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Abstract

We propose a novel approach for assessing inequality for variables that have fixed lower- and up-
per bounds. Inequality assessment with such variables is different from inequality assessment with
variables lacking fixed upper bounds (such as income) because their respective most unequal distri-
butions are fundamentally different. The maximum-inequality distributions of non-bounded vari-
ables, for respective means, always feature every element, but one, equal to their lower bounds, and
many existing inequality measures rank these most unequal distributions equally. However, due to
domain restrictions, the most unequal distributions of bounded variables contain different propor-
tions of elements being equal to the lower bound, for respective means, and traditional inequality
measures rank these most unequal distributions differently. We normatively justify a novel axiom
requiring maximum-inequality distributions of bounded variables to be ranked equally, irrespec-
tive of their means. Our axiomatically characterised indices measure inequality as the observed
proportion of the maximum attainable inequality for a given mean. Furthermore, we characterise
a subset of measures that additionally yield consistent inequality comparisons when switching
between attainment and shortfall representations of the bounded variable.
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1 Introduction

In his seminal contribution, Atkinson (1970) set the foundations of inequality measurement as we
know it. After five decades, the contributions to this burgeoning field of research have expanded
in multiple directions, and ‘inequality’ can arguably be considered one of the most hotly debated
topics in an increasingly globalised world, as witnessed by the popularity of several recent books on
the subject (e.g. Piketty, 2015; Bourguignon, 2017; Atkinson, 2018; Milanovic, 2018). Moreover,
the interest in inequality has gone well beyond the study of monetary distributions, such as income
or consumption expenditure. Many of these non-pecuniary variables can only take values from a
closed finite interval with fixed limits (i.e., the lower bound and the upper bound).1 Following the
literature on inequality measurement, we refer to these variables as bounded variables (e.g., see
Lambert and Zheng, 2011).

There is a fundamental difference between inequality assessment with bounded variables and in-
equality assessment with variables that have a fixed and finite lower bound but no fixed upper
bound. We refer to these latter variables as non-bounded. Typically, for a given mean and for
a given population size, a less unequal distribution is obtained from a more unequal distribution
through a transfer from richer to poorer individuals (i.e., progressive transfer); likewise, a more
unequal distribution is obtained from a less unequal distribution through a transfer from poorer to
richer individuals (i.e., regressive transfer). On one extreme, starting with an unequal distribution,
a sequence of progressive transfers eventually leads to an egalitarian distribution where all ele-
ments are equal. Whether the variable is bounded or not, such egalitarian distributions are deemed
least unequal, and two egalitarian distributions with different means and different population sizes
are ranked equally by all classes of inequality measures in the literature. On the other extreme,
starting with a less unequal distribution, a sequence of regressive transfers eventually leads to a
most unequal distribution (henceforth maximum inequality distribution, or MID) where no further
regressive transfers are possible.

This is where inequality measurement for bounded variables departs from the case of non-bounded
variables. For a non-bounded variable, all elements in a MID, barring one, are equal to the lower
bound. For example, while dividing a cake among ten people, a MID would contain nine people
having no slice (e.g., a lower bound of zero) and a single person owning the entire cake. If,
instead, there were two identical cakes of the same size, then the MID would feature nine people
having no cake at all and one person owning both cakes. Although the average increases from
one-tenth to one-fifth of a cake, several inequality measures (e.g., the Gini Coefficient and the
Coefficient of Variation) rank these two MIDs equally. However, this scenario can be infeasible
for bounded variables. Suppose there is a fixed upper bound so that none can have more than half
of a cake. When there is one cake, the MID contains eight people having nothing and two people
owning half of the cake each (i.e., the upper bound); whereas, with two cakes, the MID features
six people without cake and four owning half of a cake each. Thus, while both in the bounded
and unbounded settings inequality is maximized whenever the smallest share of individuals owns
as much as possible, there is a fundamental domain restriction shaping the inequality-maximizing

1Examples include indicators of education, health, political freedom, democracy level, freedom from violence,
happiness, trust, corruption, household or environmental characteristics, access to public services, poverty, socio-
demographic characteristics, and so on.
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distributions. In the MID of an unbounded variable a single individual always owns everything,
whereas in the MID of a bounded variable such possibility is often precluded. Many indicators of
social progress have natural upper bounds. How should the MIDs be ranked in such cases?

There are alternative suggestions in the literature regarding how to compare similar distributions
for non-bounded variables (Temkin, 1986; Fields, 1998; Bosmans, 2007). However, we argue that,
from an egalitarian perspective, the different MIDs of bounded variables represent the normatively
least desirable situations for correspondingly different means, and so they should be considered
equally unequal irrespective of their means. We refer to this desideratum as the maximality prin-
ciple. We then axiomatically characterize two new closely related classes of inequality measures
which abide by the maximality principle in addition to abiding other principles of inequality mea-
surement. These are the so-called classes of normalised inequality measures. Each index in the
class is defined as the ratio of two identical symmetric S-convex functions such that the function
in the denominator is evaluated at a distribution maximizing its value and sharing the same mean
as the distribution used to evaluate the function in the numerator, namely the distribution whose
inequality is being measured. The key distinction between these two proposed classes is that one is
defined for fixed population, while the other class allows populations to vary across distributions.

The measurement of inequality for bounded variables poses another challenge already encountered
in the literature. When a variable is bounded, one may choose to focus either on the distribution
of attainments or the corresponding distribution of shortfalls with respect to the upper bound.2

Many inequality measures (especially popular relative measures like the Gini coefficient) fail to
rank distributions consistently when measurement is switched from attainments to shortfall rep-
resentations.3 A battery of satisfactory solutions has been proposed in the literature, e.g. using
absolute inequality measures (Erreygers, 2009; Lambert and Zheng, 2011), indices based on both
representations (Lasso de la Vega and Aristondo, 2012), or using pairs of weakly consistent in-
dices (Bosmans, 2016). We further axiomatically characterise a subclass of normalised inequality
indices within each class that additionally allow consistent evaluation of inequality across attain-
ments and shortfalls. Remarkably, our solution presents an alternative to all the aforementioned
proposals to solve inconsistency.

The rest of the paper proceeds as follows. Section 2 introduces the framework including notation
and definitions. Section 3 discusses the concept of maximum inequality in the context of bounded
variables and introduces the maximality principle. Sections 4 and 5 introduce and axiomatically
characterise the two classes of normalised inequality measures. Section 6 further characterises a
subclass within each of the two classes that additionally allows consistent evaluation of inequality.
Section 7 provides some comparative insights of our proposed approaches in relation to the existing
approaches. Finally, section 8 concludes with some remarks.

2For instance, improvements in the coverage of public health programs could be assessed via either the percentage of
vaccinated children (an achievement indicator) or the percentage of unvaccinated children (a shortfall indicator).

3See, among others, Micklewright and Stewart (1999), Clarke et al. (2002), Kenny (2004), Erreygers (2009), Lambert
and Zheng (2011), Lasso de la Vega and Aristondo (2012) and Bosmans (2016).
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2 The framework

Let the sets of real numbers, rational numbers and natural numbers be R, Q and N, respectively.
The non-negative and strictly positive counterparts of R and Q are represented by adding to ei-
ther the subscripts + and ++, respectively. Suppose, there are n units of analysis (e.g. people,
households, municipalities, countries, etc.) such that n ∈ N \ {1}. Let x = (x1, . . . ,xn) be an at-
tainment distribution of n units (or an n-dimensional attainment vector), where xi ∈ [0,U ] ⊂ R
represents unit i’s cardinally measurable attainment bounded between a lower bound of zero and
some fixed positive upper bound U ∈ Q++. Given the density of rational numbers within the set
of real numbers, the rationality of U is inconsequential for practical applications.4

We denote the set of all attainment distributions of size n with upper bound U by Xn and the set
of all possible attainment distributions with upper bound U by X := ∪nXn. The arithmetic mean
function evaluated at any x ∈X is denoted by µ(x). Furthermore, let X

µ(x)
n be the set of all

attainment distributions of size n with upper bound U and with the same mean as any x ∈Xn, and
X µ(x) be the set of all possible attainment distributions with upper bound U and with the same
mean as any x ∈X .

Now, the following notation is useful for studying minimum and maximum possible inequality
within our framework. We denote the attainment distribution comprising n ones by 1n, hence for
any λ ≥ 0, λ1n is the constant or egalitarian distribution where all n elements are equal to λ . Next,
for some n ∈ N\{1} and for some U ∈Q++, let Gn = {U/n,2U/n, . . . ,(n−1)U/n} denote a set
of n−1 equally-spaced grid points between U/n and (n−1)U/n. A distribution x ∈Xn is bipolar
whenever for some n′ ∈ N such that n′ < n, n′ units in x attain the value of U and the remaining
n− n′ units attain the value of 0. Clearly, since n′ ∈ {1, ...,n− 1}, for any bipolar distribution
x ∈Xn, µ(x) ∈ Gn. Likewise, we refer to a distribution x ∈Xn as almost-bipolar whenever for
some n′ ∈ N∪{0} such that n′ < n, n′ units in x attain the value of U , n− n′− 1 units in x attain
the value of 0, and the leftover unit attains a value of ε = [nµ(x)− n′U ] ∈ (0,U). For example,
suppose n = 5 and U = 1 and so G5 = {1/5,2/5,3/5,4/5}. Then, distribution x = (0,0,1,1,1) is
bipolar, where the mean, µ(x) = 3/5, is an element of G5; whereas, distribution y = (0,0,0.5,1,1)
is almost-bipolar (with ε = 0.5), where the mean, µ(y) = 1/2, is not an element of G5.

Let A ⊂X be the set of all possible almost-bipolar distributions; B⊂X be the set of all possible
bipolar distributions; and let M = A ∪B be the set of all distributions that are either bipolar or
almost bipolar. We assign subscript n to denote the subsets with population size n, i.e., An, Bn,
and Mn. Likewise, we use superscript µ(x) to denote the subsets with the same mean as µ(x),
i.e., A µ(x), Bµ(x), and M µ(x). Finally, we assign both n and µ(x) to denote the subsets with
population size n and the same mean as µ(x), i.e., A

µ(x)
n , B

µ(x)
n , and M

µ(x)
n .

An inequality index I : X →R+ is a continuous real-valued function expected to satisfy two basic
properties (Chakravarty, 2009). The first basic property, anonymity, requires that an inequality
index should not depend on a reordering of attainments across units. Formally, anonymity requires
that I(y) = I(x) for some x,y ∈Xn whenever y = xP, where P is a permutation matrix.5 The sec-

4Including U ∈ R\Q demands only minor technical adjustments to the proofs, which are available upon request.
5A permutation matrix is a square matrix with exactly one element in each row and column equal to 1 and the rest of
the elements are equal to zero.
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ond basic property, transfer principle, requires that a transfer from a richer to a poorer unit, without
altering their relative positions, should decrease inequality (progressive transfer); whereas, alter-
natively, a transfer from a poorer to a richer unit should increase inequality (regressive transfer).6

Formally, for some x,y ∈Xn, I(y)< I(x) whenever y is obtained from x by a progressive transfer
and I(y)> I(x) whenever y is obtained from x by a regressive transfer.7

We also invoke the following additional properties in different parts of the paper. The standard
equality principle requires that I(x) = 0 whenever x = λ1n for any x ∈ Xn and λ ≥ 0. This
property ensures that inequality is minimal and equal to zero whenever all units feature exactly the
same value for the indicator, i.e., x1 = x2 = · · · = xn. An inequality index is absolute if its value
remains unchanged when the same amount is added to all attainments, i.e., I(y) = I(x) for some
x,y ∈Xn whenever y = x+ λ111n for some λ ∈ R; whereas, an inequality index is relative if its
value remains unchanged when all attainments are altered in the same proportion, i.e., I(y) = I(x)
for some x,y ∈ Xn whenever y = λx for some λ > 0. The population principle requires that
whenever y is obtained from x by a replication for some x,y∈X , then I(y) = I(x); where y∈Xn′

for some n′ = γn and γ ∈ N \ {1} is said to be obtained from x ∈Xn by a replication, whenever
y = (x, . . . ,x), i.e. γ copies of x are repeated one after the other in y.

We refer to a real valued function f : X → R+ as symmetric whenever f (x) = f (xP) for some
x,y ∈Xn, where P is a permutation matrix. We refer to a real valued function f : X → R+ as
strictly S-convex if, for some x,y∈Xn, f (y)< f (x) whenever y is obtained from x by a progressive
transfer and f (y) > f (x) whenever y is obtained from x by a regressive transfer (Marshall and
Olkin, 1979, p. 53-54).

Finally, we define, for every x ∈Xn, a partially ordered set (X µ(x)
n ,�n) such that for any pair

y,z ∈X
µ(x)

n : (1) z �n y, which reads “z is more unequal than y”, if z is obtained from y through
a sequence of regressive transfers with or without additional permutations; and (2) z ∼n y, which
reads “z is as unequal as y” if z is obtained from y only through a sequence of permutations.
Likewise, we can order distributions across all population sizes. That is, for every x ∈X , we can
define a partially ordered set (X µ(x),�) such that for any pair y,z ∈X µ(x): (1) z � y, which
reads “z is more unequal than y”, if z is obtained from y through a sequence of regressive transfers
with or without additional permutations and/or replications; and (2) z ∼ y, which reads “z is as
unequal as y” if z is obtained from y only through a sequence of permutations and/or replications.

6Technically, for some x,y ∈Xn, y is obtained from x by a progressive transfer whenever there are two units i, j and
some k > 0 such that yi = xi + k ≤ x j− k = y j and yl = xl for every l 6= i, j. Alternatively, y is obtained from x by a
regressive transfer whenever there are two units i, j and some k > 0 such that yi +k = xi ≤ x j = y j−k and yl = xl for
every l 6= i, j.

7Some of the bounded indicators discussed in this paper are not literally transferable. For instance, we do not consider
‘uneducating’ highly educated individuals and transferring that education to less educated ones. Yet, one can compare
two hypothetical scenarios, e.g. pre- and post-“progressive transfers”, and still judge the latter exhibiting lower
inequality than the former.
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3 Maximum inequality distributions and the Maximality Principle

Inequality measurement with bounded variables is conceptually different from the traditional ap-
proach for unbounded variables such as income (i.e., variables with a lower bound of zero but no
upper bound). Being bounded from both sides, the values of a bounded variable cannot increase or
decrease uninhibitedly. Moreover, inequality measurement in the context of an unbounded variable
is often seen as a cake-cutting problem (e.g., see Cowell, 2011), where the most unequal distribu-
tion always involves one person owning the entire cake. Such scenario is generally precluded with
bounded variables, which in turn calls for a different ethical intuition regarding the most unequal
distribution.

Let us elaborate how the notion of maximum inequality can be different for bounded variables
by way of a hypothetical five-person society. With an average income of 2, distribution u =
(0,0,0,0,10) would be considered most unequal in the unbounded setting. If the mean income
in the same society increases to 4, then distribution v1 = (0,0,0,0,20) would be considered most
unequal. Now, suppose instead that there is a non-monetary bounded variable with a lower bound
of 0 and an upper bound of 10. In the same five person society with a mean of 2, distribution
u = (0,0,0,0,10) would still be considered most unequal. However, if the mean in the society
increases to 4, then distribution v2 = (0,0,0,10,10) (not v1) would be considered most unequal,
because the smallest possible number of individuals own as much as possible and the others noth-
ing, so no further regressive transfers are feasible.

Let us formalise these ideas, showing that maximum-inequality distributions for a given mean
exist and what they look like for a bounded variable. Proposition 1 establishes the existence of a
set of maximum-inequality distributions (MIDs) and shows that the set of MIDs associated to any
distribution x ∈Xn is in fact equal to M

µ(x)
n = X

µ(x)
n ∩M . Based exclusively on the transfer

principle and the anonymity property, such MIDs are defined as the distributions that maximise
inequality among all possible distributions with the same population size n and the same mean
µ(x).

Proposition 1 For any n ∈N\{1} and for any x ∈Xn such that µ(x) ∈ (0,U), a set of maximum
inequality distributions M

µ(x)
n = X

µ(x)
n ∩M constituting the maximal elements of the partially

ordered set (X µ(x)
n ,�n) exists and the elements of M

µ(x)
n are bipolar when µ(x) ∈Gn or almost-

bipolar when µ(x) 6∈Gn.

Proof. See Appendix A1.

As it turns out, the MIDs are either bipolar or almost bipolar. Bipolar distributions consist of units
with values at either the lower bound or upper bound exclusively, with at least one unit at each
bound (as otherwise, should all units have the same values, the distribution would be egalitarian).
Meanwhile, almost bipolar distributions consist of all units with either the lower or upper bound
value, except for one unit with an interior value of ε ∈ (0,U). The elements included in M

µ(x)
n

are unique up to permutations, that is: given any two elements x,y ∈M
µ(x)
n , then y = xP for some

permutation matrix P. Finally, also note that a set of MIDs defined in proposition 1 is unique for
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a given mean and for a given n. In other words, for any two distributions x,y ∈X
µ(x)

n such that
x 6= y, M

µ(x)
n = M

µ(y)
n .

Example 1: Assume U = 1, n = 4 and so G4 = {0.25,0.5,0.75}. Consider the distribution x =
(0.1,0.4,0.7,0.8) with µ(x)= 0.5∈G4. In this case, the corresponding set of MIDs M 0.5

4 contains
all possible permutations of the distribution x̂ = (0,0,1,1), which is bipolar, and clearly µ(x̂) =
µ(x) = 0.5. Now consider a second distribution y = (0.2,0.4,0.7,0.9) with µ(y) = 0.55 /∈ G4.
The corresponding MIDs M 0.55

4 , in this case, are all possible permutations of the distribution
ŷ = (0,0.2,1,1) with µ(ŷ) = µ(y) = 0.55 and ε = 0.2 ∈ (0,1), but ŷ is almost-bipolar and no
further regressive transfers are possible.

Even though MIDs are hypothetical distributions unlikely to be observed in practice, they do rep-
resent the benchmark case of maximum inequality against which we can compare distributions
of bounded variables sharing the same mean. The latter’s inequality evaluations cannot be larger
than their MID’s as long as an inequality index I satisfies anonymity and the transfer principle.
Note that the corresponding MIDs in the classical unbounded setting are entirely different: there,
inequality is maximized whenever one individual owns everything and the others nothing.

3.1 Comparing MIDs with different means

How should we compare MIDs? Recalling the hypothetical five-person society introduced above,
only u and v1 reflect maximum inequality in the context of an unbounded variable. Interestingly,
even with different means, they are judged equally unequal by Lorenz-consistent relative inequality
measures, such as the Gini index and the Coefficient of Variation (whereas v2 would be deemed
less unequal). On the contrary, distributions u and v2 reflect maximum inequality for bounded
variables when the upper bound is 10. How should we compared them given that they both reflect
maximum inequality for bounded variables?

If we focus on bipolar MIDs, then their comparison is analogous to those studies assessing inequal-
ity changes due to a population shift between a low-income sector and a high-income sector owing
to income growth (Fields, 1987, 1993, 1998; Amiel and Cowell, 1994; Bosmans, 2007) or due to
a sequence of population shifts between a better-off group and a worse-off group (Temkin, 1986).
Suppose there are two sectors in a society: a high-income sector (better-off) and a low-income
sector (worse-off). Everyone within a sector is equally well-off (i.e., no inequality within each
sector). Suppose there are n persons and consider the following n− 1 situations. In the first (ini-
tial) situation, there are n−1 persons in the low-income sector and one person in the high-income
sector; in the second situation, there are n− 2 persons in the low-income sector and two persons
in the high-income sector; and so on. Finally, in the (n−1)th (final) situation, there is one person
in the low-income sector and n−1 persons in the high-income sector. As we gradually move from
the initial to the final situation, the mean certainly improves, but how should inequality change?

Five possible ethical judgements have been discussed in the literature as the mean improves along
with the shift of population from the low-income to the high-income sector: (i) an increase in in-
equality throughout; (ii) a decrease in inequality throughout; (iii) an initial increase in inequality,
then a reduction after a certain point where inequality is maximised (i.e., an inverted U-shape);
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(iv) an initial reduction in inequality, then an increase after a certain point where inequality is min-
imised (i.e., a U-shape); and (v) no change in inequality. Temkin (1986) and Fields (1998) both
agree on the possibility for inequality to be increasing throughout (as an ever smaller number of
people become victimised through the isolation of the poor) as well as the possibility for inequality
to decrease throughout (reflecting a diminished elitism of the rich and the steady decrease in the
number of those worse-off). Temkin (1986) and Fields (1998), however, disagree on the possi-
bilities of a U-shape or an inverted-U-shape relationship. Temkin (1986) argues in favour of the
possibility of an inverted-U-shape relationship; whereas, Fields (1998) argues in favour of a U-
shape relationship. Nevertheless, Bosmans (2007) shows that quasi-concave inequality measures
(comprising numerous relative, absolute and intermediate inequality measures) allow only the first
three possibilities: increasing inequality, decreasing inequality and inverted-U-shape.

Therefore, the literature on income inequality measurement features arguments in favour of the
first four ethical judgements, but without straightforward guidance to prefer one over the other.
Importantly, a key difference emerges with bounded variables as, unlike the case of income, each
of the n− 1 situations mentioned above corresponds to a bipolar MID for a given mean. Hence,
for a fixed population size, there are good reasons to avoid ranking MIDs with different means
as better or worse than each other. For instance, all MIDs reflect situations in which inequality
cannot increase any further through regressive transfers. In fact, we cannot transform one MID into
another one through such transfers. Analogously, we cannot transform one egalitarian distribution
into another one through progressive transfers. Hence, we may rank MIDs with different means in
the same way that we rank egalitarian distributions with different means; namely, equally.

Thus, we consider the MIDs as equally unequal, which is in the spirit of the fifth posited change
in inequality as the mean gradually improves along with the shift of population from the low-
income to the high-income sector. While arguing in favour of this fifth possibility, Temkin (1986,
p. 118) eloquently stated that “two judges who accepted bribes in all of their cases might be equally
corrupt, even if one tried fewer cases.” We thus operationalise this ethical intuition with a novel
property called the maximality principle as follows:

Maximality Principle: For any x,y ∈ Xn \ {0,U}, I(x) = I(y) whenever x ∈M
µ(x)
n and y ∈

M
µ(y)
n .

The property requires that, whenever we pick any two (non-trivial) MIDs, the corresponding lev-
els of inequality must coincide. Stated otherwise, whenever no further regressive transfers can be
performed, then we have reached maximal inequality irrespective of the mean of the distribution.
Additionally, satisfaction of the Maximality Principle guarantees inequality comparisons not to be
predictably related to the mean (should that be the desideratum). Interestingly, in the unbounded
setting this axiom is also satisfied by popular relative inequality measures such as the Gini coeffi-
cient or the coefficient of variation whenever the population size n is fixed. Indeed, these indices
attain their maximum level whenever one individual owns everything and no further regressive
transfers are feasible, irrespective of how much such privileged individual owns.
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4 The class of normalised inequality indices for fixed population

Building on the basic properties and the maximality principle, we characterise a class of new
inequality indices. We show that, within our framework, inequality should be measured as a pro-
portion of the maximum level of inequality reachable given a mean attainment. The maximality
principle also ensures that any distribution different from the corresponding MID obtains a strictly
lower inequality value. We refer to our proposed family of inequality indices as the class of nor-
malised inequality indices, which are presented in theorem 1.

Theorem 1 For any n ∈ N \ {1} and any x ∈Xn, an inequality index I satisfies anonymity, the
transfer principle, the equality principle and the maximality principle if and only if

I(x) =

M
[

f (x)− f (x̄)
f (x̂)− f (x̄)

]
if x ∈Xn \{0,U}

0 if x ∈ {0,U}
, (1)

where 0 < M <+∞ is a proportionality constant, x̄ = µ(x)1n is the egalitarian distribution with the
same mean as x, x̂ ∈M

µ(x)
n is an MID for x, f : Xn→ R++ is a symmetric and strictly S-convex

function, and 0 = 01n and U =U1n are the two extreme egalitarian distributions.

Proof. See Appendix A2.

According to theorem 1, a normalised inequality index I(x) in our proposed class evaluated at
distribution x is proportional to any symmetric and S-convex function f (x) evaluated at x, sub-
tracted by its corresponding minimum possible value f (x̄) evaluated at x̄, and then normalised
by the difference between its corresponding maximum possible value f (x̂) evaluated at any of
its uniquely associated MIDs, namely x̂ ∈M

µ(x)
n , and its corresponding minimum possible value

f (x̄) evaluated at x̄.

All indices in our proposed class conveniently range between zero and a finite upper bound corre-
sponding to a proportionality constant M > 0, where the former value is achieved in the absence
of inequality and the latter corresponds to an MID. The value of a normalised index increases
with a regressive transfer and decreases owing to a progressive transfer. For ease of presentation,
from now onwards we assume M = 1, but other choices are certainly possible without affecting
the results (other than re-scaling inequality levels). Crucially, numerous functional forms of f
are admissible, including entire classes of relative, absolute, intermediate, super-relative or super-
absolute inequality measures, for instance, inequality indices from the Atkinson class, Generalised
entropy, the class of indices proposed by Lasso de la Vega and Aristondo (2012), etc.8

Examples

We present a few examples of normalised inequality indices derived from popular inequality mea-
sures. For convenience of presentation, we refer to the normalised inequality index corresponding
8See Bosmans (2016) for a concise and comprehensive typology.
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to the admissible form f as f ∗ (instead of I), in order to clarify that f ∗ is derived from an admissible
f . That is, f ∗ is the normalised version of f .

When f is the absolute or the relative Gini index (i.e., f (x) = Ga(x) or f (x) = Gr(x)) then it is
easy to check (see Appendix A7) that

G∗a(x) = G∗r (x) =



Ga(x)U
µ(x)(U−µ(x))

if x ∈Xn \{0,U} and µ(x) ∈Gn

Ga(x)n2

(n−n′−1)(ε +n′U)+n′(U− ε)
if x ∈Xn \{0,U} and µ(x) /∈Gn

0 if x ∈ {0,U}

.9 (2)

Thus, G∗a(x) compares Ga(x) against the maximal inequality value that such index could possibly
take for any distribution with mean equal to µ(x) (which equals µ(x)(U−µ(x))/U when the MID
is bipolar, i.e. when µ(x) ∈ Gn). Remarkably, the normalised inequality indices derived from the
absolute and the relative Gini indices coincide. To simplify notation, such normalised Gini index
will be referred to as G∗(x).

We can also derive the normalised versions of the standard deviation ( f (x) = σ(x) =
√

V (x)) and
the coefficient of variation ( f (x) = CV (x) = σ(x)/µ(x)). It is easy to check (see Appendix A7)
that σ∗(x) =CV ∗(x), i.e.,

σ
∗(x) =



σ(x)√
µ(x)(U−µ(x))

if x ∈Xn \{0,U} and µ(x) ∈Gn

σ(x)
√

n√
(n−n′−1)µ(x)2 +n′(U−µ(x))2 +(ε−µ(x))2

if x ∈Xn \{0,U} and µ(x) /∈Gn

0 if x ∈ {0,U}

. (3)

Once again, the normalised version of an absolute inequality index and its relative counterpart
coincide. More generally, whenever a(x) is an absolute inequality index and r(x) = a(x)/µ(x) is
its relative counterpart, one can easily check that a∗(x) = r∗(x) for all x ∈Xn.

While all normalised inequality measures are defined in the same way (i.e., as a fraction of the
maximal inequality level that can be reached given a mean attainment and a fixed population size;
see Theorem 1), their explicit mathematical representation differs slightly depending on whether
µ(x)∈Gn or µ(x) /∈Gn. It is easy to check that, when the decimal precision one is working with is
fixed (i.e., numbers are represented with a precision of k∈N decimals, so all numbers with a higher
number of decimals are rounded), then for sufficiently large values of n (more specifically, when
n≥ 10k/U) one always has µ(x)∈Gn. When this happens, the corresponding MID is bipolar, thus
leading to more compact formulations for the corresponding normalised inequality measures and

9The reader is reminded that n′ < n is the number of units in x attaining U and ε = [nµ(x)−n′U ] (section 2).
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easier calculations (see equations 2 and 3). For instance, in the fairly common case where k = 2
and U = 1, when n≥ 100 then all MIDs are bipolar.

5 The class of normalised inequality indices for varying population sizes

At least since Dalton (1920), the most popular answer to the challenge of comparing inequality
across distributions with different population sizes is the population principle, which requires that
identical cloning of all units should leave inequality unaltered (thereby rendering populations with
different sizes comparable).10 A normalised inequality measure from the class in theorem 1 does
not comply with the population principle even when an admissible functional form of f does, be-
cause even though the replication of a bipolar MID is itself an MID, the replication of an almost
bipolar MID is not an MID, based on how proposition 1 defines an MID.11 Therefore if we want
our normalised inequality measures to fulfil the population principle we must adopt a different def-
inition of the set of MIDs, one compliant with the population principle. Proposition 2 establishes
the existence of a set of MIDs and shows that the set of MIDs, associated with all distributions
sharing the same mean across all population sizes is, in this case, equal to Bµ(x) = X µ(x)∩B.12

Based on the transfer and population principles combined with anonymity, these MIDs are defined
as the distributions that maximise inequality among all possible distributions with the same mean
but varying population sizes.

Proposition 2 For any x ∈X such that µ(x) ∈ (0,U), a set of maximum inequality distributions
Bµ(x) = X µ(x) ∩B constituting the maximal elements of the partially ordered set (X µ(x),�)
exists and all elements of Bµ(x) are bipolar.

Proof. See Appendix A3.

According to proposition 2, in a setting compliant with the population principle, only bipolar dis-
tributions maximise inequality. Thus, the Maximality Principle introduced in section 3 must be
adapted and rewritten as follows:

Restricted Maximality Principle: For any x,y ∈X , I(x) = I(y) whenever x ∈Bµ(x) and y ∈
Bµ(y).

Again, this principle states that whenever no further regressive transfers are feasible and we have
reached a bipolar distribution, then inequality is maximal (no matter what the mean of the distri-
bution is). With this reformulated version of the Maximality Principle, we can now axiomatically
characterise the class of normalised inequality indices compliant with the population principle:

10For a more general proposal, see Aboudi et al. (2010). The population principle is defined in Section 2.
11For instance, when n = 2 and U = 1, an MID associated to a distribution with mean equal to 0.25 is (0,0.5).

However, the replication (0,0.5,0,0.5) of that MID is not an MID itself. The corresponding MID for a distribution
with n = 4 and with mean equal to 0.25 is in fact (0,0,0,1).

12Recall that B is the set of all bipolar distributions and Bµ(x) is the subset of B with the same mean as µ(x).
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Theorem 2 For any n ∈ N \ {1} and for any x ∈Xn, an inequality index I satisfies anonymity,
the transfer principle, the equality principle, the restricted maximality principle and the population
principle if and only if

I(x) =

M
[

f (x)− f (x̄)
f (x̂)− f (x̄)

]
if x ∈Xn \{0,U}

0 if x ∈ {0,U}
,

where 0 < M < +∞ is a proportionality constant, x̄ = µ(x)1n is the egalitarian distribution with
the same mean as x, x̂∈Bµ(x) is a bipolar MID for x, f : X →R++ is a symmetric and strictly S-
convex function satisfying the population principle, and 0 = 01n and U =U1n are the two extreme
egalitarian distributions.

Proof. See Appendix A4.

Theorem 2 implies that we can construct normalised inequality indices that abide by the popu-
lation principle as long as f satisfies the population principle and it is evaluated at any bipolar
distribution with mean equal to µ(x) in the denominator of I(x).

6 Consistency requirement

Bounded variables, such as mortality or literacy rates, or access to basic facilities, can be repre-
sented as attainments (implicitly measuring their distance from the lower bound) or, alternatively,
as shortfalls (their distance from the upper bound). If x ∈ Xn denotes the attainment distribu-
tion then we define the shortfall distribution associated with it as xS = (xS

1, . . . ,x
S
n) ∈ Xn with

xS
i = U − xi representing i’s shortfall from the upper bound U . Inconsistency in inequality mea-

surement arises when inequality orderings of attainment distributions differ from their shortfall
counterparts. This challenge has received significant attention in the literature on inequality mea-
surement with bounded variables.

The literature has proposed different properties regarding the extent to which inequality indices,
as well as incomplete partial orderings, should consistently rank attainment and shortfall distri-
butions.13 Perfect complementarity, for instance, requires that the value of the inequality index
remains unaltered when we switch between attainment and shortfall representations of the same
distribution, i.e., I(x) = I(xS) for any x ∈ Xn (Erreygers, 2009). Strong consistency, likewise,
requires that inequality measures should rank pairs of attainment distributions and their shortfall
counterparts in a coherent manner. In other words, the inequality ranking should be robust to alter-
native representations of the variable, i.e., I(x)≤ I(y)⇔ I(xS)≤ I(yS) for any x,y ∈Xn (Lambert
and Zheng, 2011). Weak consistency (Bosmans, 2016), however, is predicated on the realisation
that it is possible to find pairs of different inequality indices that produce consistent comparisons
as long as one index IA is used for the attainment distribution and another index IS = φ(IA) is
used for the shortfall counterpart, where φ : R+ → R+ is a strictly increasing function. The

13Arguably, the concern for different degrees of consistency may be more pressing when both representations (attain-
ment and shortfall) can be deemed “different sides of the same coin” (Clarke et al., 2002, p. 1927), warranting equal
attention.
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pair (IA, IS) is jointly weakly consistent if and only if IA(x) ≤ IA(y)⇔ IS(xS) ≤ IS(yS) for any
x,y ∈Xn. For example, if IA(x) is the Gini coefficient evaluated on the attainment distribution x,
then IS(xS) = µ(xS)IA(xS)/[U−µ(xS)] provides a jointly weakly consistent inequality evaluation
for the shortfall distribution.

Some advocates of perfect complementarity and strong consistency (Erreygers, 2009; Lambert
and Zheng, 2011; Chakravarty et al., 2016; Seth and Alkire, 2017) suggest using absolute inequal-
ity indices (and related incomplete partial orderings). However, Lasso de la Vega and Aristondo
(2012) showed that strong consistency is satisfied by a wider class of indices derived from equally
weighted generalised means of any inequality index evaluated at the attainment distribution and the
same index evaluated at the corresponding shortfall distribution. Finally, Bosmans (2016) showed
that weak consistency is satisfied by a broad class of pairs of inequality indices, including relative
ones like the Gini coefficient and its respective weakly-consistent counterpart.

We should point out at this stage that strongly consistent inequality measures violate the transfer
sensitivity axiom (Lambert and Zheng, 2011, theorem 6). That is, strongly consistent inequality
indices do not systematically prioritise transfers at particular parts of the distributions. Lambert
and Zheng (2011), however, argue that this should not necessarily be a problem because a transfer-
sensitive inequality index that decreases more when progressive transfers of attainments occur at
the bottom of the distribution would also decrease more when progressive transfers of shortfalls
take place among the lowest shortfalls. Yet, arguably, the latter may not be a desirable feature and
imposing strong consistency precludes such dilemma. Thus, following Lambert and Zheng (2011),
we can impose the strong consistency requirement for the proposed new classes of inequality
measures to free them from inconsistency.

The task of rendering the proposed inequality measures in compliance of strong consistency is
facilitated by the remarkable equivalence between strong consistency and perfect complementarity.
We know that the latter implies the former. But proposition 3 shows that strong consistency also
implies perfect complementarity:

Proposition 3 An inequality index is strongly consistent if and only if it satisfies perfect comple-
mentarity.

Proof. See Appendix A5.

Then the subclasses of normalised inequality indices in fulfillment of strong consistency are char-
acterised in theorem 3:

Theorem 3 The inequality indices I characterised in theorems 1 and 2 are also strongly consistent
if and only if

f (xS) = p(x) f (x)+q(x), (4)

where p(x) =
f (x̂S)− f (x̄S)

f (x̂)− f (x̄)
; and q(x) =

f (x̂) f (x̄S)− f (x̂S) f (x̄)
f (x̂)− f (x̄)

.

Proof. See Appendix A6.

13



Theorem 3 helpfully restricts the subclass of admissible functions for f . For instance, any absolute
inequality index as well as any member of the Lasso de la Vega and Aristondo (2012) class is
suitable member for f because for all these options f (xS) = f (x), i.e., p(x) = 1 and q(x) = 0.
Some relative indices like the Gini or the coefficient of variation are also admissible. For instance,
when f is the Gini index we obtain p(x) = µ(x)

U−µ(x) and q(x) = 0. By contrast, even though all
members of the Atkinson class are suitable choices for f in theorems 1 and 2, many of them are
not suitable for f in theorem 3. That is, we cannot obtain strongly consistent normalised inequality
indices using every member of the Atkinson class.

7 Further comparative insights

We now provide some insights into how the two proposed classes of normalised inequality indices
(in sections 4 and 5) compare with each other as well as how they both compare with standard
absolute and relative measures. First, note that the two approaches to measuring normalised in-
equality (corresponding to the two definitions of MIDs and their respective classes of indices) bear
a large degree of overlap. In fact, the formulae for normalised inequality indices compliant with the
population principle (section 5) is identical to the corresponding formulae for indices suitable for
fixed population sizes (section 4) whenever µ(x) ∈ Gn.14 As argued before, when the population
size n is sufficiently large and the decimal precision is kept fixed (as is the case in many empirical
applications), the condition µ(x) ∈Gn is always satisfied.

In the context of n = 2, we provide insights on how the different normalised inequality measures
behave and compare vis-a-vis each other, and with respect to standard absolute and relative inequal-
ity measures using the Gini coefficient. The non-trivial case with n = 2 lays the foundation for how
the corresponding inequality indices behave for the more general case of n > 2. Furthermore, the
simplicity of the n = 2 setting allows a neat inspection of the iso-inequality level contours, which
can be thought as the fingerprint of the corresponding inequality measures.15 Figure 1 presents the
iso-inequality contours of the absolute Gini index (Ga, panel A), the relative Gini index (Gr, panel
B), the normalised Gini index based on Theorem 1 (i.e., for fixed population; G∗, panel C), and the
normalised Gini index complying with the Population Principle (G∗P, panel D), in the case where
U = 1 (Appendix A8 shows how we arrive at these iso-inequality contours).16

As is well-known, Ga(x1,x2) ∈ [0,0.25] and the iso-inequality contours for Ga are parallel to the
45◦ line, while Gr(x1,x2) ∈ [0,0.5] and the iso-inequality contours for Gr are straight lines ‘ema-
nating from’ (or ‘converging to’) the origin (0,0). In contrast, the iso-inequality contours for the
two normalised Gini indices, G∗(x1,x2)∈ [0,1] and G∗P(x1,x2)∈ [0,1], exhibit completely different
shapes. In the case of G∗, all level contours are made of two line segments meeting in the diagonal
{(x1,x2) ∈ [0,1]2 | x1 +x2 = 1}, which, together, connect the points (0,0) and (1,1). Their shapes
14Readers are reminded of our examples of normalised inequality indices in section 4, whose formulae vary depending

on whether µ(x) /∈Gn (i.e., almost bipolar MIDs) or µ(x) ∈Gn (i.e., bipolar MIDs).
15Indeed, the behavior of some very popular inequality measures like the Gini index or the Variance (which can be

defined on a recursive basis) is entirely determined by what happens in the most basic case n = 2 (see details in
Ebert, 2010).

16Results remain essentially unaltered when the absolute and relative Gini indices are substituted by the standard
deviation and the coefficient of variation, respectively.
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Figure 1: Iso-inequality contours for the different Gini coefficient (n = 2 and U = 1)
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Notes: The figure is based on n = 2 and U = 1. Ga(x1,x2) in panel A is the absolute Gini index applied to an
attainment distribution. Gr(x1,x2) in panel B is the relative Gini index applied to the same attainment distribu-
tion. G∗(x1,x2) in panel C is the normalised Gini index applied to the attainment distribution for fixed population.
G∗P(x1,x2) in panel in panel D is the normalised Gini index applied to the attainment distribution for variable pop-
ulation.

(though not their corresponding inequality levels) coincide with the level contours of Gr(x1,x2)
when µ(x1,x2) ≤ 1/2 and with those of Gr(xS

1,x
S
2) when µ(x1,x2) ≥ 1/2 (where xS

1 = 1− x1 and
xS

2 = 1− x2, see Appendix A8). In addition, one has that G∗(x1,x2) = G∗(xS
1,x

S
2). Lastly, the level

contours G∗P(x1,x2) = c (where c ∈ [0,1]) are curves that (i) are symmetrical with respect to the
x2 = 1− x1 axis for all c ∈ [0,1] (i.e., G∗P(x1,x2) = G∗P(x

S
1,x

S
2)), and (ii) they connect the points

(0,0) and (1,1) when c≤ 1/2.

As can be inferred from panel C, all the distributions (x1,x2) lying at the border of the unit square
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maximise inequality (i.e., they are MIDs) when the latter is measured with G∗(x1,x2). By con-
trast, panel D shows that, when the population principle is imposed, only the bipolar distributions,
namely (0,1) and (1,0), maximise inequality. The relative Gini index shown in panel B (Gr) is the
only measure in Figure 1 that fails to be strongly consistent. The absolute (Ga) and normalised Gini
indices (G∗, G∗P) not only satisfy the strong consistency axiom, but also its more stringent version
– perfect complementarity – because their values coincide when evaluated either at an attainment
distribution (x1,x2) or its shortfall counterpart (xS

1,x
S
2). Remarkably, this happens for all values

of n ≥ 2 and for the two normalised inequality measures explored in this paper: the normalised
Gini index and the normalised standard deviation (see equations 2 and 3). The variegated shapes
of the iso-inequality contours when moving from one inequality measure to another (see Figure 1)
explain the discrepancies that might exist among them.

8 Concluding remarks

Bounded variables are fundamentally different from unbounded variables as the former cannot
increase or decrease infinitely. Consequently, whenever the mean of a distribution moves closer
to any of its bounds, the level of inequality assessed by several traditional inequality measures
may fall simply because there is not enough room for variation. The concept of maximum fea-
sible inequality with bounded variables is also quite different from maximum feasible inequality
in the context of unbounded variables.17 We propose a new approach to assessing inequality for
bounded variables relying on a new property called the maximality principle, which demands that
the distributions of bounded variables reflecting maximum feasible inequality be ranked equally.
We propose two new classes of inequality indices. The maximality principle leads to a type of nor-
malisation, where each inequality measure in our proposed classes compares observed inequality
levels against the maximum inequality level achievable with the same measure across all hypothet-
ical distributions having the same mean.18

Bounded variables are represented in terms of either attainments or short-falls, and a consistent
evaluation of inequality requires that the ranking of distributions are not reversed while switching
between attainment and short-fall representations. Thus, we further characterise a subclass within
each of the two classes of normalised inequality indices that allows for consistent evaluation of
inequality across attainment and short-fall representations. Several solutions have been proposed
to address the consistency challenge for bounded variables, including reliance on absolute Lorenz
curves and absolute indices (Lambert and Zheng, 2011), generalised means of indices evaluated at
both attainment and shortfall distributions (Lasso de la Vega and Aristondo, 2012) and a relaxation
of the (strong) consistency requirement, partially (Bosmans, 2016) or completely (Kenny, 2004).
Our solution represents an alternative to all the aforementioned.

One alternative to the class of normalised inequality indices may suggest taking the natural loga-
rithm of the bounded variable, thereby eliminating the lower bound when its value is zero. How-

17In the unbounded setting (i.e., in the context of income inequality), Milanovic et al. (2011) suggest and discuss the
notion of ’Inequality Possibility Frontier’ (IPF), which measures the maximum level of inequality that is potentially
attainable for a given level of average income. In that setting, such IPF is reached whenever a vast majority of
lower-class individuals survive at substistence levels and a small élite accumulates the reminder of the total income.

18Or same mean and population size when the population principle is not upheld.
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ever, this approach is plagued with serious problems. To begin with, it would not work when an
untransformed value is equal to zero. Meanwhile, if both bounds were positive, taking logarithms
for all values would be feasible, but would not solve the boundary effect (because the two bounds
would just be replaced by new bounds). Moreover, if the upper bound were higher than 1 then
logarithmic transformations would compress the dispersion of values between 1 and the upper
bound while expanding it for values between 0 and 1, with the concomitant ambiguous effect on
inequality rankings. Worse still, some inequality measures like the variance applied to logarithms
of a variable are known to violate the popular transfer principle (Foster and Ok, 1999). Finally,
inequality comparisons based on logarithmic transformations of bounded variables would be gen-
erally inconsistent. In a nutshell, the costs and inconveniences of the logarithmic transformation
render it an unappealing alternative.

We propose a new conceptualisation of assessing inequality with bounded variables and simultane-
ously propose a solution to address inconsistency. Future research could explore partial orderings
respecting the properties that were combined to generate the normalised inequality indices. Fur-
thermore, there remain other measurement challenges in the context of bounded variables. For
example, Lasso de la Vega and Aristondo (2012) provide conditions whose fulfillment guaran-
tees robustness of inequality comparisons to changes in the upper bound. Though admittedly this
problem is not that serious when bounds are neither arbitrary nor expected to change across time
and space (e.g. in the case of indicators expressed as percentage ratios), it is nonetheless worth
exploring how our proposed measurement framework could accommodate such potential concern.

Appendices

Appendix A1 Proof of Proposition 1

Let us start with an x ∈Xn \M (i.e., x is neither bipolar nor almost bipolar) for some n ∈N\{1}
such that µ(x) ∈ (0,U). Given that in the proposition’s partial order (X µ(x)

n ,�n), a regressive
transfer increases inequality while a permutation keeps it unaltered and both keep the mean un-
altered, we may always perform a sequence of regressive transfers (with or without additional
permutations) until exhaustion to obtain any element of M that belongs in the set of distributions
with the same population size and the same mean, namely X

µ(x)
n .19

Now, there can be two types of cases: (i) µ(x)∈Gn and (ii) µ(x) /∈Gn, where Gn = {U/n, . . . ,(n−
1)U/n} is the set of n−1 equally-spaced grid points between 0 and U .

Case (i): Whenever µ(x) ∈Gn, then there exists a natural number n′ ≤ n such that µ(x) = n′U/n.
Clearly, µ(x) = n′×U/n+(n−n′)×0/n. Starting with x, it is possible to have a series of regres-
sive transfers until a distribution with n′ elements equalling U and n−n′ elements equalling zero
is reached. In this case, the set of MIDs is X

µ(x)
n ∩B.

19Note that each element within x is bounded between 0 and U by definition and so it is not possible to perform further
regressive transfers once the bounds are reached. The proof proceeds in similar line of argument as the proof of
Theorem 1 in Seth and McGillivray (2018).
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Case (ii): Whenever µ(x) /∈Gn, then there exist a natural number n′≤ n such that n′U/n < µ(x)<
(n′+ 1)U/n. In this case, a series of regressive transfers are possible until n′ elements are equal
to U and n− n′− 1 elements are equal to zero. Note that it is not possible for n′+ 1 elements
to be equal to U because µ(x) < (n′+ 1)U/n. However, when n′ elements are equal to U , then
µ(x) > n′U/n and therefore the remaining element will have a value of ε = nµ(x)−n′U so that:
µ(x) = n′×U/n+(n−n′−1)×0/n+ ε/n. It is straightforward to verify that ε ∈ (0,U). In this
case, the set of MIDs is X

µ(x)
n ∩A .

Thus, the maximum inequality distribution (MID) for x is an element in the set X µ(x)
n ∩(A ∪B)=

X
µ(x)

n ∩M , which by our definition is equal to M
µ(x)
n . Now, whenever x ∈Xn ∩M for some

n ∈ N\{1} (i.e., x is either bipolar or almost bipolar), it can be trivially checked that x ∈M
µ(x)
n .

Hence, a set of MIDs for any x ∈Xn such that µ(x) ∈ (0,U) always exists and constitutes the set
of maximal elements M

µ(x)
n of the partially ordered set (X µ(x)

n ,�n).

Appendix A2 Proof of theorem 1

We first prove the sufficiency part. Consider some x ∈Xn for some n ∈ N \ {1} and so the set of
corresponding MIDs is M

µ(x)
n by proposition 1. We then already know that

I(x) =

M
(

f (x)− f (x̄)
f (x̂)− f (x̄)

)
if x ∈Xn \{0,U}

0 if x ∈ {0,U}
, (A1)

where x̄ = µ(x)1n, x̂ ∈M
µ(x)
n , f : Xn→ R++ is a symmetric and strictly S-convex function.

We now show that I satisfies the required properties. (i) Consider any x ∈Xn \ {0,U}. Since
f (x̂)− f (x̄)> 0 because any x̂ ∈M

µ(x)
n can be obtained from x̄ by a series of regressive transfers

and f is strictly S-convex, it follows directly from the formulation in Equation A1 that I satisfies
the equality principle as I(x̄) = 0, and the maximality principle as I(x̂) = I(ŷ) = M for any x̂ ∈
M

µ(x)
n , ŷ ∈M

µ(y)
n . Whenever x ∈ {0,U}, I(x) = 0, so the equality principle is also satisfied.

(ii) Suppose that y ∈Xn is obtained from x such that y = xP, where P is a permutation matrix.
By definition, µ(x) = µ(y), M

µ(y)
n = M

µ(x)
n and ȳ = x̄. Provided f is symmetric, f (y) = f (x)

and also f (ŷ) = f (x̂) for any x̂, ŷ ∈M
µ(x)
n . So, I(y) = I(x). Thus I satisfies anonymity. (iii)

Suppose y′ ∈Xn is obtained from x by a regressive transfer. Again, by definition, µ(x) = µ(y′),
M

µ(y′)
n = M

µ(x)
n and ȳ′ = x̄. Provided f is strictly S-convex, f (y′) > f (x) and so I(y′) > I(x).

Therefore, I satisfies the transfer principle.

Let us now prove the Necessity part. Suppose I satisfies anonymity and the transfer principle.
Then, I is symmetric and S-convex. Given that a monotonically increasing transformation of an
S-convex function is also S-convex, we may write (without loss of generality) I(x) = a f (x)+ b
for some x ∈Xn, where a ∈ R++, b ∈ R and f is some S-convex function. The equality principle
requires that I(x̄) = 0, therefore a f (x̄)+b = 0 or

b =−a f (x̄). (A2)
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We now proceed in three steps to prove that I(x) is a bounded function.

Step 1: Let x ∈Xn \{0,U}. We prove that X
µ(x)

n is a bounded and closed set within Xn. To do
so, we need to define a topology and a distance function in Xn.20 We can simply use the subspace
topology of Rn for Xn. Thus, if Br(x) is the standard open n−ball in Rn with center x and radius
r > 0, then we define the open n−balls in Xn as B̃r(x) := Br(x)∩Xn. As per distance function, for
any x,y ∈Xn we can use d(x,y) =

√
∑i(xi− yi)2/n, which is a variant of the standard Euclidean

distance that normalizes by the number of observations (n), and complies with the standard axioms
of distance functions (see footnote 20).

The two points that are furthest apart within Xn are 0 = (0, · · · ,0) and U = (U, · · · ,U). Their
distance equals d(0,U) = U . Thus, the distance between any other two points in Xn must be
smaller than U . Hence, the open ball B̃U(x) contains the entire set Xn (i.e., B̃U(x)⊃Xn), so Xn

is a bounded set. Since X
µ(x)

n ⊂Xn, X
µ(x)

n is also bounded.

We now prove that X
µ(x)

n is closed. To do that, we prove that Xn \X
µ(x)

n is open. Let y ∈
Xn \X µ(x)

n (that is: µ(y) 6= µ(x)), and define ε := |µ(y)−µ(x)|/2. Then, B̃ε(y))⊂Xn \X µ(x)
n ,

so we have defined an open n−ball centered in y that is completely included within Xn \X µ(x)
n .

Thus, Xn \X µ(x)
n is open, so X

µ(x)
n is closed.

Hence, we have proved that X
µ(x)

n is a compact set within Xn.

Step 2: Since I : Xn→ R+ is a continuous function, and X
µ(x)

n is a compact set, then I(X µ(x)
n )

(i.e., the image of X
µ(x)

n by I) is a compact set. Compact sets within R+ are bounded, so this
implies there exist mx,Mx ∈ R+ such that mx ≤ I(x)≤Mx for all x ∈X

µ(x)
n .

Step 3: Imposing the Equality Principle implies mx = 0 for all x ∈Xn. In addition, Mx = I(x̂)
for all x ∈Xn. Applying the Maximality Principle, it turns out that Mx = I(x̂) = I(ŷ) = My for all
x,y ∈Xn. Now, define M := Mx. Thus, for all x ∈Xn,0≤ I(x)≤M.

Now, since I(x̂) = M and b = −a f (x̄) (from equation A2), we have that a f (x̂) + b = a f (x̂)−
a f (x̄) = M. Thus, a = M/( f (x̂)− f (x̄)), so

I(x) = M
(

f (x)− f (x̄)
f (x̂)− f (x̄)

)
(A3)

whenever x ∈Xn \{0,U}. For the cases x = 0,x = U, the Equality Principle states that I(x) = 0.
This completes the proof.

Appendix A3 Proof of proposition 2

Consider an x ∈Xn ⊂X for some n ∈ N\{1} such that µ(x) ∈ (0,U).21 Recall that U ∈ Q++.
Using decimal notation, we can write µ(x) = a1 · · ·ah.b1b2 · · ·bk · · · , where a1 · · ·ah is the integer
20Recall that a distance function in a set S is defined as a function d : S×S→ R+ satisfying the following axioms for

all points x,y,z ∈ S: (i) (Identity) d(x,x) = 0 ∀x ∈ S; (ii) (Positivity) If x 6= y, then d(x,y) > 0; (iii) (Symmetry)
d(x,y) = d(y,x); (iv) (Triangle Inequality) d(x,z)≤ d(x,y)+d(y,z).

21Note that the cases µ(x) ∈ {0,U} are purposefully dismissed from proposition 2.
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part of µ(x) and b1b2 · · ·bk · · · is the corresponding decimal part (i.e., ai,bi ∈ {0,1,2, . . . ,8,9} are
the digits of µ(x)). While the representation of the integer part has finite length (i.e., h < ∞), the
decimal part can be either finite or infinite. Now, there are two possibilities: either µ(x) ∈ Q or
µ(x) ∈ R\Q.

Case (i): First, suppose µ(x) ∈Q. Then, we can write µ(x) = p/q for some p,q ∈N. In that case,
there must exist a multiple of n, let it be m, (i.e., m = αn, with α ∈ N\{1}) such that µ(x) ∈Gm.
Following Proposition 1, the MID distribution for x (i.e., x̂) exists, and is a bipolar one, where
a share of the population (equalling 1− p/qU , a rational number) attains the value of 0, and the
remaning share (of size p/qU , another rational number) attains the value of U . By construction,
the mean of such distribution equals p/q.

Case (ii): Now, let µ(x) ∈R\Q. Because of the density of rational numbers within real numbers,
it is possible to construct a sequence si ∈ Q converging towards µ(x) (i.e., such that limi→∞ si =
µ(x)). One such simple sequence could be defined as si = a1 · · ·ahb1b2 · · ·bi/(10i). Following Case
(i), for each si there must exist a multiple of n, call it mi (i.e., mi = αin, with αi ∈ N \ {1}) such
that si ∈ Gmi . Now, let bi be as a bipolar distribution, where a share of the population (equalling
1− si/U , a rational number) attains the value of 0, and the remaning share (of size si/U , another
rational number) attains the value of U . By construction, µ(bi) = si. Finally, we define the MID
distribution for x as x̂ := limi→∞bi. Since each bi is a bipolar distribution, so it is x̂.

In both cases, we have proved that, when imposing the population principle, the MIDs for x exist
and consist of bipolar distributions.

Appendix A4 Proof of theorem 2

We first prove the sufficiency part. Applying theorem 1, which holds for Xn, we can show that I
satisfies anonymity, the transfer principle and the equality principle. Now, since f (x̂) > f (x̄) for
any x̂ ∈Bµ(x) because any x̂ ∈Bµ(x) can be obtained from x̄ by a series of regressive transfers
with or without combinations of replications and permutations, and f is strictly S-convex, we
haveI(x̂) = M; that is, I satisfies the restricted maximality principle. Finally, we prove that I
satisfies the population principle. Let y be obtained from x ∈Xn through a replication. Then, by
definition, µ(x) = µ(y) and so by proposition 2, Bµ(x) =Bµ(y). It is also straightforward to verify
that ȳ is a replication of x̄. Therefore, based on (X µ(x),�), y∼ x and ȳ∼ x̄, and hence f (ȳ)= f (x̄)
and f (y) = f (x) because f satisfies the population principle. Coupled with f (ŷ) = f (x̂) for any
x̂, ŷ ∈Bµ(x) and f (x̂)− f (x̄)> 0, clearly I(y) = I(x). Hence, I satisfies the population principle.

The proof of the necessity part is similar to the proof of theorem 1’s necessity part, with some
additional modifications. If I satisfies anonymity and the transfer principle, then, without loss of
generality, I(x) = a f (x)+ b for some x ∈Xn, where a ∈ R++, b ∈ R and f is some S-convex
function. Suppose that y ∈Xn′ is obtained from x by replication for some n′ = αn, where α ∈
N\{1}. Given that I satisfies the population principle, then I(y) = I(x). It follows that f (y) = f (x)
since a > 0 and so f also satisfies the population principle. By the equality principle, which
requires that I(x̄) = 0 where x̄ = µ(x)1n, we obtain a f (x̄)+b = 0 or b =−a f (x̄).
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Mimicking the proof of theorem 1, we now show that I(x) is a bounded function. Since X
µ(x)

n is
compact for all n∈N\{1} (see theorem 1) and X µ(x) =∪nX

µ(x)
n is a countable union of compact

sets, then X µ(x) is also compact. Since I is a continuous function, then I(X µ(x)) is bounded.
Thus, there exist mx,Mx ∈ R+ such that mx ≤ I(x) ≤ Mx for all x ∈ X µ(x). By the Equality
Principle, mx = 0 for all x ∈X . By the Restricted Maximality Principle, Mx = I(x̂) = I(ŷ) = My
for all x,y ∈X . Now, define M := Mx. Thus, for all x ∈X ,0 ≤ I(x) ≤ M, so I is bounded.
Now, since I(x̂) = M and b = −a f (x̄), we have that a f (x̂) + b = a f (x̂)− a f (x̄) = M. Thus,
a = M/( f (x̂)− f (x̄)), so we obtained the desired functional form whenever x ∈Xn \{0,U}. For
the cases x = 0,x = U, the Equality Principle states that I(x) = 0. This completes the proof.

Appendix A5 Proof of proposition 3

The ‘if’ part is straightforward. For the ‘only if’ part consider the definition of strong consistency:
I(x) ≤ I(y)⇔ I(xS) ≤ I(yS) for any x,y ∈Xn. Now let y = xS. Then we get: I(x) ≤ I(xS)⇔
I(xS)≤ I(x) which can only hold if I(x) = I(xS).

Appendix A6 Proof of theorem 3

The sufficiecy part is straightforward. If f satisfies the property mentioned in theorem 3, we get
I(xS) = I(x) because p and q cancel out, and I(xS) = I(x) implies strong consistency.

Let us now prove the necessary part. From proposition 3, we conclude that if all the indices I from
theorems 1 and 2 are strongly consistent, then it must be true that for each of them: I(xS) = I(x),
which in turn means:

f (xS)− f (x̄S)

f (x̂S)− f (x̄S)
=

f (x)− f (x̄)
f (x̂)− f (x̄)

(A4)

Then, solving equation A4 for f (xS) yields:

f (xS) =
f (x̂S)− f (x̄S)

f (x̂)− f (x̄)
f (x)+

f (x̂) f (x̄S)− f (x̂S) f (x̄)
f (x̂)− f (x̄)

, (A5)

Finally, recalling that xS = (U,U, ...,U)−x and every element in x̄ is equal to µ(x), we obtain:

p(x) =
f (x̂S)− f (x̄S)

f (x̂)− f (x̄)
(A6)

q(x) =
f (x̂) f (x̄S)− f (x̂S) f (x̄)

f (x̂)− f (x̄)
. (A7)

This completes our proof.
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Appendix A7 Derivation of normalised inequality indices

Here we show the derivation of the inequality measures presented as examples in section 4. We
start with the formulas relying on bipolar MIDs followed by formulas based on almost bipolar
MIDs. The former are simpler than the latter.

In a bipolar MID x̂, assume that a share s of the population attains the value of 0 and the rest (1−s)
the value of U . Given that µ(x̂) = µ(x), by definition, the following restriction must hold:

µ(x̂) = s×0+(1− s)×U ⇒ (1− s)U = µ(x)⇒ s = 1− µ(x)
U

. (A8)

The absolute Gini index:

Computing the absolute Gini index for x̂ yields:

Ga(x̂) = s(1− s)U. (A9)

Plugging equation A8 into equation A9 and manipulating algebraically yields:

Ga(x̂) =
µ(x)

U

(
1− µ(x)

U

)
U =

µ(x)[U−µ(x)]
U

.

The relative Gini index:

Computing the relative Gini index for x̂ yields:

Gr(x̂) =
s(1− s)U

µ(x)
. (A10)

Plugging equation A8 into equation A10 and manipulating algebraically yields:

Gr(x̂) =
U−µ(x)

U
.

The standard deviation:

Computing the standard deviation for x̂ yields:

σ(x̂) =
√

s[µ(x)]2 +(1− s)[U−µ(x)]2. (A11)

Plugging equation A8 into equation A11 and manipulating algebraically, we obtain:

σ(x̂) =

√[
1− µ(x)

U

]
[µ(x)]2 +

µ(x)
U

[U−µ(x)]2 =
√

µ(x) [U−µ(x)].

The coefficient of variation:
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Computing the coefficient of variation for x̂ yields:

CV (x̂) =
σ(x̂)
µ(x̂)

=

√
µ(x) [U−µ(x)]

µ(x)
=

√
U−µ(x)

µ(x)
. (A12)

Derivation of normalised inequality indices for almost bipolar MIDs

In an almost bipolar MID x̂ we have n′ units in the population with value U , one unit with value
0 < ε < U and the rest, n− n′− 1 with value 0. Moreover, ε = nµ(x)− n′U . For each of the
denominators of the indices mentioned in section 4 we get:

The absolute Gini index:

Ga(x̂) =
1

2n2 [(n−n′−1)×1×|0− ε|+(n′)×1×|U− ε|+n′(n−n′−1)×1×|0−U |] (A13)

Simplifying equation A13 we get the denominator of 2 for the almost bipolar case (noting later
that the 2 in the fraction gets cancelled out as it also appears in the numerator’s formula):

Ga(x̂) =
1

2n2 [(n−n′−1)ε +(n′)(U− ε)+n′(n−n′−1)U ]. (A14)

The relative Gini index:

Essentially we get the same formula for the denominator of 2 as in A13 but divided by µ(x) (again,
the 2 in the fraction gets cancelled out as it also appears in the numerator’s formula):

Gr(x̂) =
1

2n2µ(x)
[(n−n′−1)ε +(n′)(U− ε)+n′(n−n′−1)U ]. (A15)

The standard deviation:

σ(x̂) =
√

1
n
[(n−n′−1)(0−µ(x))2 +n′(U−µ(x))2 +(ε−µ(x))2]. (A16)

Simplifying equation A16 we get the denominator of 3 for the almost bipolar case.

The coefficient of variation:

We get the same formula as in A16 but divided by µ(x):

CV (x̂) =
1

µ(x)

√
1
n
[(n−n′−1)µ(x)2 +n′(U−µ(x))2 +(ε−µ(x))2]. (A17)

Finally, for each of the aforementioned indices (for bipolar and almost bipolar MIDs), we compute
f (x)/ f (x̂).
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Appendix A8 Derivation of iso-inequality contours

When n = 2 and U = 1, the absolute Gini index can be written as Ga(x1,x2) = |x1− x2|/4, where
(x1,x2) ∈ [0,1]2. In that case, the iso-inequality contours are straight lines parallel to the 45◦ line.
In this setting, the relative Gini index can be written as Gr(x1,x2) = |x1−x2|/4µ = |x1−x2|/2(x1+
x2). Since this function is homogeneous of degree 0 (i.e., Gr(λx1,λx2) = Gr(x1,x2) for all λ > 0),
the iso-inequality contours are straight lines emanating from (or converging to) the origin (0,0).

What about the iso-inequality contours for the normalised Gini index that does not comply with
the population principle (G∗(x1,x2))? Here, G2 = {1/2}, so there are basically two cases: ei-
ther µ(x1,x2) ≤ 1/2 or µ(x1,x2) ≥ 1/2. Case (i): µ(x1,x2) = (x1 + x2)/2 ≤ 1/2. Here, the
MIDs associated with (x1,x2) are {(0,x1 + x2),(x1 + x2,0)}. When the absolute Gini index is
applied to any of those distributions, one obtains Ga(0,x1 + x2) = Ga(x1 + x2,0) = (x1 + x2)/4.
Hence, G∗(x1,x2) = |x1− x2|/(x1 + x2). These are straight lines emanating from (or converg-
ing to) the origin (0,0). Case (ii): µ(x1,x2) = (x1 + x2)/2 ≥ 1/2. Now, the MIDs associated
with (x1,x2) are {(x1 + x2− 1,1),(1,x1 + x2− 1)}. Calculating the absolute Gini index of any
of those distributions yields Ga(x1 + x2− 1,1) = Ga(1,x1 + x2− 1) = (2− (x1 + x2))/4. Hence
G∗(x1,x2) = |x1− x2|/(2− (x1 + x2)) = |xS

1− xS
2|/(xS

1 + xS
2) (where xS

1 = 1− x1 and xS
2 = 1− x2).

These are straight lines emanating from (or converging to) the point (1,1). Finally, it is easy to
prove that the two sets of iso-inequality contours match at the intersection (i.e., for the set of points
{(x1,x2) ∈ [0,1]2|x1 + x2 = 1}, the values of the iso-inequality contours examined in cases (i) and
(ii) coincide).

According to theorem 2 and equation 2, the normalised Gini index complying with the population
principle is simply defined as G∗P(x1,x2) = Ga(x1,x2)/(µ(x1,x2)(1− µ(x1,x2))). Manipulating
algebraically, one obtains that G∗P(x1,x2) = |x1−x2|/((x1+x2)(2−(x1+x2))). This is the function
from which the iso-inequality contours shown in Figure 1 panel D are calculated.
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