,
θ := (θ1, ..., θT, θT+2)

′ = (0, ..., 0, πATT)
′

if and only if the augmented PTA holds.
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This motivates the “usual” pre-testing procedure:
Let β = (θ1, ..., θT)

′ collect the parameters corresponding to the
pre-treatment periods.
For each l = 1, ...,T, test

H0 : βl = 0 vs. H1 : βl ̸= 0.

If the null hypothesis is rejected in a pre-treatment period, the
PTA is deemed unreasonable, and consequently, the DiD
framework is rejected.
If the null is not rejected, one proceeds is if the PTA held.
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This procedure has several shortcomings:
It ignores potential Type II error: there may be differences
in trends that cannot be detected due to low power.
Useful information may get lost as the DiD framework is
dismissed even when statistically significant trend differences are
economically negligible.
The chance of finding pre-trend differences increases with
the number of pre-treatment periods.

⇒ We propose to address these shortcomings with statistical
equivalence tests.
Our tests summarize the evidence in favor of the PTA in the
pre-treatment periods.
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Literature

Our approach is closely related to Bilinski & Hatfield (2020), who
also propose the use of equivalence tests in DiD.

• Their tests differ from ours, as they assume a particular from of
violation of the PTA.

Rambachan & Roth (2022) derive confidence intervals that are
robust to bounded violations of the PTA.

• The ATT is set-identified as uncertainty about the PTA needs to
be taken into account.

• In contrast, we argue that the PTA can safely be assumed as long
as sufficient evidence in favor is available from pre-treatment
data.

9 / 22



Equivalence tests: hypotheses

We propose to summarize the information in the pre-treatment
periods by considering the maximum, average and root mean
squared (RMS) trend difference in the pre-treatment periods.
Fix the level of significance α and choose appropriate equivalence
thresholds δ, τ and ζ.

1. The hypotheses for the maximum are

H0 : ∥β∥∞ ≥ δ vs. H1 : ∥β∥∞ < δ, (3)

where ∥β∥∞ := maxl∈{1,...,T} |βl|.
Intuitively, rejecting H0 strongly suggests that violations of the
PTA are negligible.
However, the test may be conservative in some applications.
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Pre- and post-treatment periods are often pooled together to
increase statistical power.

2. Defining β̄ := 1
T
∑T

l=1 βl, it may thus be reasonable to test

H0 : |β̄| ≥ τ vs. H1 : |β̄| < τ. (4)

However, this test should only be used when differences in
pre-trends can safely assumed to be of the same sign!
The latter is often assumed in practice when it comes to
robustness checks.
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3. Let βRMS :=
√

1
T
∑T

l=1 β
2
l the scaled euclidean distance between

treatment and control in the pre-treatment periods (loosely
speaking). We then test

H0 : βRMS ≥ ζ vs. H1 : βRMS < ζ , (5)

which can equivalently be written as

H0 : β2
RMS ≥ ζ2 vs. H1 : β2

RMS < ζ2. (6)

The latter is convenient, as it is easier to find an appropriate test
statistic.
Since β̄ ≤ βRMS ≤ ∥β∥∞, we should expect this test to be
somewhat less conservative than (3).
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Implementing equivalence tests (1)
H0 : ∥β∥∞ ≥ δ vs. H1 : ∥β∥∞ < δ

We provide two tests for (3).
The first test is based on the intersection-union (IU) principle:
Initially, consider the case T = 1, i.e. we test whether a single
parameter β1 exceeds δ.
Since β̂1 ≈ N(β1,Σ11/n), reject the null hypothesis in (3),
whenever

|β̂1| < QNF(δ,Σ̂11/n)(α),

where QNF(δ,σ2)(α) denotes the α-quantile of the folded normal
distribution.
This is (asymptotically) the uniformly most powerful test.
For T > 1, use the IU-principle and reject H0 whenever

|β̂t| < QNF(δ,Σ̂tt/n)(α) ∀t ∈ {1, . . . ,T}.
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While this test is computationally attractive, tests based on
the IU-principle tend to be conservative.
We derive a more powerful test as follows:

1 Estimate (2) to obtain the unconstrained OLS estimator β̂u.
2 Re-estimate (2) under the constraint maxl=1,...,T |βl| = δ to obtain

β̂c and estimate the constrained variance σ̂.
3 For b = 1, ...,B, generate bootstrap samples with

u(b)
1 , ..., u(b)

n ∼ N(0, σ̂c) and Y(b)
1 , ...,Y(b)

n from model (2). For each
b, estimate β̂(b) and compute Q∗

α as the empirical α-quantile of
the bootstrap sample {maxl=1,...,T |β̂(b)

l | : b = 1, ...,B}.
4 Reject H0 if

∥β̂∥∞ < Q∗
α .
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We show that if the null hypothesis in (3) is satisfied, then we
have for any α ∈ (0, 0.5)

lim sup
n→∞

Pβ

(
∥β̂∥∞ < Q∗

α

)
≤ α.

If the null hypothesis in (3) is satisfied and the set

E = {ℓ = 1, . . . ,T : |βℓ| = ∥β∥∞}

consists of one point, then we have for any α ∈ (0, 0.5)

lim
n→∞

Pβ

(
∥β̂∥∞ < Q∗

α

)
=

{
0 if ∥β∥∞ > δ
α if ∥β∥∞ = δ.

If the alternative in (3) is satisfied, then we have for any
α ∈ (0, 0.5)

lim
n→∞

Pβ

(
∥β̂∥∞ < Q∗

α

)
= 1.
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Implementing equivalence tests (2)
H0 : |β̄| ≥ τ vs. H1 : |β̄| < τ

First, compute
¯̂
β :=

1
T

T∑
t=1

β̂t = 1′β̂/T,

where 1 = (1, . . . , 1)′ ∈ RT

Since √
n1′(β̂ − β) → N(0,1′Σ1),

reject H0 whenever

| ¯̂β| < QNF(τ,σ̂2)(α),

where σ̂2 = 1′Σ̂1/(nT)2.
Asymptotically, this is again the uniformly most powerful
test for the hypotheses (4).
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Implementing equivalence tests (3)
H0 : β2

RMS ≥ ζ2 vs. H1 : β2
RMS < ζ2

Let ε > 0. For λ ∈ [ε, 1], define β̂(λ) as the OLS estimator based
on the first ⌊nλ⌋ observations. Define β̂2

RMS(λ) analogously.

Let M̂n :=
β̂2

RMS(1)−β2
RMS

V̂n
, where

V̂n =
(∫ 1

ε

(β̂2
RMS(λ)− β̂2

RMS(1))2ν(dλ)
)1/2

and ν denotes a measure on the interval [ε, 1].
Under mild assumptions, we show that

M̂n
d→ W :=

B(1)( ∫ 1
ε
(B(λ)/λ− B(1))2ν(dλ)

)1/2

where {B(λ)}λ∈[ε,1] is a Brownian motion on the interval [ε, 1].
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Thus, reject H0 in (6) (and consequently H0 in (5)), whenever

β̂2
RMS < ζ2 + QW(α)V̂n.

We show that this decision rule yields a consistent level-α test.
The quantile QW(α) can be obtained via simulation.
In practice, one chooses ν as a discrete distribution. if ν denotes
the uniform distribution on { 1

5 ,
2
5 ,

3
5 ,

4
5}, then the statistics V̂2

n
simplifies to

1
4

4∑
k=1

(∥∥β̂( k
5 )
∥∥2 −

∥∥β̂(1)∥∥2
)2

.

This test procedure is based on “self-normalization” and does not
require an estimator of the asymptotic variance.
It is robust to various forms of serial dependence.
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Equivalence testing with heterogeneous treatment
effects

Under heterogeneous effects and staggered timing, the TWFE
estimator often does not correspond to a reasonable estimate of
the ATT.
Multiple solutions have been proposed.
Excellent reviews of this fast-growing literature are provided by
Roth et al. (2022) and de Chaisemartin & D’Haultfoeuille (2022).
For instance, Wooldridge (2021) proposes adjustments of the
TWFE model that allow for treatment effect heterogeneity due to
differences in treatment timing and observed characteristics.
Asymptotic normality of “placebo” treatments still holds under
mild assumptions.

⇒ Our tests can be applied with minor adjustments.
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Simulations

We provide simulation based evidence on the empirical level and
power of our tests.
We find that our tests for ∥β∥∞ tend to become conservative for
large T, whereas our tests for β̄ and β2

RMS maintain their
nominal level in sufficiently large samples.
In terms of power, our bootstrap based test for ∥β∥∞
outperforms the intersection-union based test at the cost of a
(much) larger computational effort. Our tests for β̄ and β2

RMS
exhibit even higher power.
All tests lose power as T increases.
We further compute the smallest equivalence thresholds at which
equivalence can be concluded for scenarios with and without
violation of the PTA.

20 / 22



Empirical application

We re-consider Di Tella & Schargrodsky (2004) who analyze the
effect of police on crime.
In the original article, the traditional pre-test is passed.
Subsequently, Donohue et al. (2013) have cast doubt on the
original DiD analysis.
Among other problems (e.g. spillover effects), they show that
trend differences exist in the data on a more granular level.
We compute the smallest equivalence threshold for which
one can still conclude equivalence of pre-trends given the original
data.
We find that they are larger (in absolute terms) than the
estimated treatment effects.
This suggests that the latter may be just artifacts of trend
differences.
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Conclusion

We propose several procedures that allow researchers to test for
equivalence of pre-trends.
Our tests provide evidence in favor of the PTA.
We show that our tests exhibit good statistical properties.
Our tests can be easily adapted to more complicated treatment
assignment mechanisms.
We provide simulation evidence on the performance of our
procedures.
Finally, we demonstrate how our tests may be applied in practice
in order to assess the credibility of DiD estimates.
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