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Motivation

▶ Inequality: a hotly debated topic and of policy interest
▶ Piketty (2015), Bourguignon (2017), Atkinson (2018), Milanovic (2018)
▶ SDG goal 10: reduce inequality within and between countries

▶ Interest in inequality has moved beyond monetary indicators
▶ e.g., Indicators of health, education, access to services and many more

▶ Many non-pecuniary indicators are bounded
▶ i.e., take values from a closed finite interval with fixed limits (a lower

bound and an upper bound)
▶ We refer to them as bounded variables (Lambert and Zheng 2011)
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Motivation

▶ There is a fundamental difference between bounded variables and
non-bounded variables (i.e., fixed lower bound but no fixed upper bound)

▶ Most egalitarian distribution: All elements in a distribution have equal
values (same whether bounded or non-bounded)

▶ Most unequal distribution or maximum inequality distribution (MID)
▶ Non-bounded variables: all elements, barring one, are equal to the lower

bound (e.g., (0,0,0,0,2) or (0,0,0,0,3)) and relative inequality measures
rank MIDs equally

▶ Bounded variables (with upper bound of 1): no one can have more than
upper bound (e.g., (0,0,0,1,1) or (0,0,1,1,1)) How should MIDs be
ranked?
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Today’s presentation

▶ Justify a new principle called the Maximality Principle

▶ Present two new closely related classes of inequality measures
▶ These are the so-called classes of normalised inequality measures

▶ Further present subclass that allow consistent evaluation of inequality
▶ i.e., same inequality ordering for attainments and shortfalls (e.g., literacy

rates versus illiteracy rates)

▶ Present an illustration showing how a different picture can emerge in
practice
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Income growth, sectoral shift and change in inequality

▶ Inequality ranking of the following distributions due to income growth

A = (1,1,1,1,5) → B = (1,1,1,5,5) → C = (1,1,5,5,5) → D = (1,5,5,5,5)

▶ Five possible ethical judgements (Temkin 1986)
1 An increase in inequality throughout as gradual isolation of the poor (IP)
2 A decrease in inequality throughout as gradual elitism of the rich (ER)
3 An initial increase, reach maximum and decrease (Kuznet argument)
4 An initial decrease, reach minimum and increase (IP/ER interaction)
5 Inequality is unchanged throughout

▶ Temkin (1986) and Bosmans (2007): 1, 2, 3; Fields (1998): 1, 2, 4
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Bounded vs. non-bounded variables
▶ Ordering the following distributions for non-bounded variables

A = (1,1,1,1,5) → B = (1,1,1,5,5) → E = (1,1,1,1,9)

▶ Certainly, Distribution E is more unequal than Distributions A and B

▶ For a bounded variable with a lower bound of 1 and an upper bound of
5, Distribution E is not feasible, but both A and B are MIDs

▶ Maximality principle: For a bounded variable with a given lower
bound and a given upper bound, whenever we pick any two (non-trivial)
MIDs, the corresponding levels of inequality must coincide
▶ Two judges who accepted bribes in all of their cases might be equally

corrupt, even if one tried fewer cases (Temkin 1986)
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Notation
▶ Distribution of achievements: x = (x1, ...,xn), xi ∈ [0,U ] ∀i = 1, . . . ,n

▶ Mean of the distribution: µ(x) ≡ 1
n

∑n
i=1 xi

▶ Set of distributions with population size n and upper bound U : Xn

▶ Set of all distributions with upper bound U : X
▶ Distribution with all elements equal to lower bound zero: 0
▶ Distribution with all elements equal to upper bound U : U
▶ An inequality index: I : X → R+
▶ Bipolar/almost-bipolar distributions

▶ Bipolar distribution: (0, . . . ,0︸ ︷︷ ︸
n−n′

,U, . . . ,U︸ ︷︷ ︸
n′

) for n′ < n

▶ Almost bipolar distribution: (0, . . . ,0︸ ︷︷ ︸
n−n′

,ε,U, . . . ,U︸ ︷︷ ︸
n′

); ε = [nµ(x)−n′U ]
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Properties

▶ Fundamental properties:
▶ Anonymity: I(y) = I(x) whenever y is obtained from x through

permutation
▶ Transfer principle: I(y) > I(x) when y is obtained from x by a

regressive transfer (poor to rich); I(y) < I(x) when y is obtained from x
by a progressive transfer (rich to poor)

▶ Other properties:
▶ Equality principle: Inequality is minimal and equal to zero when all

units feature exactly the same achievement value, i.e. x1 = x2 = · · · = xn

▶ Population principle (for variable-population comparisons):
I(y) = I(x), whenever y is obtained from x by a replication
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The class of inequality measures (fixed population)

Theorem 1
For any x ∈ Xn, an inequality index I satisfies anonymity, the transfer principle,
the equality principle and the maximality principle if and only if

I(x) =


M

[
f (x)−f (x̄)
f (x̂)−f (x̄)

]
if x ∈ Xn \{0,U}

0 if x ∈ {0,U}
, (1)

where 0 < M < +∞ is a proportionality constant, x̄ is the egalitarian distri-
bution with the same mean as x, x̂ is an MID (bipolar/almost-bipolar) for x,
f : Xn → R++ is a symmetric and strictly S-convex function, and 0 and U are
the two extreme egalitarian distributions.
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The class of inequality measures (variable population)
Theorem 2
For any x ∈ Xn, an inequality index I satisfies anonymity, the transfer principle,
the equality principle, the restricted maximality principle and the population
principle if and only if

I(x) =


M

[
f (x)−f (x̄)
f (x̂)−f (x̄)

]
if x ∈ Xn \{0,U}

0 if x ∈ {0,U}
,

where 0 < M < +∞ is a proportionality constant, x̄ is the egalitarian distri-
bution with the same mean as x, x̂ is an MID (bipolar) for x, f : X → R++ is
a symmetric and strictly S-convex function satisfying the population principle,
and 0 and U are the two extreme egalitarian distributions.
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Example: Normalised Gini (G∗)

G∗(x) =



Ga(x)U
µ(x)(U −µ(x)) if x ∈ Xn \{0,U} and x̂ bipolar

Ga(x)n2

(n−n′ −1)(ε+n′U)+n′(U − ε) if x ∈ Xn \{0,U} and x̂ almost-b

0 if x ∈ {0,U}

▶ Note: Ga is the absolute Gini coefficient (same G∗ for relative Gini)
Illustration
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Consistency requirement

▶ Most bounded indicators are expressed as attainments or short-falls
▶ Mortality rate vs. survival rate; literacy rate vs. illiteracy rate

▶ No a priori reason to prefer one representation (attainment or shortfall)
over the other, but ...

▶ How to ensure that inequality assessments guarantee consistent
comparisons when switched between attainments and shortfalls?
▶ Micklewrite and Stewart (1999); Erreygers (2009); Lambert and Zheng

(2011); Lasso de la Vega and Aristondo (2012); Bosmans (2016)
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Inconsistent Lorenz comparisons (relative)
Cross-country BCG immunisation rates
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Consistency properties and proposed solutions

▶ Properties
▶ Perfect complementarity: No change in inequality index when

switched between attainments and shortfalls (Erreygers, 2009)
▶ Consistency: No change in inequality ordering when switched between

attainments and shortfalls (Lambert and Zheng, 2011; Bosmans, 2016)

▶ Solutions
▶ Absolute indices (Erreygers, 2009; Lambert and Zheng, 2011;

Chakravarty et al., 2015; Seth and Alkire, 2017)
▶ Equally weighted general means of any inequality index on attainments

and the same on shortfalls (Lasso de la Vega and Aristondo 2012)
▶ A pair of inequality indices: IA for attainments and IS = ϕ(IA) for the

shortfalls, where ϕ is strictly increasing (Bosmans 2016)
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Strongly consistent normalised measures

Proposition
An inequality index is strongly consistent iff it satisfies perfect complementar-
ity.

Theorem 3
The inequality indices I characterised in theorems 1 and 2 are also strongly
consistent if and only if

f(xS) = p(x)f(x)+ q(x), (2)

where p(x) = f(x̂S)−f(x̄S)
f(x̂)−f(x̄) , q(x) = f(x̂)f(x̄S)−f(x̂S)f(x̄)

f(x̂)−f(x̄) and xS = U−x.
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Evolution of cross-country inequality in education

▶ We study the evolution of cross-country inequality in three education
indicators, 1950-2010
▶ Share of total adult population with at least some primary education
▶ Share of total adult population with at least some secondary education
▶ Share of total adult population with at least some tertiary education
▶ Source of the education data: http://www.barrolee.com/

▶ In order to study inequality, we use:
▶ The absolute Gini index, the relative Gini index and the normalised Gini

index

▶ We treat each country as an observation (133 countries)
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Evolution of cross-country inequality in education
Mean and the absolute Gini index, U = 1 Max
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Evolution of cross-country inequality in education
Mean and the relative Gini index, U = 1
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Evolution of cross-country inequality in education
Mean and the normalised Gini index, U = 1
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Concluding remarks and future research

▶ A key difference for bounded variables is how the maximum inequality is
perceived
▶ Misleading conclusions unless measurement in adapted

▶ A way to mitigate the mechanical change in inequality
▶ e.g., mechanical inverted-U shape as Kuznet with absolute measures
▶ Application to Food security Kuznet curve (Wesselbaum et al. 2023)

▶ Future research:
1 Address robustness of inequality comparisons to changes in upper bound
2 Identify related partial orderings (and related stochastic dominance

conditions)
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Thank you

Questions and comments are welcome!
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Mean and maximum inequality Back
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