Motiv 000	ation	Maximality Principle 00	Normalised measures	Consistency 0000	Illustration 0000	Conclusion 00	Extr o
		Inequality r	neasurement	for boun	ded varia	ables	

Iñaki Permanyer¹ Suman Seth^{2,3} Gaston Yalonetzky²

 $^1 \mathrm{Universitat}$ Autònoma de Barcelona & ICREA $^2 \mathrm{University}$ of Leeds

³OPHI, University of Oxford

EEA-ESEM Conference (Barcelona, Spain)

August 28–September 1, 2023

Permanyer, Seth and Yalonetzky

Inequality measurement for bounded variables

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	00	00000	0000	0000	00	0
Motivat	tion					

▶ Inequality: a hotly debated topic and of policy interest

- ▶ Piketty (2015), Bourguignon (2017), Atkinson (2018), Milanovic (2018)
- $\blacktriangleright\,$ SDG goal 10: reduce inequality within and between countries

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	00	00000	0000	0000	oo	0
Motivat	tion					

▶ Inequality: a hotly debated topic and of policy interest

- ▶ Piketty (2015), Bourguignon (2017), Atkinson (2018), Milanovic (2018)
- $\blacktriangleright\,$ SDG goal 10: reduce inequality within and between countries
- ▶ Interest in inequality has moved beyond monetary indicators
 - $\blacktriangleright\,$ e.g., Indicators of health, education, access to services and many more

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	00	00000	0000	0000	oo	0
Motivat	tion					

▶ Inequality: a hotly debated topic and of policy interest

- ▶ Piketty (2015), Bourguignon (2017), Atkinson (2018), Milanovic (2018)
- $\blacktriangleright\,$ SDG goal 10: reduce inequality within and between countries
- ► Interest in inequality has moved beyond monetary indicators
 - $\blacktriangleright\,$ e.g., Indicators of health, education, access to services and many more
- ▶ Many non-pecuniary indicators are bounded
 - ▶ i.e., take values from a closed finite interval with fixed limits (a lower bound and an upper bound)
 - ▶ We refer to them as bounded variables (Lambert and Zheng 2011)

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	00	00000	0000	0000	00	0
Motivat	sion					

► There is a fundamental difference between bounded variables and non-bounded variables (i.e., fixed lower bound but *no* fixed upper bound)

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	oo	00000	0000	0000	oo	o
Motivat	tion					

- ► There is a fundamental difference between bounded variables and non-bounded variables (i.e., fixed lower bound but *no* fixed upper bound)
- ► Most egalitarian distribution: All elements in a distribution have equal values (same whether bounded or non-bounded)

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	00	00000	0000	0000	00	0
Motivat	tion					

- ► There is a fundamental difference between bounded variables and non-bounded variables (i.e., fixed lower bound but *no* fixed upper bound)
- ► Most egalitarian distribution: All elements in a distribution have equal values (same whether bounded or non-bounded)
- ► Most unequal distribution or maximum inequality distribution (MID)

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	00	00000	0000	0000	00	0
Motivat	tion					

- ► There is a fundamental difference between bounded variables and non-bounded variables (i.e., fixed lower bound but *no* fixed upper bound)
- ► Most egalitarian distribution: All elements in a distribution have equal values (same whether bounded or non-bounded)
- ► Most unequal distribution or maximum inequality distribution (MID)
 - ▶ Non-bounded variables: all elements, barring one, are equal to the lower bound (e.g., (0,0,0,0,2) or (0,0,0,0,3)) and relative inequality measures rank MIDs equally

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	oo	00000	0000	0000	00	0
Motivat	tion					

- ► There is a fundamental difference between bounded variables and non-bounded variables (i.e., fixed lower bound but *no* fixed upper bound)
- ► Most egalitarian distribution: All elements in a distribution have equal values (same whether bounded or non-bounded)
- ► Most unequal distribution or maximum inequality distribution (MID)
 - ▶ Non-bounded variables: all elements, barring one, are equal to the lower bound (e.g., (0,0,0,0,2) or (0,0,0,0,3)) and relative inequality measures rank MIDs equally
 - ▶ Bounded variables (with upper bound of 1): no one can have more than upper bound (e.g., (0,0,0,1,1) or (0,0,1,1,1))

	Maximality Principle oo	Normalised measures	Consistency 0000	Illustration 0000	Conclusion 00	Extra 0
Motivat	tion					

- ► There is a fundamental difference between bounded variables and non-bounded variables (i.e., fixed lower bound but *no* fixed upper bound)
- ► Most egalitarian distribution: All elements in a distribution have equal values (same whether bounded or non-bounded)
- ► Most unequal distribution or maximum inequality distribution (MID)
 - ▶ Non-bounded variables: all elements, barring one, are equal to the lower bound (e.g., (0,0,0,0,2) or (0,0,0,0,3)) and relative inequality measures rank MIDs equally
 - ► Bounded variables (with upper bound of 1): no one can have more than upper bound (e.g., (0,0,0,1,1) or (0,0,1,1,1)) How should MIDs be ranked?

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	oo	00000	0000	0000	oo	0
Today's	presentation					

▶ Justify a new principle called the *Maximality Principle*

	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	00	00000	0000	0000	00	o
Today's	s presentation					

- ▶ Justify a new principle called the *Maximality Principle*
- ▶ Present two new closely related classes of inequality measures
 - ▶ These are the so-called classes of *normalised inequality measures*

$ \begin{array}{c} \text{Motivation} \\ \text{OO} \bullet \end{array} $	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	oo	00000	0000	0000	00	0
Today's	s presentation					

- ▶ Justify a new principle called the *Maximality Principle*
- ▶ Present two new closely related classes of inequality measures
 - ▶ These are the so-called classes of *normalised inequality measures*
- ▶ Further present subclass that allow *consistent evaluation* of inequality
 - ▶ i.e., same inequality ordering for attainments and shortfalls (e.g., literacy rates versus illiteracy rates)

$ \begin{array}{c} \text{Motivation} \\ \text{OO} \bullet \end{array} $	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	oo	00000	0000	0000	00	o
Today's	presentation					

- ► Justify a new principle called the *Maximality Principle*
- ▶ Present two new closely related classes of inequality measures
 - ▶ These are the so-called classes of *normalised inequality measures*
- ▶ Further present subclass that allow *consistent evaluation* of inequality
 - ▶ i.e., same inequality ordering for attainments and shortfalls (e.g., literacy rates versus illiteracy rates)

 Present an illustration showing how a different picture can emerge in practice

▶ Inequality ranking of the following distributions due to income growth

 $A = (1, 1, 1, 1, 5) \rightarrow B = (1, 1, 1, 5, 5) \rightarrow C = (1, 1, 5, 5, 5) \rightarrow D = (1, 5, 5, 5, 5)$

▶ Inequality ranking of the following distributions due to income growth

 $A = (1, 1, 1, 1, 5) \rightarrow B = (1, 1, 1, 5, 5) \rightarrow C = (1, 1, 5, 5, 5) \rightarrow D = (1, 5, 5, 5, 5)$

▶ Five possible ethical judgements (Temkin 1986)

▶ Inequality ranking of the following distributions due to income growth

 $A = (1, 1, 1, 1, 5) \rightarrow B = (1, 1, 1, 5, 5) \rightarrow C = (1, 1, 5, 5, 5) \rightarrow D = (1, 5, 5, 5, 5)$

Five possible ethical judgements (Temkin 1986)
 An increase in inequality throughout as gradual *isolation of the poor* (IP)

▶ Inequality ranking of the following distributions due to income growth

 $A = (1, 1, 1, 1, 5) \rightarrow B = (1, 1, 1, 5, 5) \rightarrow C = (1, 1, 5, 5, 5) \rightarrow D = (1, 5, 5, 5, 5)$

Five possible ethical judgements (Temkin 1986)
 An increase in inequality throughout as gradual *isolation of the poor* (IP)
 A decrease in inequality throughout as gradual *elitism of the rich* (ER)

▶ Inequality ranking of the following distributions due to income growth

 $A = (1, 1, 1, 1, 5) \rightarrow B = (1, 1, 1, 5, 5) \rightarrow C = (1, 1, 5, 5, 5) \rightarrow D = (1, 5, 5, 5, 5)$

▶ Five possible ethical judgements (Temkin 1986)

An increase in inequality throughout as gradual *isolation of the poor* (IP)
 A decrease in inequality throughout as gradual *elitism of the rich* (ER)
 An initial increase, reach maximum and decrease (Kuznet argument)

▶ Inequality ranking of the following distributions due to income growth

 $A = (1, 1, 1, 1, 5) \rightarrow B = (1, 1, 1, 5, 5) \rightarrow C = (1, 1, 5, 5, 5) \rightarrow D = (1, 5, 5, 5, 5)$

▶ Five possible ethical judgements (Temkin 1986)

An increase in inequality throughout as gradual *isolation of the poor* (IP)
A decrease in inequality throughout as gradual *elitism of the rich* (ER)
An initial increase, reach maximum and decrease (Kuznet argument)
An initial decrease, reach minimum and increase (IP/ER interaction)

▶ Inequality ranking of the following distributions due to income growth

 $A = (1, 1, 1, 1, 5) \rightarrow B = (1, 1, 1, 5, 5) \rightarrow C = (1, 1, 5, 5, 5) \rightarrow D = (1, 5, 5, 5, 5)$

▶ Five possible ethical judgements (Temkin 1986)

An increase in inequality throughout as gradual *isolation of the poor* (IP)
 A decrease in inequality throughout as gradual *elitism of the rich* (ER)
 An initial increase, reach maximum and decrease (Kuznet argument)
 An initial decrease, reach minimum and increase (IP/ER interaction)
 Inequality is unchanged throughout

▶ Inequality ranking of the following distributions due to income growth

 $A = (1, 1, 1, 1, 5) \rightarrow B = (1, 1, 1, 5, 5) \rightarrow C = (1, 1, 5, 5, 5) \rightarrow D = (1, 5, 5, 5, 5)$

▶ Five possible ethical judgements (Temkin 1986)

An increase in inequality throughout as gradual isolation of the poor (IP)
 A decrease in inequality throughout as gradual elitism of the rich (ER)
 An initial increase, reach maximum and decrease (Kuznet argument)
 An initial decrease, reach minimum and increase (IP/ER interaction)
 Inequality is unchanged throughout

▶ Temkin (1986) and Bosmans (2007): 1, 2, 3; Fields (1998): 1, 2, 4

Permanyer, Seth and Yalonetzky

Inequality measurement for bounded variables

$$A = (1, 1, 1, 1, 5) \to B = (1, 1, 1, 5, 5) \to E = (1, 1, 1, 1, 9)$$

 $A = (1, 1, 1, 1, 5) \to B = (1, 1, 1, 5, 5) \to E = (1, 1, 1, 1, 9)$

 \blacktriangleright Certainly, Distribution E is more unequal than Distributions A and B

 $A = (1, 1, 1, 1, 5) \to B = (1, 1, 1, 5, 5) \to E = (1, 1, 1, 1, 9)$

 \blacktriangleright Certainly, Distribution E is more unequal than Distributions A and B

For a bounded variable with a lower bound of 1 and an upper bound of 5, Distribution E is not feasible,

 $A = (1, 1, 1, 1, 5) \to B = (1, 1, 1, 5, 5) \to E = (1, 1, 1, 1, 9)$

 \blacktriangleright Certainly, Distribution E is more unequal than Distributions A and B

► For a bounded variable with a lower bound of 1 and an upper bound of 5, Distribution *E* is not feasible, but both *A* and *B* are MIDs

 $A = (1, 1, 1, 1, 5) \to B = (1, 1, 1, 5, 5) \to E = (1, 1, 1, 1, 9)$

- \blacktriangleright Certainly, Distribution E is more unequal than Distributions A and B
- ► For a bounded variable with a lower bound of 1 and an upper bound of 5, Distribution *E* is not feasible, but both *A* and *B* are MIDs
- ▶ Maximality principle: For a bounded variable with a given lower bound and a given upper bound, whenever we pick any two (non-trivial) MIDs, the corresponding levels of inequality must coincide

 $A = (1, 1, 1, 1, 5) \to B = (1, 1, 1, 5, 5) \to E = (1, 1, 1, 1, 9)$

- \blacktriangleright Certainly, Distribution E is more unequal than Distributions A and B
- ► For a bounded variable with a lower bound of 1 and an upper bound of 5, Distribution *E* is not feasible, but both *A* and *B* are MIDs
- ▶ Maximality principle: For a bounded variable with a given lower bound and a given upper bound, whenever we pick any two (non-trivial) MIDs, the corresponding levels of inequality must coincide
 - ► Two judges who accepted bribes in all of their cases might be equally corrupt, even if one tried fewer cases (Temkin 1986)

Permanyer, Seth and Yalonetzky

Inequality measurement for bounded variables

Motivation	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
000	00	●0000	0000	0000	00	0
Notatio	n					

- ▶ Distribution of achievements: $\mathbf{x} = (x_1, ..., x_n), x_i \in [0, U] \forall i = 1, ..., n$
- Mean of the distribution: $\mu(\mathbf{x}) \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$

Motivation	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
000	00		0000	0000	00	0
Notatio	n					

- ▶ Distribution of achievements: $\mathbf{x} = (x_1, ..., x_n), x_i \in [0, U] \forall i = 1, ..., n$
- Mean of the distribution: $\mu(\mathbf{x}) \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$
- ▶ Set of distributions with population size n and upper bound U: \mathcal{X}_n
- ▶ Set of all distributions with upper bound U: X

Motivation	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
000	00	•0000	0000	0000	oo	0
Notation	n					

- ▶ Distribution of achievements: $\mathbf{x} = (x_1, ..., x_n), x_i \in [0, U] \forall i = 1, ..., n$
- Mean of the distribution: $\mu(\mathbf{x}) \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$
- ▶ Set of distributions with population size n and upper bound U: \mathcal{X}_n
- ▶ Set of all distributions with upper bound U: X
- \blacktriangleright Distribution with all elements equal to lower bound zero: 0
- \blacktriangleright Distribution with all elements equal to upper bound U: U

Motivation 000	Maximality Principle 00	Normalised measures	Consistency 0000	Illustration 0000	Conclusion 00	Extra 0
Notation	n					

- ▶ Distribution of achievements: $\mathbf{x} = (x_1, ..., x_n), x_i \in [0, U] \forall i = 1, ..., n$
- Mean of the distribution: $\mu(\mathbf{x}) \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$
- ▶ Set of distributions with population size n and upper bound U: \mathcal{X}_n
- ▶ Set of all distributions with upper bound U: X
- \blacktriangleright Distribution with all elements equal to lower bound zero: 0
- \blacktriangleright Distribution with all elements equal to upper bound U: U
- ▶ An inequality index: $I : \mathcal{X} \to \mathbb{R}_+$

Motivation	n Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
000	00	●0000	0000	0000	00	0
Nota	tion					

- ▶ Distribution of achievements: $\mathbf{x} = (x_1, ..., x_n), x_i \in [0, U] \forall i = 1, ..., n$
- Mean of the distribution: $\mu(\mathbf{x}) \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$
- ▶ Set of distributions with population size n and upper bound U: \mathcal{X}_n
- ▶ Set of all distributions with upper bound U: \mathcal{X}
- ▶ Distribution with all elements equal to lower bound zero: 0
- \blacktriangleright Distribution with all elements equal to upper bound U: U
- ▶ An inequality index: $I : \mathcal{X} \to \mathbb{R}_+$
- ▶ Bipolar/almost-bipolar distributions
 - \blacktriangleright Bipolar distribution: $(\underbrace{0, \ldots, 0}, \underbrace{U, \ldots, U})$ for n' < n
 - ► Almost bipolar distribution: $(\underbrace{0, \dots, 0}_{n-n'}, \varepsilon, \underbrace{U, \dots, U}_{n'}); \varepsilon = [n\mu(\mathbf{x}) n'U]$

Motivation	Maximality Principle	Normalised measures $0 \bullet 000$	Consistency	Illustration	Conclusion	Extra
000	00		0000	0000	00	0
Proper	ties					

- ► Fundamental properties:
 - ► Anonymity: $I(\mathbf{y}) = I(\mathbf{x})$ whenever \mathbf{y} is obtained from \mathbf{x} through permutation
 - ▶ Transfer principle: $I(\mathbf{y}) > I(\mathbf{x})$ when \mathbf{y} is obtained from \mathbf{x} by a regressive transfer (poor to rich); $I(\mathbf{y}) < I(\mathbf{x})$ when \mathbf{y} is obtained from \mathbf{x} by a progressive transfer (rich to poor)

Motivation	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
000	00	00000	0000	0000	00	0
Proper	ties					

- ► Fundamental properties:
 - ► Anonymity: $I(\mathbf{y}) = I(\mathbf{x})$ whenever \mathbf{y} is obtained from \mathbf{x} through permutation
 - ▶ Transfer principle: $I(\mathbf{y}) > I(\mathbf{x})$ when \mathbf{y} is obtained from \mathbf{x} by a regressive transfer (poor to rich); $I(\mathbf{y}) < I(\mathbf{x})$ when \mathbf{y} is obtained from \mathbf{x} by a progressive transfer (rich to poor)
- ▶ Other properties:
 - ▶ Equality principle: Inequality is minimal and equal to zero when all units feature exactly the same achievement value, i.e. $x_1 = x_2 = \cdots = x_n$
 - ▶ Population principle (for variable-population comparisons): $I(\mathbf{y}) = I(\mathbf{x})$, whenever \mathbf{y} is obtained from \mathbf{x} by a *replication*

Theorem 1

For any $\mathbf{x} \in \mathcal{X}_n$, an inequality index *I* satisfies anonymity, the transfer principle, the equality principle and the maximality principle if and only if

$$I(\mathbf{x}) = \begin{cases} M \left[\frac{f(\mathbf{x}) - f(\bar{\mathbf{x}})}{f(\bar{\mathbf{x}}) - f(\bar{\mathbf{x}})} \right] & \text{if } \mathbf{x} \in \mathcal{X}_n \setminus \{\mathbf{0}, \mathbf{U}\} \\ 0 & \text{if } \mathbf{x} \in \{\mathbf{0}, \mathbf{U}\} \end{cases},$$
(1)

where $0 < M < +\infty$ is a proportionality constant, $\bar{\mathbf{x}}$ is the egalitarian distribution with the same mean as \mathbf{x} , $\hat{\mathbf{x}}$ is an MID (bipolar/almost-bipolar) for \mathbf{x} , $f : \mathcal{X}_n \to \mathbb{R}_{++}$ is a symmetric and strictly S-convex function, and $\mathbf{0}$ and \mathbf{U} are the two extreme egalitarian distributions.

The class of inequality measures (variable population)

Theorem 2

For any $\mathbf{x} \in \mathcal{X}_n$, an inequality index *I* satisfies anonymity, the transfer principle, the equality principle, the restricted maximality principle and *the population principle* if and only if

$$I(\mathbf{x}) = \begin{cases} M \left[\frac{f(\mathbf{x}) - f(\bar{\mathbf{x}})}{f(\hat{\mathbf{x}}) - f(\bar{\mathbf{x}})} \right] & \text{if } \mathbf{x} \in \mathcal{X}_n \setminus \{\mathbf{0}, \mathbf{U}\}\\ 0 & \text{if } \mathbf{x} \in \{\mathbf{0}, \mathbf{U}\} \end{cases},$$

where $0 < M < +\infty$ is a proportionality constant, $\bar{\mathbf{x}}$ is the egalitarian distribution with the same mean as \mathbf{x} , $\hat{\mathbf{x}}$ is an MID (bipolar) for \mathbf{x} , $f : \mathcal{X} \to \mathbb{R}_{++}$ is a symmetric and strictly S-convex function satisfying the *population principle*, and $\mathbf{0}$ and \mathbf{U} are the two extreme egalitarian distributions.

$$G^{*}(\mathbf{x}) = \begin{cases} \frac{G_{a}(\mathbf{x})U}{\mu(\mathbf{x})(U-\mu(\mathbf{x}))} & \text{if } \mathbf{x} \in \mathcal{X}_{n} \setminus \{\mathbf{0}, \mathbf{U}\} \text{ and } \hat{\mathbf{x}} \text{ bipolar} \\\\ \frac{G_{a}(\mathbf{x})n^{2}}{(n-n'-1)(\varepsilon+n'U)+n'(U-\varepsilon)} & \text{if } \mathbf{x} \in \mathcal{X}_{n} \setminus \{\mathbf{0}, \mathbf{U}\} \text{ and } \hat{\mathbf{x}} \text{ almost-b} \\\\ 0 & \text{if } \mathbf{x} \in \{\mathbf{0}, \mathbf{U}\} \end{cases}$$

▶ Note: G_a is the absolute Gini coefficient (same G^* for relative Gini)

Illustration

Permanyer, Seth and Yalonetzky

Inequality measurement for bounded variables

Motivation	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
000	00	00000	•000	0000	00	0
Consist	tency require	ment				

- ▶ Most bounded indicators are expressed as attainments or short-falls
 - ▶ Mortality rate vs. survival rate; literacy rate vs. illiteracy rate

Motivation	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
000	00	00000	•000	0000	oo	0
Consis	tency requirer	ment				

- ▶ Most bounded indicators are expressed as attainments or short-falls
 - ▶ Mortality rate vs. survival rate; literacy rate vs. illiteracy rate
- ▶ No a priori reason to prefer one representation (attainment or shortfall) over the other, but ...

$\underset{000}{\text{Motivation}}$	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
	00	00000	•000	0000	oo	0
Consis	stency requirer	ment				

- $\blacktriangleright\,$ Most bounded indicators are expressed as attainments or short-falls
 - ▶ Mortality rate vs. survival rate; literacy rate vs. illiteracy rate
- ▶ No a priori reason to prefer one representation (attainment or shortfall) over the other, but ...
- ▶ How to ensure that inequality assessments guarantee consistent comparisons when switched between attainments and shortfalls?
 - ▶ Micklewrite and Stewart (1999); Erreygers (2009); Lambert and Zheng (2011); Lasso de la Vega and Aristondo (2012); Bosmans (2016)

Inconsistent Lorenz comparisons (relative)

Cross-country BCG immunisation rates

Consistency properties and proposed solutions

► Properties

- ► Perfect complementarity: No change in inequality index when switched between attainments and shortfalls (Erreygers, 2009)
- ► Consistency: No change in inequality ordering when switched between attainments and shortfalls (Lambert and Zheng, 2011; Bosmans, 2016)

Consistency properties and proposed solutions

▶ Properties

- ► Perfect complementarity: No change in inequality index when switched between attainments and shortfalls (Erreygers, 2009)
- ► Consistency: No change in inequality ordering when switched between attainments and shortfalls (Lambert and Zheng, 2011; Bosmans, 2016)

► Solutions

- ► Absolute indices (Erreygers, 2009; Lambert and Zheng, 2011; Chakravarty et al., 2015; Seth and Alkire, 2017)
- ► Equally weighted general means of any inequality index on attainments and the same on shortfalls (Lasso de la Vega and Aristondo 2012)
- ▶ A pair of inequality indices: I^A for attainments and $I^S = \phi(I^A)$ for the shortfalls, where ϕ is strictly increasing (Bosmans 2016)

Motivation	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion	Extra
000	00	00000	0000	0000	00	0

Strongly consistent normalised measures

Proposition

An inequality index is strongly consistent iff it satisfies perfect complementarity.

Theorem 3

The inequality indices ${\cal I}$ characterised in theorems 1 and 2 are also strongly consistent if and only if

$$f(\mathbf{x}^S) = p(\mathbf{x})f(\mathbf{x}) + q(\mathbf{x}), \tag{2}$$

where
$$p(\mathbf{x}) = \frac{f(\hat{\mathbf{x}}^S) - f(\bar{\mathbf{x}}^S)}{f(\hat{\mathbf{x}}) - f(\bar{\mathbf{x}})}, q(\mathbf{x}) = \frac{f(\hat{\mathbf{x}})f(\bar{\mathbf{x}}^S) - f(\hat{\mathbf{x}}^S)f(\bar{\mathbf{x}})}{f(\hat{\mathbf{x}}) - f(\bar{\mathbf{x}})}$$
 and $\mathbf{x}^S = \mathbf{U} - \mathbf{x}$.

Evolution of cross-country inequality in education

- ▶ We study the evolution of cross-country inequality in three education indicators, 1950-2010
 - ▶ Share of total adult population with at least some primary education
 - ▶ Share of total adult population with at least some secondary education
 - ▶ Share of total adult population with at least some tertiary education
 - ► Source of the education data: http://www.barrolee.com/
- ▶ In order to study inequality, we use:
 - ▶ The absolute Gini index, the relative Gini index and the normalised Gini index
- ▶ We treat each country as an observation (133 countries)

Mean and the absolute Gini index, U = 1 Max

Mean and the absolute Gini index, U = 1 Max

Mean and the relative Gini index, U = 1

Evolution of cross-country inequality in education Mean and the normalised Gini index, U = 1

Concluding remarks and future research

- ► A key difference for bounded variables is how the maximum inequality is perceived
 - ▶ Misleading conclusions unless measurement in adapted

\circ \circ \circ \circ \circ \circ

Extra o

Concluding remarks and future research

- ► A key difference for bounded variables is how the maximum inequality is perceived
 - ▶ Misleading conclusions unless measurement in adapted
- ▶ A way to mitigate the mechanical change in inequality
 - $\blacktriangleright\,$ e.g., mechanical inverted-U shape as Kuznet with absolute measures
 - ▶ Application to Food security Kuznet curve (Wesselbaum et al. 2023)

Concluding remarks and future research

- ► A key difference for bounded variables is how the maximum inequality is perceived
 - ▶ Misleading conclusions unless measurement in adapted
- ▶ A way to mitigate the mechanical change in inequality
 - $\blacktriangleright\,$ e.g., mechanical inverted-U shape as Kuznet with absolute measures
 - ▶ Application to Food security Kuznet curve (Wesselbaum et al. 2023)

► Future research:

- Address robustness of inequality comparisons to changes in upper bound
- **2** Identify related partial orderings (and related stochastic dominance conditions)

Motivation	Maximality Principle	Normalised measures	Consistency	Illustration	Conclusion $o \bullet$	Extra
000	00	00000	0000	0000		0
Thank	you					

Questions and comments are welcome!

Permanyer, Seth and Yalonetzky

Inequality measurement for bounded variables