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1 Introduction

Information acquisition is prime facie attractive in the sense that the information usu-

ally facilitates the deployment of advanced trading strategies. The welfare effect for a

representative trader whose information acquisition decision is flexibly adjusted due to

erratic informational shocks and market-level risks is, however, beset because the net

benefits and costs of being in certain market states as well as factors related to the

welfare effects have not been adequately described.

This paper studies the impact of costly information acquisition on welfare. Market par-

ticipants, in practice, face information frictions when they trade with others. Information

acquisition is a useful way to identify the frictions. Given that information is costly and

noisy, traders, however, do not always choose to acquire it since they have to weigh the

benefits against costs from utilizing the information. Hence, the equilibrium number of

informed traders should vary according to the content of information available for sale.

In theory, as a result of information frictions, market equilibrium must not be equiva-

lent to market efficiency; thus some efficiency losses are common regardless of which

equilibrium is reached. However, this paper investigates more than the common. Many

papers have already discussed the welfare effect regarding utilizing information, e.g.

Hirshleifer (1971), Laffont (1985), Morris and Shin (2002), Cornand and Heinemann

(2008) and Hu and Qin (2013). In contrast, this paper recovering more welfare pat-

terns typically addresses the following questions: what trader’s behaviors explain the

welfare effect of information acquisition? How do the welfare patterns respond to fun-

damentals about uncertainty? And what roles are the asymmetric information playing

in shaping the welfare function? These questions are nontrivial because information

acquisition could either improve or compromise market efficiency, and the reasons be-

hind this dichotomy as well as the welfare patterns in different market states deserve

more research attention.

We attempt to answer these questions by constructing a continuous rational expec-

tation equilibrium (REE) model. Suppose that there are infinite trading days, similar

to Kyle (1985)’s continuous trading game. Informational shocks of trading day T hap-

pen to affect the formation of market risk fundamentals of trading day T+1. Following

the practices of Coibion and Gorodnichenko (2012) and Coibion and Gorodnichenko

(2015), we assume that these information shocks of period T remain too rigid to af-

fect the informational states of period T+1. Rather, they contribute to the informational

states of period T+2 through the effect on market risk fundamentals of period T+1. This

information structure makes it easy to investigate how the welfare patterns respond to

exogenous informational shocks. In this study, Grossman and Stiglitz (1980)’s model is

adapted to solve the intraperiod problem. Furthermore, the welfare function is defined

as the expected payoffs of the representative trader. For the market of complete infor-

mation, the welfare effect is measured by calculating the welfare difference before and

after information acquisition. In a market of incomplete information, the welfare effect

function is continuous in the intensity of information acquisition.
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We find that the aggregate welfare effect can be decomposed and thus accrued to

two individual effects, i.e. the behavior of information purchasing (IP, henceforth) and

the behavior of information evaluation (IE, henceforth). First, the purchasing decision

itself is made based on the pecuniary cost and may have a welfare effect; therefore, it is

supposed to face systematic risk adjustments. These adjustments are justified because

purchasing the same information can surely have different welfare consequences at dif-

ferent market states, even though the information price is fixed. Second, the IE reflects

the benefits and costs of acquiring information. The benefits are how much of projected

returns they gain from utilizing the information, while the costs are the losses of market

efficiency due to revealing information per se. The benefits can be escalated by utiliz-

ing information of better quality or by improving market randomness whereas the costs

are only associated with information quality.

Given that by simultaneously considering the quality of information and the market ran-

domness can the conflict between information spreading and information acquisition

be tactically resolved, this paper goes to assess the conditions at which information

acquisition brings in extra market efficiency or inefficiency, jointly and individually. First,

the IP effect always causes welfare losses which are affected by risk adjustments. The

risk adjustments are, in turn, directly affected by information advantages (τε) and in-

formativeness (τs); they are also indirectly affected by returns to information (τu) as a

substitute for τε and as a complement for τs, as well as by the degree of risk-aversion

(ρ) as a substitute for τs and as a complement for τε. More importantly, this paper shows

that as long as the summation of the returns to information and the relative information

quality is smaller than a cutoff value, the IE effect brings in welfare gains. This is the

most crucial finding since it raises the possibility of sign flipping of the value previously

found in the literature (e.g. Hirshleifer (1971), Laffont (1985), Morris and Shin (2002)

and Hu and Qin (2013)). Otherwise, the IE reinforces the welfare cuts caused by the

IP. As market states continuously evolve over time, the welfare displays stylized pat-

terns in each fundamental parameter. Once the states were fixed, the overall effect,

collectively, depends on the IP and IE effects. Hence, the welfare patterns are driven

by different shocks to different fundamentals. Despite of having measurement errors,

the main findings are still robust for some well-tuned parameters.

We also investigate the welfare effect when information acquisition is continuous and

the asymmetric information problem turns on. Because of the strategic substitution in

information acquisition, the asymmetric information problem is supposed to become

less severe as more traders become informed. As known, asymmetric information

tends to cause efficiency losses, which has been theoretically implied by Akerlof (1970),

Rothschild and Stiglitz (1976) and Laffont (1985) and also empirically implied by Einav,

Finkelstein, and Schrimpf (2010). Likewise, the strategic substitution assumption im-

plies that information acquired plays a role similar to an insurance for uninformed

traders since as price becomes more informative, the marginal benefits from not uti-

lizing the information increase while the marginal benefits from utilizing the informa-

tion decrease. Meanwhile, the marginal cost of information goes down. Thus, as the

proportion of informed traders increases, the welfare patterns should be convex in-

dividually and collectively. By performing some simulations in the present study, the
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conjectures are confirmed. As long as the fundamentals are sensitive to the asym-

metric information, the overall welfare displays a convex pattern with respect to any of

these fundamentals. This convexity can be driven either by the slowdown in the welfare

cuts caused by the IP and the IE or by the welfare increase due to the IE.

Related literature. This paper contributes to the literature studying the role of in-

formation acquisition on welfare, given that heterogeneous market participants behave

differently towards information frictions. Below, we discuss a few related studies to

which this paper intensively responds.

In many existing studies, the analysis of such information issues are conducted un-

der REE setting. Some of the analytical models are static e.g. Grossman and Stiglitz

(1980), Hellwig (1980), Diamond and Verrecchia (1981), Admati (1985), whereas like

Kyle (1985), Wang (1993), Campbell, Grossman, and Wang (1993), Wang (1994), He

and Wang (1995), Brennan and Cao (1997), and Llorente, Michaely, Saar, and Wang

(2002) construct dynamic REE models. In contrast, this paper constructs a continu-

ous REE model fitting the continuous fashion of Kyle (1985) to Grossman and Stiglitz

(1980)’s model. With respect to the information rigidities, they are introduced by Coibion

and Gorodnichenko (2012) and Coibion and Gorodnichenko (2015) and these rigidities

should be assumed in each period since the instant information spreading is almost

impossible due to high adjustment costs. This assumption is similar to the claim of

Reis (2006) who sets forth that firms face huge costs of utilizing new information.

The welfare is defined as the expected utility for the representative agent following

Arrow (2012). Among others (e.g. Amador and Weill (2010), Colombo, Femminis, and

Pavan (2014)), he stresses that the social welfare is a social ordering that maximizes

the social utility according to which the individual values in the community on alternative

social states are aggregated. Colombo et al. (2014) do find a wedge between choosing

a social optimal precision of private information and an equilibrium precision of private

information, and they also look at how the social value of public information is affected

by the inefficiency in acquiring private information. Similarly, we are aware of the wedge

between equilibrium and efficiency assuming that the information is homogeneous un-

der a given market state. However, this is not a weak assumption compared to some

others who consider differential information (e.g. Hellwig (1980), Diamond and Verrec-

chia (1981),Verrecchia (1982)).

The discrete case of the welfare effect considers the welfare change after private infor-

mation is purchased by all traders and becomes public information analogous to market

prices. This corresponds to the other strand of literature regarding the welfare impact of

public information. Morris and Shin (2002) believe that public information can harm so-

cial welfare once agents have some private information while Cornand and Heinemann

(2008) argue that precise public information improves social welfare in some certain

situations. In this paper, we respond to this debate by finding that welfare gains or cuts

fully rely on the realization of market states. Hirshleifer (1971) attributes the losses of

welfare by introducing more public information to the losses of risk-sharing opportuni-
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ties. We will critically expound the downside of the “Hirshleifer effect” if the information

quality and the returns to information are collectively considered. Rahi and Zigrand

(2018) allow for the learning externalities and show that refraining information gath-

ering can enhance welfare because in this case, agents can learn more from prices,

given noisy private signals. Once we allow for the interdependence between valuations

of different agents, we can see similar results. An earlier study by Stein (1987) is about

the role of imputing speculators on destabilizing prices which causes welfare reduc-

tion. The speculators de facto materialize the noise trading. It is consistent with us

since price destabilization means that price is more informative. A close paper is from

Hu and Qin (2013) stating that more informed traders reduce ex ante utility. They de

facto follow Laffont (1985) focusing on the fully revealed REE where the computation is

more tractable. Complementary to these two papers that entail a fully revealing market

as a prior, we generalize the model to develop the full picture of welfare patterns and

allow for some partial revealing.

Last but not least, the main contributions lie in five. First, the proposed model is mini-

mally deviated from the classic ones but derives meaningful implications about welfare.

Second, this paper emphasizes the importance of information quality and returns on re-

solving Grossman and Stiglitz’s conflict, and in turn, also collectively driving the welfare

effect of information acquisition. Third, this paper finds that the welfare effect can be

either positive or negative; welfare improvements are rarely reported in the literature.

Fourth, a full descriptive account of how the welfare effect responds to market-level risk

fundamentals is developed. Fifth, the role of asymmetric information on the continuous

welfare effect as information acquisition becomes more intensive is shown to become

milder, in line with the strategic substitution assumption.

The rest of the paper is organized as follows: Section 2 will introduce the setting of

the model, solve the REE and derive the cost cutoffs. In Section 3, the welfare will

be calculated for both the discrete case and the continuous case, and based on the

decomposition, the welfare patterns with respect to the fundamentals are expounded

case by case and at the end, the role of asymmetric information is discussed by running

some simulations. Section 4 concludes the paper.

2 The Model

Setup. The model is based on Grossman and Stiglitz (1980), which employs com-

petitive rational expectation equilibria (REE) with information frictions as the primary

setup. Similar to Kyle (1985)’s one-shot auctions, the model extends the static Gross-

man and Stiglitz’s model over an infinite period, although the market is still governed by

demand schedules. Market states can vary from day to day as the fundamentals and

informational states change over time due to informational shocks occurring in each

period. Traders respond differently to varying market states, but optimally, as the evalu-

ation of the benefits and costs of information acquisition and the market consequences

on efficiency differ. As a result, welfare patterns are influenced by market states and

become stylized in each fundamental.
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The states of information are represented by Ψi,t = (θt, st, εt)
′, where θt denotes the

liquidation parameter that captures the depth of the market and can be interpreted as

a measure of future asset returns, st corresponds to the signals received at period t,

and εt captures the imprecision of the signals. The market risk fundamentals, denoted

as Ψm,t = (τ ′t, ρt)
′, include τ ′t = {τs,t, τε,t, τu,t} that captures the informativeness of

the signals, the informational advantages and the returns to information, respectively,

which explain the only sources of uncertainty in this economy, along with the CARA

coefficient ρt. A high τε,t disciplines precise signals by screening out much useless

information, or even mistakes. Conversely, a low τs,t implies informative signals as they

are drawn from a dispersed distribution containing much information. A low τu,t implies

high returns to information, as noise trading introduces significant randomness into the

market.

Assume that informational shocks are representative for all other market-level shocks

within a trading day, and they are realized before becoming shocks to the fundamentals

of the next period. As shown in Figure 1, standing at period t, the market states of

period t − 1 have been realized whereas the market states of period t + 1 onwards

are projected, expressed with a top dot. At period t − 1, Υi,t−1 represents the settled

informational shocks before approaching period t. Hence, the fundamentals at period

t are the sum of the previous period’s fundamentals and the aggregate informational

shocks, denoted as, Ψm,t−1+Υi,t−1, where the shocks Υi,t−1 are mutually independent,

expressed as (υs,t−1, υu,t−1, υε,t−1, υρ,t−1)′. Assume that the shocks Υi,t ∼ N (ξ,Συ)

where Συ is the variance-covariance matrix with all off-diagonal elements equaling

zero. Hence, the fundamentals follow random walks with deterministic drifts ξ and as-

sume that the realizations in these fundamentals are an order-1 Markov process. If the

informational shocks have no real effect i.e. ξ = 0, there is E(Ψm,t|Ψm,t−1) = Ψm,t−1.

Standing at period t − 1, Υt−1 are to be determined. Otherwise, if there is a positive

ξ, then E(Ψm,t|Ψm,t−1) = Ψm,t−1 + ξ. Once the market opens, all market participants

have access to the predetermined Ψm,t, which is common knowledge. As for Ψi,t, θt
and εt are actually realized at the end of period t − 1 while st arrives at the current

date. The question is whether to purchase st to predict θ̇t+1 based on the fundamen-

tals Ψm,t, despite the imprecision of the signals ε̇t+1. In line with the assumptions made

by Coibion and Gorodnichenko (2012) and Coibion and Gorodnichenko (2015), we as-

sume that any current informational shocks cannot be realized until the end of each

trading day. So the informational shocks Υ̇i,t−1 can only affect the current fundamen-

tals Ψm,t and then further have an effect on the projection of Ψ̇i,t+1, irrespective of Ψ̇i,t.

Hence, the informational shocks at period t − 1 are information rigidities for projecting

the informational states at period t. Traders are not able to utilize any new information

before the role of new information on the fundamentals is all set. This phenomenon can

be explained by the concept of inattentiveness presented in Reis (2006), where firms

are unable to react to new information due to the fixed costs associated with attention.

In this case, the most likely explanation for the information rigidities is the presence

of significant adjustment costs that hinder the rapid dissemination of new information.

So the beliefs are based on yesterday’s situation Ψm,t−1. For instance, if τε,t ↗ ∞,

this predicts ε̇t+1 ↘ 0. Unless such extreme cases, ε̇t+1 can only be observed when
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t− 1 t t+ 1

the past day the projected day

Υi,t−1 Υ̇i,t

(Ψi,t,Ψm,t)

(Ψi,t−1,Ψm,t−1)

(Ψ̇i,t+1, Ψ̇m,t+1)

Figure 1: The trading timeline.

the t+1 period ends and θ̇t+1 will be also known at the moment. θ̇t+1 − θt is the ex

post returns to the asset but the more interesting perspective is the ex ante returns as

the distributions of {st, ut, εt} are often non-degenerated. Although Veldkamp (2006)

assumes that information about the next period’s persistent payoff is revealed, apart

from prices, we share the same assumption that the acquired information pertains to

the current period, which can help predict the next period’s payoffs. However, we differ

in our approach, as we restrict instant information spreading.

Intraperiod Trader’s Problem. The model adopts a CARA-Gaussian framework for

each trading day in a market that includes one risky and one riskless asset. There is

a continuum of risk-averse traders. Noise trading is necessarily incorporated for imple-

menting an REE, but it is not studied, although it could be trading due to sentiments,

hedging or liquidity demand. For each trader i, her CARA utility is determined by her

demand schedulesXit, given the opening price pt, the ex post closing price θ̇t+1, CARA

coefficient ρit and information price kt.

U(Xit; pt, θ̇t+1, kt) = −e−ρit[(θ̇t+1−pt)Xit−kt] (1)

The variability of the CARA coefficient captures the diversity of attitudes toward risks.

Traders evaluate the random variable θ̇t+1 with respect to the risky asset, which repre-

sents market liquidity. When transactions result in a narrow price spread, the market

tends to be deep and liquid. It follows a normal distribution N(θ̄t+1, σθ
2
t+1). There are

three types of traders in the market: informed traders, uninformed traders, and noise

traders. Among the continuum of traders, µt are informed and the remaining 1− µt are

uninformed. To avoid the confusion of “schizophrenic” traders, here µt comprises of a

large number of traders (each potentially infinitesimal in theory) such that each trader’s

behavior has no price impact, which is in the spirit of Hellwig (1980) and abstracts from

Kyle (1989). Traders are considered informed once they pay a one-time cost of kt for a

signal sit, while uninformed traders do not possess any signal. The behavior of noise

traders is agnostic and the aggregate noise trading ut is uncorrelated with any random

variables. The signal sit delivers some information about θ̇t+1, albeit with measurement

error ε̇i,t+1. Specifically, we have θ̇t+1 = sit + ε̇it+1, where sit and ε̇it+1 are mutually

independent, and follow distributions εit ∼ N(0, σε
2
t ) and sit ∼ N(θ̄t+1, σs

2
t ). Hence,
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{θ̇t+1, sit, ε̇it+1} are random variables such that first, θ̇t+1 has the same mean as sit
because of

∫ µt
0
sitdi = µtθ̇t+1 and

∫ µt
0
ε̇it+1di = 0, and second, the variance of asset

return is σθ2
t+1 = σs

2
t + σε

2
t+1. The information set of informed traders is FI = {st, pt},

while the information set of uninformed traders and noise traders is FU = {pt}. In gen-

eral, the REE entails the following optimal demand of informed and uninformed traders

and market clearance condition:

XI(sit, pt) ∈ arg max
z

Et[U̇(z)|FI ], i ∈ [0, µt] (2)

XU(pt) ∈ arg max
z

Et[U̇(z)|FU ], j ∈ [µt, 1] (3)

∫ µt

0

XI(sit, pt)di+

∫ 1

µt

XU(pt)dj + ut = 0 (4)

To adhere to Grossman and Stiglitz (1980), it is assumed that all informed traders

observe the same signal st, which makes st a sufficient statistic and pt an excess

information. This means that the heterogeneity in signals among informed traders is

ignored, in contrast to the approach taken by Hellwig (1980) and Kyle (1989) (even

though the latter assumes an identical distribution for the different signals). As a result,

it holds that Et(θ̇t+1|st) = st and Vt(θ̇t+1|st) = σε
2
t .

1 The market clearance condition is

then given by:

µtXI(st, pt) + (1− µt)XU(pt) + ut = 0 (5)

in which the informed demand and uninformed demand are:

XI(st, pt) = at(st − pt) (6)

XU(pt) =
Et[θ̇t+1|FU ]− pt
ρtVt[θ̇t+1|FU ]

(7)

where at = ρ−1
t τε,t denote risk-adjusted information advantage, where ρ−1

t represents

risk tolerance (Vives (2010)). The market prices contain as much information as the

term ωt = st + ut/µtat. Following Vives (2010), the noise trading follows N(−1, σu
2
t ),

which implies an average supply of one share. When the distribution of noise trading

collapses, say σu2
t ↘ 0, the average supply becomes one share. The negative mean

ensures that trades are still implementable, even when the distribution of noise trading

collapses2. Assuming all traders are equally risk-averse, say ρIt = ρUt = ρt, the

conditional expected utility for uninformed traders and informed traders are:

Et[U̇(XU(pt))|FU ] = −exp

{
−(Et[θ̇t+1|FU ]− pt)2

2Vt[θ̇t+1|FU ]

}
(8)

1To explain this, note that Et(θ̇t+1|FI) = Et(θ̇t+1|st, st + ut

µtat
) = Et(θ̇t+1|st) = Et(st + εt|st) = st.

Similarly, Vt(θ̇t+1|FI) = Vt(θ̇t+1|st, st + ut

µtat
) = Vt(θ̇t+1|st) = Vt(st + εt|st) = σε

2
t . If st is known,

then we know other than st, prices only contain noise. However, if only prices are known, then we cannot
tease out the information in st from the noise. Hence, Et(θ̇t+1|FI) 6= Et(θ̇t+1|FU ) implies that signals
contain more information than prices.

2In this case, informed traders and uninformed traders submit identical market orders since market
prices fully reveal private information. The negative mean guarantees that the “noise” traders can still be
the net suppliers of asset shares.
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Et[U̇(XI(st, pt))|FI ] = −eρtktexp
{
−(st − pt)2

2σε2
t

}
(9)

In addition, if the transition to the uninformed information set solely involves considering

the price, then the informed traders’ conditional expected utility is3:

Et[U̇(XI(st, pt))|FU ] = eρtkt

√
Vt[θ̇t+1|FI ]
Vt[θ̇t+1|FU ]

(Et[U̇(XU(pt))|FU ]) (10)

Equilibrium. The REE involves solving a Bayesian game with two stages. In the

first stage, traders must decide whether to purchase a signal or not, based on their

own information set and by maximizing their expected utility. In the second stage, an

exogenous price kt hits the market, resulting in µ∗t (kt) informed traders and 1− µ∗t (kt)
uninformed traders, where µ∗t (kt) represents the best response that balances the un-

conditional expected payoffs.

The REE can take on two different types, depending on whether µ∗t (kt) can balance the

payoffs. If it can, then an interior equilibrium is reached, meaning that EUU(µ∗t (kt)) =

EUI(µ
∗
t (kt)), whereEUI(µ∗t (kt)) = Et[U̇(XI(st, pt))] andEUU(µ∗t (kt)) = Et[U̇(XU(pt))].

However, if either µ∗t (kt) = 0 or µ∗t (kt) = 1, then the equilibrium is at a corner. In a strict

corner equilibrium, EUU(0) > EUI(0) and EUU(1) < EUI(1). At weak corner equilib-

ria, the payoffs are also at break-even. The asymmetric information problem is resolved

at any corner equilibria, as all traders base their behavior on an identical information set

in every state. However, if 0 < µ∗t (kt) < 1 is reached, information asymmetry emerges.

In any case, information frictions remain, as the signals do not directly indicate future

returns, but are instead amplified by their own randomness σst and by mistakes σεt,

and also affected by market randomness σut. Even in the absence of noise trading,

signals still do not equal future returns due to their own variability and imprecision. As

a result, the REE does not imply social optimality, nor does social optimality imply the

REE.

Now let’s examine the borderline equilibrium, where the first and last marginal trader

are indifferent between being informed and uninformed. In this case, the ratio of the

unconditional expected utility of informed traders to that of uninformed traders is:

EUI [µ
∗
t (kt)]

EUU [µ∗t (kt)]
= φ[µ∗t (kt)] = eρtkt

√
τ−1
ε,t

{τs,t + [µ∗t (kt)at]
2 τu,t}−1 + τ−1

ε,t

(11)

The equilibrium decision rule can be expressed as φ(µ∗t (kt)) = 1, where kt and µt

are inversely related. This relationship can be justified by the fact that a lower cost

attracts more people to buy the signal. This inverse relationship can be interpreted,

from a pecuniary motivation perspective, as the reason for the convex welfare cuts that

arise from purchasing the information. In terms of welfare analysis, as µt changes,

the exogenous cost is observationally equivalent to the endogenous information price

in Veldkamp (2006), assuming strategic substitution. Here, the border equilibrium is

defined for determining the cost thresholds.

3See Vives (2010) Section 4.6 Appendix for the proof.
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� Definition 1. Borderline Corner Equilibrium

. Lower Corner Equilibrium (hereafter, LCE): the corner equilibrium satisfies

φ(0) = 1. The second-stage best response of µ∗t (kt) is 0, and the net

benefits of purchasing signals break even the net benefits of not purchasing

signals simultaneously.

. Higher Corner Equilibrium (hereafter, HCE): the corner equilibrium satisfies

φ(1) = 1. The second-stage best response of µ∗t (kt) is 1, and the net

benefits of purchasing signals break even the net benefits of not purchasing

signals simultaneously.

Cost Thresholds. φ[µ∗t (kt)] illustrates the relationship between two dimensions,

where an increase in µ∗t (kt) leads to an increase in the function, while an increase

in kt results in a shift upwards. At a borderline equilibrium, φ(0) = 1 or φ(1) = 1 is

prominent, Thus, the costs can be expressed as a function of the fundamentals and

the CARA coefficient, denoted as k(τ ′t; ρt). The costs exhibit a clear dichotomy be-

tween a high cutoff, kH(τ ′t; ρt) and a low cutoff kL(τ ′t; ρt). If φ(0) = 1, it implies that

traders remain uninformed when the cost, kt, is high enough, traders are still all unin-

formed. However, they feel indifferent about purchasing or not purchasing the signals.

On the other hand, if φ(1) = 1, it means that all traders have purchased the signals

when the cost is low enough, despite feeling indifferent. In both cases, traders benefit

equally. The cutoffs can be determined using the following two equations:

eρtk
H(τ ′t;ρt)

√
τ−1
ε,t

τ−1
s,t + τ−1

ε,t

= 1⇒ kH(τ ′t; ρt) =
1

2ρt
ln

(
τε,t
τs,t

+ 1

)
(12)

eρtk
L(τ ′t;ρt)

√
τ−1
ε,t

(τs,t + a2
t τu,t)

−1 + τ−1
ε,t

= 1⇒ kL(τ ′t; ρt) =
1

2ρt
ln

 τε,t

τs,t +
τ2
ε,tτu,t

ρ2
t

+ 1

 (13)

Hence, the best response of µ∗t (kt) can be written like:

µ∗t (kt) =


0 , if kt > kHt

a−1
t

√
(e2ρtkt−1)−1τε,t−τs,t

τu,t
, if kLt < k < kHt

1 , if kt 6 kLt

(14)

When the market fundamentals change, the cost cutoffs for achieving equilibrium also

change. The two following remarks discuss the impact of each market-level fundamen-

tal in determining the cost cutoffs.

� Remark 1.1 kL(τ ′t; ρt) is monotonically decreasing in τs,t and τu,t while it is not

monotonic in τε,t and ρt. kH(τ ′t; ρt) is decreasing in ρt and τs,t, increasing in τε,t,

and independent of τu,t.

The relationship between kH(τ ′t; ρt) and ρt is negative, as more risk-averse traders

prefer to start buying information at a lower initial price. Then it increases in τε,t and
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decreases with τs,t because high τε,t and low τs,t indicate that the information is of high

quality and informative, leading to expensive prices. One more difference between

these two cost cutoffs lies in τu,t. Specifically, kH(τ ′t; ρt) is not affected by τu,t, while

kL(τ ′t; ρt) is indeed affected by it. This is primarily due to the fact that at kH(τ ′t; ρt),

market prices simply follow a mean-preserving pattern4 and there is no information

revealed and neither is there learning information from the market prices, and thus the

signals should not be marked up. When µ∗(kt) = 0, the channels of increasing price

informativeness via τu,t and at are cut off. However, kL(τ ′t; ρt) should decrease in the

returns to information since µ∗(kt) = 1 amplifies the channels of τu,t and at the most.

As τs,t rises, the signals are charged flatter due to the same reason as previously.

kL(τ ′t; ρt) is not monotonic in τε,t and ρt because of the potential counter forces. On

one hand, τε,t increases the price informativeness, but on the other hand, ρt cuts it.

Traders learn more information from more informative prices, which as a substitution,

dampens the motivation to purchase the information. With less demand, the signals

are marked down. However, high informational advantages should be sold expensively.

When facing less informative prices, traders’ demand for signals rises, thereby raising

the information price. However, more risk-averse traders want cheaper information.

Thus, the non-monotonicity arises due to the competing forces. The learning behavior

is the underlying reason for the non-monotonicity. The intensity of learning is assessed

in (τs,t + µta
2
t τu,t)

−1, which is actually Vt(st|pt). It measures the impreciseness of

inferring the signals without purchasing, based solely on market prices.

� Remark 1.2 The learning intensity is strengthened in µt, τs,t, τε,t, and τu,t and

weakened in ρt. (i) τs,t ↗∞ directly causes Vt(θ̇t+1|pt) = Vt(θ̇t+1|st) and θ̇t+1 ∼
N(st, σε,t), irrespective of µt. (ii) For µt > 0, if either τu,t ↗ ∞, τε,t ↗ ∞, or

ρt ↘ 0, the same situation is reached.

Remark 1.2 emphasizes two methods of rendering information acquisition futile, both

of which result in perfect learning. This futility arises from the cost cutoffs that are

inhibited to zero (Remark 1.3). To address this issue, the model assumes imperfect

learning. Conversely, if any of the parameters τs,t ↘ 0, τu,t ↘ 0, τε,t ↘ 0, or ρt ↗ ∞,

information outsiders are unable to glean anything from signals that are excluded from

market prices. Consequently, learning becomes ineffective.

� Remark 1.3 kL(τ ′t; ρt) has the following limits:

lim
ρt↗∞

kL(τ ′t; ρt) = 0 and lim
ρt↘0

kL(τ ′t; ρt) = 0

lim
τε,t↗∞

kL(τ ′t; ρt) = 0 and lim
τε,t↘0

kL(τ ′t; ρt) = 0

lim
τs,t↗∞

kL(τ ′t; ρt) = 0 and lim
τs,t↘0

kL(τ ′t; ρt) =
1

2ρt
ln

(
ρ2
t

τε,tτu,t
+ 1

)
lim

τu,t↗∞
kL(τ ′t; ρt) = 0 and lim

τu,t↘0
kL(τ ′t; ρt) = kH(τ ′t; ρt)

4Recall that at the LCE, prices equal to θ̄t+1 + ρtσθ
2
t+1ut, meandering around θ̄t+1 − ρtσθ2t+1 with

a dispersion of ρ2tσθ
4
t+1σu

2
t . In general, market prices contain the amount of information as much as

st + ut/µtat. When µt ↘ 0, the randomness from ut will be enlarged significantly so market prices are
just random. Market clearance implies that XU (pt) + ut = 0, which further implies that prices can be
expressed by a function of ut, indicating that they are simply random.
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With respect to kH(τ ′t; ρt), the limits are:

lim
ρt↗∞

kH(τ ′t; ρt) = 0 and lim
ρt↘0

kH(τ ′t; ρt) =∞

lim
τε,t↗∞

kH(τ ′t; ρt) =∞ and lim
τε,t↘0

kH(τ ′t; ρt) = 0

lim
τs,t↗∞

kH(τ ′t; ρt) = 0 and lim
τs,t↘0

kH(τ ′t; ρt) =∞

When individuals are extremely risk-averse, kL(τ ′t, ρt) becomes zero because the high

demand resulting from low informativeness is dominated by the need for low prices due

to excessive risk aversion. However, the hyper informative signals cannot be read from

prices and the limit of the cost is then positive. As the returns to information rise, the

maximum kL(τ ′t, ρt) cannot exceed kH(τ ′t, ρt). With respect to kH(τ ′t, ρt), the limits all

square with the monotone relationship between it and each fundamental.

For the strict corner equilibria, Equation (11) can still be used for deriving the break-

even cost cutoffs. To do so, assume that there exists a positive state-contingent num-

ber ϕst such that φ(0) = 1 + ϕHt for any k(τ ′t, ρt) > kH(τ ′t, ρt) and φ(1) = 1 − ϕLt

for any k(τ ′t, ρt) < kL(τ ′t, ρt). Hence, given the fundamental parameters, the break-

even cost cutoffs k†(τ ′t; ρt) can still be expressed by using ϕ which measures the

distance away from the cost cutoffs. Hence, the admissible sets are ϕHt ∈ R+ and

ϕLt ∈
(

0, 1−
√

τ−1
ε,t

(τs,t+a2
t τu,t)

−1+τ−1
ε,t

]
. In effect, there are some approaches to filling the

wedges in ϕHt and ϕLt by possibly adjusting the quadruple {τ ′t, ρt} and consequently,

the market goes back to the HCE and the LCE, respectively. In line with Remark 1.3,

the wedge ϕHt can be filled if τε,t is high while τs,t and ρt are low. The wedge ϕLt can be

filled by raising τu,t or τs,t, even though the way in adjusting ρt and τε,t is not monotonic.

Hence, the focus on the borderline corner equilibrium does not lose much generality

and as will be seen later, the welfare patterns are unambiguous for strict corner equi-

libria.

k†(τ ′t, ρt) =


1

2ρt
ln
[
(1 + ϕHt )2

(
τε,t
τs,t

+ 1
)]
, if k† > kHt

1
2ρt

ln

(1− ϕLt )2

 τε,t

τs,t+
τ2
ε,tτu,t

ρ2t

+ 1

, if 0 6 k† < kLt

(15)

3 Welfare

Setup. The ex ante welfare will be expounded from a more tractable but less prac-

tical case (a discrete case) to a more practical but less tractable case (a continuous

case). It represents the expected welfare before market traders finish submitting their

trading orders, or alternatively, it is the conjectured welfare based on the rational be-

havior of different types of traders possessing different information. The focus on ex

ante welfare is canonical in the literature [Amador and Weill (2010), Colombo et al.

(2014), Hendren (2021), Hu and Qin (2013), Morris and Shin (2002), Rahi and Zigrand

(2018)]. This section will address several key questions, including: (i) the factors that

explain the welfare effects of information acquisition, (ii) the welfare patterns that vary
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across each fundamental, and (iii) the role of asymmetric information in shaping these

welfare patterns.

The conjectured welfare patterns depend upon some conflicting forces in the battle-

field, as the impact of welfare is not linear in the acquisition of information. Thus, the

crux of the paper goes to decompose the aggregate welfare and analyze the specific

factors that are actually driving the total welfare effect. Each of these factors offers an

avenue for explanation and the resulting welfare patterns are dependent on how these

individual factors conflict or complement each other, based on their reactions to varying

market conditions. Additionally, the paper places more emphasis on comparing welfare

between boundary equilibria. First, this is because the calculation is less cumbersome

and the decomposition can only be possibly more tractable once we abstract from in-

formation asymmetry. Second, when the boundary equilibrium is reached, two different

equilibrium conditions are met simultaneously and the decision rules do follow the case

with asymmetric information. Therefore, focusing on the discrete case helps to isolate

the individual welfare effects that should also apply to the continuous case. But again,

the inclusion of asymmetric information could contaminate the welfare patterns under

complete information, as an extra effect but in a disciplined fashion.

First of all, consider a Bergsonian welfare function W (µ∗(kt); τ
′
t, ρt) that captures a

representative trader’s welfare5(Bergson (1938); Chavas, Menon, Pagani, and Perali

(2018)):

W (µ∗(kt); τ
′
t, ρt) =

∫ 1

0

Et{Et[U̇(Xi(Fi)|FU)]}di

=

∫ µ∗(kt)

0

Et{Et[U̇(Xi(FI))|FU ]}di+

∫ 1

µ∗(kt)

Et{Et[U̇(Xi(FU))|FU ]}di (16)

Due to the homogeneity in each type of traders, the welfare function can be simply

rewritten as
∑I

i µ
′
it(kt)EtUi. The Bergsonian welfare function is weighted against the

unconditional expected utility and µ′it(kt) is welfare weights satisfying ∂W (µ∗(kt); τ
′
t, ρt)/∂Ui =

µ′it(kt). The weights are normalized as µI ′t(kt) = µ∗t (kt) for informed traders, µU ′t(kt) =

1− µ∗t (kt) for uninformed traders, and µu′t(kt) = 1 for noise traders where µ∗t (kt) is the

actual best response function of the REE.

Noise traders. While noise traders have real consequences on welfare, the wel-

fare function abstracts from these consequences for a couple of reasons6. First, the

5Here is a mini literature review with respect to measuring the welfare. Vives (2014) and Vives (2010)
capture welfare in the expected total surplus. In Grossman and Stiglitz (1980)’s setup, some traders are
asset buyers while some other traders (say, noise traders) are asset sellers in the economy, so the total
surplus should be the addition of the surplus for these buyers and sellers. Any unexplained changes
in the total surplus due to information disclosure are the sources of deadweight losses. Stein (1987)
defines social welfare as the summation of expected consumer surplus and expected speculator’s utility.
Rahi and Zigrand (2018) assume that traders’ objective functions are their welfare. Morris and Shin
(2002) capture the social welfare by averaging individual utilities. The welfare measured in Amador and
Weill (2010) and Colombo et al. (2014) is the ex ante expected utility of a representative agent. In a
word, the definition of welfare is standard in the literature, which captures the spirit of the Bergsonian.

6The expected utility of noise traders can be calculated directly as EUu = −exp{ρt(θ̄t+1 − pt) +
[ρ2t (θ̄t+1 − pt)2σu2t ]/2}. As can be easily seen, the expected utility still depends on market prices. So
the distribution of noise traders’ welfare is not fixed.
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problem of noise traders is not studied, as Goldstein and Yang (2019) preclude the wel-

fare analysis of noise traders, since noise traders achieve various purposes, such as

hedging or purely sentimental reasons, and are exogenous to the model, which goes

against the main purpose of this paper that focuses on the trade-off between benefits

and costs based on a typical REE setup, where everyone should have well-defined

behaviors. To eschew these complications, we assume that noise traders only have

random liquidity demand to resolve the Grossman-Stiglitz paradox. Hence, the welfare

of this paper only captures a subset of the economy composed of utility-maximizing

traders only, rather than social welfare. In contrast, García and Strobl (2010) cannot

ignore noise traders because they affect the average wealth in the economy and there-

fore, the relative wealth, as a key choice variable of their concern. Second, there are

no welfare externalities among traders so the welfare of noise traders is independent

of the welfare analysis based on strictly well-defined behaviors. The role of noise trad-

ing on non-noisy traders, however, should be unambiguous. The noise traders sever

the perfect correlation between the signals and market prices and therefore, affect the

welfare of informed and uninformed traders. Rather, the welfare of noise traders does

not affect how they work on the market. Hence, noise traders are important for main-

taining the operations of the market whereas their welfare does not align with the main

interests of this paper.

3.1 Discrete Case

3.1.1 Welfare Representation

The discrete case captures the welfare transition from µ∗t (kt) = 0 to µ∗t (kt) = 1 in

cases where information is complete and there is only one type of trader in each state.

First, for any LCE where φ(µ∗t (kt)) > 17, the uninformed demand becomes XU(pt) =

(θ̄t+1 − pt)/ρtσθ
2
t because the market clearing condition entails XU(pt) = −ut. This

is a special state in which no one attempts to disclose information, resulting in mar-

ket prices that are as random as noise trading, and traders cannot gain any information

from prices. Hence, market prices can be written as Pt(ut) = θ̄t+1 +ρtσθ
2
t+1ut. Assum-

ing Et[XU(pt)] = 1, the expected profits θ̄t+1−Et[Pt(ut)] are therefore ρt(τ−1
s,t +τ−1

ε,t ). In

the LCE, uninformed traders are uncertain about random transactions made by noise

traders and can earn higher profits if they are more risk-averse or if the capital market

is less liquid, meaning that traders have coarser information about private information

(τs,t ↓ implies that the signals are informative) and have less informational advantages

(τε,t ↓). If the evaluation on θ̇t+1 is perfectly precise (τθ
−1
t+1 ↘ 0), or if traders become

risk neutral (ρt ↘ 0), their expected profits shrink to zero. In such cases, purchasing

signals is equivalent to knowing future returns, causing all uninformed traders to act in

the same manner immediately, resulting in a perfectly liquid market without any prof-

itable opportunities. This zero-sum game is also possibly because risk-neutral traders

can preclude themselves from being disturbed by the noise trading completely. The

borderline corner equilibrium facing no information disclosure yields the following wel-

7This directly means that EUI 6 EUU since the CARA utility has an upper bound of zero. All traders
feel better to stay uninformed. The same interpretation also works for the HCE.
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fare.

� Lemma 1. The conditional expected utility of uninformed traders at the LCE can

be shown equal to Et[U̇U(XU(pt))|Pt(ut)] = −exp [−τε,t(τs,t + τε,t)u
2
t/2a

2
t τs,t].

Denote W (τ ′t; ρt)lce as the representative welfare of the LCE that equals to

W (τ ′t; ρt)lce = −
exp

[
−1

2

τε,tτu,t(τs,t+τε,t)

a2
t τs,t+τε,t(τs,t+τε,t)

]
√

1 + τε,t(τs,t+τε,t)

a2
t τs,tτu,t

(17)

The proof is in the Appendix Page 44.

Second, for any HCE where φ(µ∗t (kt)) 6 1, the informed demand becomesXI(st, pt) =

(st − pt)/ρtσε2
t , and further becomes −ut if market is clear. This is also a special case

where market prices now reflect public information related to signals beyond noise

trading. As a result, market prices can be written as Pt(st, ut) = st + ut/at. The

discrepancy between market prices and the signals (the error of inferring signals from

prices) fully rests on the uncertainty from the noise trading. The conditional expected

profit Et(θ̇t+1|Pt(st, ut)) − Pt(st, ut) as per Equation (26) also varies in st and ut,

considering the underlying fundamentals (τ ′t; ρt). However, the unconditional expected

profit θ̄t+1 − Et[Pt(st, ut)], equals ρtτ−1
ε,t . Compared to the corresponding moment in

the LCE, it is reduced since the role of st in predicting θ̇t+1 has been captured by cur-

rent prices, but not perfectly. Likewise, if the signals are perfectly precise (τ−1
ε,t ↘ 0)

or traders become risk-neutral, the imperfection is resolved completely and the mar-

ket becomes perfectly liquid. The borderline corner equilibrium facing full information

disclosure yields the following welfare.

� Lemma 2. The conditional expected utility of uninformed traders Et[U̇U(XU(pt)|Pt(st, ut)]

now becomes

−exp

−
{[

τs,t
(
θ̄t+1−st−utat

)
+atτu,t

]
(a2
t τu,t+τs,t)

}2

2
[
(τs,t + a2

t τu,t)
−1 + τ−1

ε,t

]


which is equal to the expected utility of the informed traders conditional on prices

Et[U̇I(XI(st, pt))|Pt(st, ut)]

, given that eρtk
L
t

√
Vt[θ̇t+1|st]/Vt[θ̇t+1|Pt(st, ut)] = 1 in equilibrium. Define W (τ ′t; ρt)hce

as the representative welfare of the HCE which is

W (τ ′t; ρt)hce = −
exp

{
−1

2

τu,tτε,t
a2
t τu,t+τε,t

}
√

1 + τs,tτε,t
a2
t τu,t(τε,t+a

2
t τu,t+τs,t)

(18)

The proof is in the Appendix Page 44.

For the ease of computation, the welfare functions can be decomposed by applying

some simple approximation. The welfare functions at the corners can be rewritten as

follows.
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� Lemma 3. Assume that ln [τε,tτu,t(τs,t + τε,t)] / [a2
t τs,t + τε,t(τs,t + τε,t)] ≈ 1 and

τε,t(τs,t + τε,t)/a
2
t τs,tτu,t is fairly large. The welfare function at the LCE and the

welfare function at the HCE can be approximately written as:

ln [−W (τ ′t; ρt)lce] ∝ −
τε,tτu,t(τs,t + τε,t)

a2
t τs,t + τε,t(τs,t + τε,t)

− ln
τε,t(τs,t + τε,t)

a2
t τs,tτu,t

− κl (19)

ln [−W (τ ′t; ρt)hce] ∝ −
τu,tτε,t

a2
t τu,t + τε,t

− ln
τs,tτε,t

a2
t τu,t(τε,t + a2

t τu,t + τs,t)
− κh (20)

κl and κh are defined in Lemma 4. The proof is in the Appendix Page 45.

� Definition 2. Define the following functions that are representative for each of

the decomposed terms after the designated linearization and approximation:

Dlce(τ
′
t; ρt) =

τε,t(τs,t + τε,t)

a2
t τs,tτu,t

Dhce(τ
′
t; ρt) =

τs,tτε,t
a2
t τu,t(τε,t + a2

t τu,t + τs,t)

Nlce(τ
′
t; ρt) =

τε,tτu,t(τs,t + τε,t)

a2
t τs,t + τε,t(τs,t + τε,t)

Nhce(τ
′
t; ρt) =

τu,tτε,t
a2
t τu,t + τε,t

In general, a higher D tends to increase the welfare and a higher N also tends to

increase the welfare. Hence, the logarithm linearized welfare function at the LCE

and the HCE can be denoted as W̃ (τ ′t; ρt)lce and W̃ (τ ′t; ρt)hce where W̃ (τ ′t; ρt)lce =

− ln [−W (τ ′t; ρt)lce] and W̃ (τ ′t; ρt)hce = − ln [−W (τ ′t; ρt)hce].

� Definition 3. Define the welfare effect as ∆W̃h l(τ
′
t; ρt) such that

∆W̃h l(τ
′
t; ρt) =

[
ln

τε,tτu,t(τs,t + τε,t)

a2
t τs,t + τε,t(τs,t + τε,t)

− ln
τu,tτε,t

a2
t τu,t + τε,t

]
+

[
ln
τε,t(τs,t + τε,t)

a2
t τs,tτu,t

− ln
τs,tτε,t

a2
t τu,t(τε,t + a2

t τu,t + τs,t)

]

where the first term can be approximated as ∆Dh l(τ
′
t; ρt) and the second term

can be approximated as ∆Nh l(τ
′
t; ρt).

Note that ∆W̃h l(τ
′
t; ρt) < 0 represents welfare improvements due to information dis-

closure, while ∆W̃h l(τ
′
t; ρt) > 0 represents welfare cuts8. However, the above analy-

sis is subject to some measurement errors arising from the approximating process. To

address this issue, we separate the IP effect from the measurement errors since the

already-derived IP effect is meaningful. Our results are robust to these measurement

errors, as the patterns of welfare gains and losses are almost identical to the case

where the measurement errors are negligible. The only differences are the changes in

cutoff values and the switch in dominance in explaining the welfare losses, which will

be illustrated in the following graphs.

8It is worth to emphasize that the welfare change is henceforth calculated from the HCE to the LCE.
So information disclosure can cause welfare gains if the welfare effect is negative. The negative value
means that the welfare at HCE is higher than it is at LCE. The case of welfare cuts follows the same
logic.
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� Lemma 4. The measurement errors of the IP effect is:

∆κ = κl − κh =
Dhce −Dlce

Dhce(1 + Dhce)
(21)

The measurement errors of the IE effect is zero:

ψ = 0 (22)

The proof is in the Appendix Page 46.

Information quality is an important feature that affects both effects, thereby working

on the overall welfare patterns. The definition of information quality is compared to

the definition of price informativeness proposed by Dávila and Parlatore (2021) and

Grossman and Stiglitz (1980). The former defines the absolute price informativeness

following Vives (2010) that is Vt(st|pt)−1 = τs,t + (µtat)
2τu,t and meanwhile the latter

defines the relative price informativeness that is (1+mt)
−1 wheremt = ρ2

t τs,t/µ
2
t τ

2
ε,tτu,t.

Likewise, the analog of the absolute information quality Vt(θ̇t+1|st) = τε,t versus the rel-

ative information quality τε,t/(τε,t + τs,t) is defined. Denote nt = τε,t/τs,t as the proxy of

the relative information quality that can therefore, be written as nt/(1 +nt), denoted as

Qt. The relative information quality contains an intensive margin governed by τε,t and

an extensive margin governed by τs,t. Hence, to improve it, we can directly improve the

absolute information quality, say this ceteris peribus entails a high τε,t. Alternatively, a

lower τs,t can also be, all else constant, an option, which means that the signals are

more informative since they are drawn from a more dispersed distribution.

More importantly, the change in term D can be attributed to an intensive effect gov-

erning the behavior of IP, while the change in term N is, however, associated with

an extensive effect governing the importance of both the returns to information and

the information quality, amid the process of IE. The first intuition is from plugging the

factor of the pecuniary cost factor e2ρtkLt into the change in D for teasing out the IP ef-

fect. The spending on acquiring the information can have a negative impact on welfare,

which needs to be adjusted from actual pecuniary cost to welfare effect measured in

utils. The adjustments are contingent on the fundamentals reflecting day-to-day fluc-

tuations of the risks, which can arise from the information and market sides. Reveal-

ing high-quality and informative information ceteris paribus raises the risks because of

high losses of market efficiency. Also, when information disclosure is done in a less

random market, the problem will be exacerbated by amplifying the information-side im-

pact. When people are more risk-averse, the risks caused by the information side tend

to be dampened at the micro level.

The second intuition is rooted in an evaluation process about what information is dis-

closed to have welfare consequences. It is based on the benefits and costs of utilizing

the information. The costs, in this vein, are only the efficiency losses due to information

revealing, given that the IP effect has already separated the effect of pecuniary costs.

Meanwhile, the benefits are the potential returns that traders can earn by utilizing the

information. Traders can realize greater profits by utilizing market information in two

situations. The first is when the market is more random due to more dispersed noise
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trading, which puts outsiders at a disadvantage and makes it difficult for them to infer

the information from market prices. The second is when the relative information quality

is high. However, these two cases have different implications for welfare losses. The

efficiency losses tend to be positively related to the degree of the relative information

quality. In the first scenario, where low-quality information is revealed in a highly ran-

dom market, the benefits of utilizing the information may not come at too great a cost.

In contrast, the second scenario, where benefits are derived from high-quality informa-

tion, is likely to be more painful because the benefits are driven by the information side.

Hence, this evaluation process considers a dynamic balancing between benefits and

costs and there are multiple possibilities for the welfare consequences.

� Proposition 1. Welfare in the Capital Market with Complete Information

The representative welfare can be decomposed into two effects: ∆Dh l(τ
′
t; ρt)

reflects the IP effect and ∆Nh l(τ
′
t; ρt) reflects the IE effect:

∆Dh l(τ
′
t; ρt) = nt

(
1 + nt

τu,tτε,t
ρ2
t

)
︸ ︷︷ ︸

ζ1(τ ′t;ρt)

e2ρtkLt + nt

(
1 +

τu,tτε,t
ρ2
t

)
︸ ︷︷ ︸

ζ0(τ ′t;ρt)

(23)

∆Nh l(τ
′
t; ρt) =

1

1 +
ρ2
t

τε,t(1−Qt)

[
τu,t

1−Qt
− 1

]
(24)

Evidently, ∆Dh l(τ
′
t; ρt) > 0 implies undoubted welfare losses so the overall

welfare patterns depend on ∆Nh l(τ
′
t; ρt).

. Claim 1.1 When τu,t+Qt > 1, a welfare cut happens to both effects, thereby

seeing a strictly overall welfare cut caused by information disclosure.

. Claim 1.2 When τu,t + Qt < 1, the IE effect offers welfare improvements,

which struggles with the IP effect in the battlefield: (i) if ∆Dh l(τ
′
t; ρt) >

|∆Nh l(τ
′
t; ρt)|, then the former effect dominates, thereby causing an over-

all welfare cut, say W̃ (τ ′t; ρt)lce > W̃ (τ ′t; ρt)hce; (ii) if ∆Dh l(τ
′
t; ρt) < |∆Nh l(τ

′
t; ρt)|,

then the latter effect dominates, thereby causing an overall welfare improve-

ment, say W̃ (τ ′t; ρt)lce < W̃ (τ ′t; ρt)hce; (iii) if ∆Dh l(τ
′
t; ρt) = |∆Nh l(τ

′
t; ρt)|,

then the two effects break even, thereby causing an unchanged welfare, say

W̃ (τ ′t; ρt)lce = W̃ (τ ′t; ρt)hce.

The proofs are in the Appendix Page 47.

The above discussion has been nothing more than the welfare of the borderline corner

equilibria. However, what if is the feed of the information price higher than the high-cost

cutoff or lower than the low-cost cutoff? In both scenarios, the IE effect is unaffected, as

kt is exogenous. In the first case, the welfare remains constant as it is not impacted by a

signal markup. The second case is, however, different as further reductions in cost are

expected to improve welfare. But the welfare improvement due to the low cost cannot

counteract the IP effect. Even with free signals being revealed, informational impact

still results in a loss of welfare. The only difference is that the size of the IP effect is

reduced due to zero pecuniary burden, making it easier for the welfare gains generated
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from the conflicting effect to overturn it. Define Dk>kHt
(τ ′t; ρt) as the IP term for a corner

equilibrium at any k > kHt and the other Dk<kLt
(τ ′t; ρt) for a corner equilibrium at any

k < kLt . Apply Equation (15) and the difference ∆Dh+ l−(τ ′t; ρt) can be written as

ζ1(τ ′t; ρt)
e2ρtkt

(1−ϕL)2 + ζ0(τ ′t; ρt). The welfare change ∆W̃h+ l−(τ ′t; ρt) ≈ ∆Dh+ l−(τ ′t; ρt).

� Proposition 2. Given the fundamentals (τ ′t; ρt), the following statements hold: (i)

the IP effect and therefore the welfare cuts are decreasing as kt decreases for any

kt < kLt ; (ii) The welfare cuts due to free information acquisition are non-negative;

(iii) the IP effect is independent to kt for any k > kHt ; (iv) the welfare cuts become

even much milder disproportionately as kt falls if traders have constrained risk

tolerance and become more risk-averse, or if market is more random, or if the

signals are of better quality; The proofs are in the Appendix Page 48.

3.1.2 Information Purchasing Effect

The IP effect always causes welfare losses and is linear in the cost factor e2ρtkLt where

the risk adjustments consist of a slope ζ1(τ ′t; ρt) and a drift ζ0(τ ′t; ρt) that vary monoton-

ically with each market risk fundamental. The graphical representation of the IP effect

is a straight line in the cost factor, which can be rotated counterclockwise by increasing

the slope of the risk adjustments and shifted upwards by increasing the intercept of the

risk adjustments (See Figure 2). Determining the slope and intercept involves consid-

ering the direct and indirect effects of market risk fundamentals on risk adjustments.

The direct effect is related to the quality of information and amplifies the pecuniary bur-

den of high-quality information. Recall that high quality means high τε,t or small τs,t.

The indirect effect is the amplification/compression of the direct effect through τu,t and

ρt. Low returns to information mean low market randomness, thereby amplifying the

welfare cuts caused by high-quality information disclosure. In contrast, high returns to

information tend to compress. Likewise, the low risk-aversion tends to amplify the wel-

fare cuts through the degree of the relative information quality because a low ρt raises

the demand functions and traders will trade more aggressively, thereby causing more

welfare cuts. In contrast, a high risk aversion tends to compress. In fact, the indirect

effect reflects the relationship among the fundamentals for adjusting market risks (Re-

mark 2.2). First, τε,t and τu,t are substitutes since for any given ζ(τ ′t; ρt)
′, an increase

in τu,t increases the overall market risks and takes away the room allowing for a large

τε,t. τε,t and ρt are, however, complements because a high ρt offers the room allowing

for a larger τε,t. Second, τs,t are complements for τu,t, and substitutes for ρt since τs,t
and τε,t are opposite to each other for contributing the relative information quality.

� Remark 2.1 The risk adjustment vector ζ(τ ′t; ρt)
′ = (ζ0(τ ′t; ρt), ζ1(τ ′t; ρt)) can be

affected by the fundamentals directly and indirectly, given that the fundamentals

governing the information quality are non-separable from other fundamentals.

Direct effect:

– ∂ζ(τ ′t;ρt)
′

∂τε,t
=
(
2τu,tτε,tρ

−2
t τ−1

s,t + τ−1
s,t , 3τ

2
ε,tτu,tτ

−2
s,t ρ

−2
t + τ−1

s,t

)
is semi-positive def-

inite.
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– ∂ζ(τ ′t;ρt)
′

∂τs,t
=
(
−τε,tτ−2

s,t − τ 2
ε,tτu,tρ

−2
t τ−2

s,t ,−τε,tτ−2
s,t − τ 3

ε,tτu,tρ
−2
t τ−2

s,t

)
is semi-negative

definite.

Indirect effect:

– ∂ζ(τ ′t;ρt)
′

∂τε,t∂τu,t
=
(
2τε,tρ

−2
t τ−1

s,t , 3τ
2
ε,tτ
−2
s,t ρ

−2
t

)
and ∂ζ(τ ′t;ρt)

′

∂τs,t∂ρt
=
(
2τ 2
ε,tτu,tρ

−3
t τ−2

s,t , 2τ
3
ε,tτu,tρ

−3
t τ−2

s,t

)
are semi-positive definite.

– ∂ζ(τ ′t;ρt)
′

∂τs,t∂τu,t
=
(
−τ 2

ε,tρ
−2
t τ−2

s,t ,−τ 3
ε,tρ
−2
t τ−2

s,t

)
and ∂ζ(τ ′t;ρt)

′

∂τε,t∂ρt
=
(
−4τu,tτε,tρ

−3
t τ−1

s,t ,−6τ 2
ε,tτu,tτ

−2
s,t ρ

−3
t

)
are semi-negative definite.

� Remark 2.2 For contributing to the risk adjustments, τε,t and τu,t are substitutes,

and τε,t and ρt are complements; τs,t and ρt are substitutes, and τs,t and τu,t are

complements.
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Figure 2: Risk adjusted coefficients.

3.1.3 Information Evaluation Effect

In this section, we emphasize the significance of the IE effect, which exhibits more nu-

anced distinctions than the IP effect. Before delving into the IE effect, it is crucial to

know the role of information quality and the returns on resolving the conflict between

information spreading and information acquisition.

As mentioned earlier, decreasing τs,t or increasing τε,t are two methods that can en-

hance signal quality. However, they have phenomenally different market consequences.

A low τs,t reduces price informativeness, limiting the potential positive effects of learn-

ing. On the other hand, a high τε,t increases price informativeness, expanding the po-

tential positive effects. In the first case, the signals are excludable and this excludability

allows only the informed traders to increase own informativeness. For instance, as

τs,t ↘ 0 and µ∗(kt) ↗ 1, consider three numerical moments: (i) Et(θ̇t+1|P(st, ut)) =

st+(ut+1)ρ2
t/τε,t; (ii) θ̄t+1 = s̄t; (iii) Et(θ̇t+1|st) = st; and their variances: (i) Vt(θ̇t+1|P(st, ut)) =

τε,t/ρ
2
t τu,t + τ−1

ε,t ; (ii) σ2
θt+1

= ∞; (iii) Vt(θ̇t+1|st) = τ−1
ε,t . Hence, we find that without

knowing highly informative signals, traders indeed face more uncertainty and cannot
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mimic informed trading. In contrast, the example for the second case is that when

τε,t ↗ ∞ and µ∗(kt) ↗ 1, the previous numerical evidence will be not there since

E(θ̇t+1|P(st, ut)) = E(θ̇t+1|st) = st and V(st|P(st, ut)) = V(θ̇t+1|st) = 0 imply that

the signals are fully revealed by market prices and the learning activity will be perfect.

Thus, the information purchasers are struggling because information spreading damp-

ens the motivation for information acquisition.

Grossman and Stiglitz (1980) wrote “[t]here is a fundamental conflict between the ef-

ficiency with which markets spread information and the incentives to acquire informa-

tion”. This paper is a touchdown to this point, viewing information quality as a crucial ex-

tension. In fact, conflict is inherent and persists. The strong conflict necessarily entails

that the information precision exceeds a cutoff value and the degree of noise trading is

not too weak to preclude the rise in price informativeness by offering compensation in

randomness. If traders actually reveal some signals of which the information quality is

below the cutoff, the information spreading is confined and the degree of information

spillovers is capped, creating an incentive for traders to acquire signals. The worries

about the conflict are shied away. Even though traders face low-quality signals, they

still purchase them as long as EUI > EUU . Certainly, the restriction on information

spreading can also be done by dispersing noise trading since this can preclude the

increase in price informativeness effectively. In Proposition 1, a low τu,t and a low Qt
imply negative ∆Nh l(τ

′
t; ρt) that means welfare improvements. Hence, once the in-

formation spread problem is constrained, there could be net welfare gains. The next

question is how low τu,t and Qt can be at most.

The IP effect suggests that the Hirshleifer effect (Hirshleifer (1971)) is plausible, as

it suggests that revealing too much information can lead to a loss of welfare due to the

loss of valuable insurance opportunities. Additionally, Laffont (1985) has shown that a

fully revealing Rational Expectations Equilibrium (REE) may not be Pareto optimal. In

the uninformative state, welfare relies on the market-making term θ̄t+1 −Pt(ut) (See

Appendix.), where θ̄t+1 provides the insurance to average out the uncertainty of the

error ε̇t+1 and the economy seems to reach an interim Pareto optimum and informa-

tion frictions are temporarily out. Otherwise, if the signal is revealed, welfare hinges

on the speculative term st − pt, which is subject to uncertainty regarding future returns

because st is only a draw from its distribution. The Hirshleifer effect, however, may not

fully explain the situation. The evidence presented in this paper contradicts it, likely

because the welfare effect is caused by reasons other than insurance opportunities,

indicating that something important may have been overlooked.

� Proposition 3 The Hirshleifer Effect Revisited. Given nonzero and non-infinite

ρ and τε, as τs,t ↗ ∞, the signals are fully insured, say θ̄t+1 = st. the IP effect

converges to zero, say limτs,t↗∞∆Dh l(τ
′
t; ρt) = 0. The IE effect converges to

limτs,t↗∞∆Nh l(τ
′
t; ρt) = τε,t(τu,t−1)

τε,t+ρ2
t
6= 0. If τu,t 6 1, it causes no welfare cuts.

If τu,t > 1, it, however, causes welfare cuts. The Hirshleifer effect falls short if

τu,t 6 1 while it fails if τu,t > 1. The proof is in the Appendix Page 48.

With full insurance, it is not accurate to attribute the Hirshleifer effect to the IP effect that
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exhibits no variation. The only relevant factor is the IE effect, which presents the down-

side of the Hirshleifer effect. The main reason is the omission of information quality

and returns. The paper argues that the diversity in welfare patterns is mainly driven by

the behavior of IE. High-quality information takes away much market efficiency due to

either high informational advantages or high informativeness. Meanwhile, the benefits

are produced by taking advantage of a better signal or by using the information in a

more agnostic market environment. Also, the IE effect is affected by the degree of risk

aversion. It scales down the size of the welfare effect, irrespective of welfare gains or

losses. The analysis is based on the limited ρ and τε to avoid approximation impreci-

sion. When τu is small, the approximation holds well. It is worth noting that the irregular

case where ρ ↗ ∞ can also make the approximation good. But, the IE converges to

τu that is always positive and thereby welfare cuts. The Hirshleifer effect always fails.

Knowing the sources of benefits and costs, we can understand why the welfare effects

of IE depend on τu,t+Qt. When τu,t is low, the market is too unpredictable for outsiders

to imitate informed trading, resulting in large profits for informed traders. When τu,t is

high, outsiders can easily mimic informed trading, resulting in small profits for informed

traders. The relative information quality Qt is positively tied to the ratio τε,t/τs,t and

has an upper bound of 1. When Qt is evenly contributed by τε,t and τs,t, it defines an

intermediate information quality where Qt = 1/2. Thus, a high quality information en-

tails Qt > 1/2, i.e. τε,t > τs,t and a low quality information, however, needs Qt < 1/2,

i.e. τε,t < τs,t. Revealing high-quality information loses a large portion of market ran-

domness, as the increase in price informativeness resulting from the relatively large

τε,t outweighs the decrease in price informativeness caused by the relatively small τs,t.

Consequently, the welfare cuts will be large. In contrast, revealing low-quality informa-

tion, nevertheless, bears less welfare losses. Hence, welfare consequences are closely

related to both τε,t and Qt collectively.

Proposition 1 demonstrates that τu,t + Qt > 1 implies that both effects will likely re-

sult in decreased welfare. Given that Qt 6 1, τu,t > 1 will enforce the IE effect to

cause welfare cuts, regardless of the information quality. This is because the returns

to information are too low to avoid welfare cuts by even revealing the poorest signals.

But when τu,t < 1, the results still depend on τu,t + Qt but the difference is that wel-

fare improvements become possible, leading to a dynamic balancing process. The

more random the market environment is, the higher the returns to information, and the

greater the likelihood that disclosing information will result in welfare gains, as long as

τu,t +Qt < 1 and the information spreading is capped.

3.1.4 Market State-contingent Welfare Patterns

In general, the outcomes of welfare gains and losses depend on a specific realization

of {τ ′t; ρt}. However, it is still unclear how changes in fundamental parameters affect

welfare patterns. To address this issue, we consider the case where only one fun-

damental parameter changes due to a streak of exogenous shocks, while all others

remain constant. These shocks affect the fundamentals determined by a Markov pro-
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cess over time. The imputation of shocks introduces a positive ξ with respect to certain

parameters, where the expected market-fundamentals for period t + n are given by

Ψm,t + n · ξ9. When ξ is infinitesimal, the fundamentals can change smoothly. Thus,

for any market risk fundamental xt, the instantaneous response of the welfare effect

∆W̃h l(τ
′
t+1; ρt+1) with respect to this market risk fundamental xt+1 is ∂∆W̃h l(τ

′
t+1; ρt+1)/∂xt+1

that can be equal to
[
∆W̃h l(τ

′
t+1; ρt+1)−∆W̃h l(τ

′
t; ρt)

]
/ξx. Under this informational

structure, the welfare patterns can be seen by simply looking at the first-order deriva-

tive of the welfare effect with respect to each market risk fundamentals. In the following

study, we need a common assumption.

� Assumption:

. The informational shocks to the market risk fundamentals other than xt have

no real effect for projecting the future moments of the fundamentals, say

ξ−x = 0 and ξx > 0;

. There exists an infinitesimal positive number δx such that ξi ∈ (0, δx);

. x ∈ {τ ′t; ρt}.

Shocks to the Returns to Information. x = τu. Recall that the higher τu,t is, the

lower returns the information has. The patterns are driven by imputing a streak shocks

in which only υu,t has the real effect, on average. Hence, the expected returns to infor-

mation are continuously reduced. Hence, from period t onwards, the Day t+n’s returns

to information equals E(τ̇u,t+n|τu,t) = τu,t + n · ξu where ξu ↘ 0. For all other funda-

mentals, the expected values equal to (τε,t, τs,t, ρt) because the shocks (υε,t, υs,t, υρ,t)

impose the neutral effect. The smooth streak of averagely positive shocks in τu,t can

be regarded as a continuous increase. The welfare patterns with respect to the shocks

to the returns to information rest on four distinct cases in which two constraints are

binding.

� Definition 4. The first τ̃u poises ∆Dh l(τ
′
t; ρt) and |∆Nh l(τ

′
t; ρt)| when the

IP produces welfare cuts while the IE produces welfare gains; The second τ ∗u,t

poises ∆Dh l(τ
′
t; ρt) and ∆Nh l(τ

′
t; ρt) when both effects are welfare cuts; The

last τ †u,t is an upper bound that prevents τu,t from diverging to ∞ at which there

are no closed-form solutions.

� Proposition 4. (i) When noise trading is perfectly random, say τu,t ↘ 0, the IE

effect implies welfare gains of τs,tτε,t/ [(τs,t + τε,t)ρ
2
t + τs,tτε,t] while the IP effect

implies welfare cuts of
[
2τs,tτε,t + τ 2

ε,t

]
/τ 2
s,t; (ii) (Useless information disclosure)

when market prices fully reveal the signals, say τu,t ↗ ∞, there is a net welfare

cut of eρtkt for the waste of money; (iii) both effects are increasing in τu,t; the

absolute responsiveness is whatsoever constant at γaτu,t ; the relative responsive-

ness γrτu,t is insofar falling if there are net welfare cuts and rising if there are net

welfare gains; (iv) the welfare patterns display four distinct styles:
9This is an iterated result. For n = 1, there is E(Ψ̇m,t+1|Ψm,t) = Ψt + ξ. For n = 2, it is

E(Ψ̇m,t+2|Ψm,t+1) = Ψm,t+1 + ξ. For n = N , it is E(Ψ̇m,t+N |Ψm,t+N−1) = Ψt+m−1 + ξ. Hence, for
any positive n, there must be the case where E(Ψ̇m,t+n|Ψm,t) = Ψm,t + n · ξ. ξ > 0 if the shocks Υi,t

have real effect on average. Otherwise, ξ = 0.
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. Claim 4.1 If τ̃u > 0 and τ ∗u,t > 0, the information disclosure makes net wel-

fare improvements for small τu,t ∈ (0, τ̃u) and otherwise causes net welfare

detriments for large τu,t ∈ (τ̃u, τ
†
u,t) (A.1). For τu,t ∈ (1 − Qt, τ ∗u,t), the IP

effect is more important for the welfare cuts and becomes otherwise less

important than the IE effect for τu,t ∈ (τ ∗u,t, τ
†
u,t) (A.2).

. Claim 4.2 If only τ ∗u,t > 0, the information disclosure exactly results in (A.2),

but (A.1) fails. Rather, it always triggers welfare cuts.

. Claim 4.3 If only τ̃u > 0, the information disclosure exactly results in (A.1),

but (A.2) fails. Rather, the IP effect whatsoever dominates for τu,t ∈ (1 −
Qt, τ †u,t).

. Claim 4.4 If neither τ̃u > 0 nor τ ∗u,t > 0, the information disclosure whatso-

ever trigger welfare cuts, driven more disproportionately by the IP effect.

The proofs are in the Appendix Page 49.
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Figure 3: The welfare patterns in the returns to information τ−1
u,t .

Note: parameter selection: (a) {τε,t, τs,t, ρt} = {0.5, 5, 0.5}; (b) {τε,t, τs,t, ρt} =
{0.5, 2.5, 1}; (c) {τε,t, τs,t, ρt} = {2, 10, 1}; (d) {τε,t, τs,t, ρt} = {1, 2, 0.5}.
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The first statement pertains to a situation where the noise trading is extremely random,

leading to maximum returns to information. τu,t +Qt 6 1 is true due to Qt 6 1, result-

ing in welfare improvements that offset the cuts from the IP. But if the returns reduce to

zero, the market becomes fully revealing and outsiders can fully comprehend signals

from market prices. Useless information disclosures lead to a waste of money, causing

welfare cuts equivalent to eρtkt utils. This contrasts with the belief of Choi and Liang

(2021) that useless information disclosure can improve welfare if people’s beliefs in

asset quality remain unchanged. Abstracting from the positive information price, it is

at best innocuous but it is hard to see any welfare improvements once the returns to

information fade away. In Figure 3, some welfare improvements can be evidently seen

only for small τu,t, as this scenario confines information spreading and makes infor-

mation acquisition profitable. As τu,t increases, the returns from information decrease,

resulting in higher welfare cuts and lower gains, assuming the welfare effect driven by

information quality remains constant. Hence, the key takeaway is that welfare improve-

ments necessarily entail a low τu,t, whatever information quality is.

Furthermore, following the practice of Johnson, Boone, Breach, and Friedman (2000),

we define the absolute responsiveness γaτu,t and the relative responsiveness γrτu,t (See

Appendix), which reflect the overall slope and percentage responsiveness of welfare,

respectively. γrτu,t > 0 can either capture a upward welfare relative to welfare cuts or

a downward welfare relative to welfare gains. γrτu,t < 0, however, captures either a

upward welfare relative to welfare gains or a downward welfare relative to welfare cuts.

In this case, γaτu,t is constant and positive, as both effects monotonically increase in τu,t
(See Figure (7a)). It captures the constant speed of changing welfare cuts or gains.

When γrτu,t > 0, a large welfare cut leads to a lower γrτu,t and thus, a relatively slower

increase in welfare cuts. When γrτu,t < 0, a more negative welfare improvement leads

to a larger γrτu,t and thus, a relatively slower reduction in welfare gains. Figure (7b)

show that if there are welfare gains, γrτu,t will get large with τu,t approaching to zero and

drop with τu,t rising. If welfare cuts were the case, γrτu,t is monotonically declining as

τu,t increases. In Panel (3a), the red region is the cumulative welfare improvements for

τu,t ∈ (0, τ̃u) and the size gets smaller as τu,t increases. The gains fade away if the re-

turns are lower than the returns implied by τ̃u. Rather, the information disclosure starts

off with welfare cuts. In the grey region, IP dominates but the welfare reduction from

the IE effect is more sensitive in percentage to the reduction in returns to information

and eventually, it exceeds the IP effect at τ ∗u,t and becomes the major reason for welfare

cuts (the blue region). In Panel (3b), there is no room for welfare improvements since

the welfare cuts caused by information quality have dominated the benefits even when

τu,t is low. In fact, the relative information quality is 17% versus 9% of the case in Panel

(3a). In either of these two cases, the IP effect is flatter because compared to the IE, it

is relatively less sensitive to τu,t than the other two cases of Panel (3c) and Panel (3d).

Likewise, in Panel (3c), there is room for net welfare gains since the relative informa-

tion quality is only 13% versus 50% in Panel (3d). However, the gains fade away soon

as τu,t > τ̃u. Then the welfare cuts contributed by both effects are dominated by the

steeper IP effect.
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Shocks to the informational advantages. x = τε. The welfare patterns must also

be sensitive to the absolute information quality τε,t since it captures trader’s own in-

formational advantages that point out why information acquisition is, in essence, im-

plementable. The precision of signals improves with higher values of τε,t. The coun-

terfactual shocks contain the only real effect on τε,t. Similarly, there is E(τ̇ε,t+n|τε,t) =

τε,t +n · ξε where ξε ↘ 0. Other fundamentals remain unchanged when neutral shocks

(υu,t, υs,t, υρ,t), are imposed on average. The smooth streak of positive shocks in τε,t
can be viewed as a continuously increasing input. However, three constraints bind in

four distinct cases.

� Definition 5. The first cutoff τ ′u,t poises ∆Dh l(τ
′
t; ρt) and |∆Nh l(τ

′
t; ρt)| when

the IE produces welfare gains; the second cutoff τ ∗u,t poises ∆Dh l(τ
′
t; ρt) and

∆Nh l(τ
′
t; ρt) when both effects are welfare cuts; the third cutoff τ̂ε,t enforces

∆Nh l(τ
′
t; ρt) = 0; the last cutoff τ̃ε,t minimizes ∆Nh l(τ

′
t; ρt) when it is nega-

tive.

� Proposition 5. (i) The welfare will not be whatsoever affected by information

disclosure once the informational advantages are zero; (ii) the welfare will be

jeopardized by information disclosure infinitely as the informational advantages

become infinitely large, in whichever individual effect; (iii) the IP effect increases

as the informational advantages increase. When the returns to information are

low, say τu,t > 1, the IE effect shows an increasing trend and implies positive

welfare cuts in all cases. When τu,t < 1, there is a small room for welfare gains,

say within 0 < τε,t < τ̃ε,t. Otherwise it bounces to increase. The absolute respon-

siveness γaτε,t and relative responsiveness γrτε,t are non-linear; (iv) the welfare

patterns display four distinct styles:

. Claim 5.1 If τu,t < 1 and τ ′ε,t > 0, the IE effect produces welfare gains

when 0 < τε,t < τ̂ε,t and the gains culminate at τ̃ε,t. When 0 < τε,t < τ ′ε,t,

net welfare gains are retained and when τε,t > τ ′ε,t, net welfare cuts are

retained.

. Claim 5.2 If τu,t < 1 and τ ′ε,t 6 0, the only difference is that the IP effect

always dominates so do the welfare cuts, all else constant.

. Claim 5.3 If τu,t > 1 and τ ∗ε,t > 0, both effects cause welfare cuts, but before

the IE goes to τ ∗ε,t either concavely or convexly, it dominates. After that, the

dominance switches to the IP effect.

. Claim 5.4 If τu,t > 1 and τ ∗ε,t 6 0, the only difference is that the IP effect

always dominates, all else constant.

The proofs are in the Appendix Page 51.

When there are no informational advantages, two welfare effects are zero. Despite

the cost of information, the risk adjustment parameters are zero, resulting in traders

purchasing pure noise in the market. The welfare impact is zero because of this, and

a risk premium exactly offsets the paid information price, resulting in a net zero IP

effect. The zero IE effect directly implies that the benefits of utilizing noise equal to
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(c) τu,t > 1 and τ∗ε,t > 0.
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(d) τu,t > 1 and τ∗ε,t 6 0.

Figure 4: The welfare patterns in the informational advantages τε,t.

Note: parameter selection: (a) {τu,t, τs,t, ρt} = {0.1, 20, 2}; (b) {τu,t, τs,t, ρt} =
{0.5, 10, 2}; (c) {τu,t, τs,t, ρt} = {5, 15, 3}; (d) {τu,t, τs,t, ρt} = {1, 10, 5}.

the costs of revealing noise. As informational advantages accumulate, the IP implies

that the welfare detriment increases due to penalty parameters ζ0(τ t; ρt) and ζ1(τ t; ρt)

increasing in τε,t. High-quality information benefits traders by offering more information,

but it also boosts information spreading and loses market efficiency. This contrasts

with a market with a low τu,t, wherein even revealing low-quality information can make

profits but the losses of market efficiency do not pro-rata rise. As τε,t increases, the

welfare losses quickly exceed the welfare gains due to the limited returns to information.

Moreover, when τε,t goes ad infinitum, the market becomes fully revealing, rendering

information disclosure useless again. Regarding individual effects, the IE effect must

be convex and the welfare gains will increase, culminate, decline and finally revert to

become welfare cuts as τε,t increases, if the returns to information are large (τu,t < 1).

Graphically, the IE effect drops for low τε,t < τ̃ε,t and then increases due to more costly

welfare impact. The red region conveys a cumulative net welfare gain, when τε,t < τ ′ε,t

(Panel 4a). But it will vanish soon since the welfare cuts made by the IP increase quickly

due to responsive risk adjustments. For any τε,t > τ ′ε,t, the cumulative welfare cuts are
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shown in grey region where the IP is more important. Of course, the welfare gain may

not exist for some τε,t such that welfare cuts are disproportionately explained by the IP

(Panel 4b). In the other two cases where τu,t > 1, there is no room for welfare gains

since the returns to information are too small to produce welfare improvements by the

IE. In Panel (4c), the IE can be either concave or convex but it produces more welfare

cuts than the IP if τε,t < τ ∗ε and it produces less welfare cuts if τε,t > τ ∗ε . The switch in

dominance, however, does not exist in Panle (4d). In light of responsiveness, in Panel

(7c), the blue line shows that γaτε,t is initially negative and then increases to become

positive soon and in this process, the overall welfare initially faces welfare gains that

then shrink to zero and eventually become welfare cuts. The sign flipping is driven by

the convexity of the IE effect. For other cases, the coast-to-coast welfare losses witness

upward sloping overall welfare and γaτε,t is always positive. The relative responsiveness

γrτε,t is drawn in Panel (7d) and likewise, the only special case is when welfare gains

are seen. γrτε,t > 0 and the welfare effect becomes less sensitive in percentage before

stretching out to the maximum welfare gains, and then γrτε,t < 0 and the welfare change

becomes more sensitive in percentage when the overall welfare further reduces to zero,

but once the overall welfare becomes cuts, γrτε,t > 0 and the welfare change becomes

less sensitive in percentage to τε,t. Since for any other cases where the possibility of

welfare gains shuts down, the welfare change is always less sensitive in percentage

to τε,t, which implies that the relative increase in welfare cuts drops. In general, with

τε,t increasing, the IP effect is more responsive than the IE effect, probably because it

captures the risks that are more sensitive to the market-level risk adjustments.

Shocks to the Informativeness of Information. x = τs. A higher value of τs,t
implies less informative signals. Counterfactual shocks only guarantee a real expected

impact on τs,t. Hence, we have E(τ̇s,t+n|τs,t) = τs,t + n · ξs where ξs ↘ 0. Other

fundamentals are not affected by neutral shocks. The smooth streak of positive shocks

in τs,t can be regarded as a continuous increase input. There are only two distinct

cases and only one constraint binds.

� Definition 6. The first cutoff τ̃s,t poises ∆Dh l(τ
′
t; ρt) and ∆Nh l(τ

′
t; ρt) when

both effects cause welfare cuts; the second cutoff τ ∗s,t poises ∆Dh l(τ
′
t; ρt) and

|∆Nh l(τ
′
t; ρt)| when the IE produces welfare gains; the third cutoff τ̂s,t enforces

∆Nh l(τ
′
t; ρt) = 0.

� Proposition 6. (i) When the signals are extremely informative, the welfare cuts

caused by the IP are infinitely large but the welfare cuts caused by the IE are

limited to τε,tτu,t/ρ
2
t ; (ii) when the signals are uninformative, the overall welfare

effect can be a cut if the returns to information are low, τu,t > 1 and also can be

an improvement if the returns are high, τu,t < 1; (iii) as information becomes less

informative, the welfare cuts caused by both effects will drop and it leaves more

room for the IE to create welfare improvements. The absolute responsiveness

γaτs,t is negative and rising and γrτs,t depends on the possibility of welfare gains;

(iv) the welfare patterns display two distinct styles:

. Claim 6.1 If τu,t > 1 and 0 < τs,t < τ̃s,t, the welfare cuts are reinforced by
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both effects and the IP dominates. If τs,t > τ̃s,t, the dominance switches to

the IE.

. Claim 6.2 If τu,t < 1 and 0 < τs,t < τ̂s,t, both effects cause welfare cuts and

the IE starts to produce welfare gains when τs,t > τ̂s,t and the welfare gains

will become the net overall welfare gains if τs,t > τ ∗s,t.

The proofs are in the Appendix Page 54.
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Figure 5: The welfare patterns in the informational informativeness τs,t.

Note: parameter selection: (a) {τu,t, τε,t, ρt} = {0.5, 0.5, 1}; (b) {τu,t, τε,t, ρt} =
{1.5, 0.3, 1};

The first statement emphasizes the potential for welfare improvements only if τu,t < 1.

A smaller τs,t means more informativeness, which leads to improved information quality

and upward adjustments for the IP effect. However, revealing higher-quality signals re-

sults in greater efficiency losses from the IE, making it more likely for overall welfare to

experience net losses. As informativeness decreases, the information rapidly becomes

of low or poor quality. The high returns on information create a driving force for the IE to

bring about welfare improvements. In the diagram, τ ∗s,t captures the critical state where

the net welfare change is zero. After that, the net welfare gains are phenomenal, even

though the individual welfare gains already happen when τs,t > τ̂s,t. However, once

τu,t > 1, the potential for welfare gains diminishes as returns to information become

too low to surpass the minimal welfare losses incurred from revealing poor informa-

tion. The welfare cuts made by the IE are systematic so they are substantial as long

as the returns to information are not large enough. In contrast, the welfare cuts made

from the IP are flexible because they can be eliminated completely by charging zero

risk adjustments. As the signals become fully uninformative, the penalty parameters

go to zero. Therefore, when τs,t > τ̃s,t, the welfare losses are almost because of the

systematic welfare cuts inferred from the IE (Panel (5b)). The absolute responsiveness

for each case is increasing and negative, indicating a slowdown in declining the welfare

effect. The relative responsiveness for the second case is always increasing and neg-

ative while for the first case, it is humped due to the discontinuity at zero welfare effect
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and also faces a sign flip due to the possibility of net welfare gains. See Figure (7e)

and Figure (7f).

Shocks to the Degree of Risk Aversion. x = ρ. The last thing to know is how

welfare responds to the shocks in the degree of risk aversion. Similarly, the shocks

only promise that ρt has a real expected effect, on average. We have E(ρ̇t+n|ρt) =

ρt + n · ξρ where ξρ ↘ 0. The expectations for all other fundamentals remain constant

at (τε,t, τu,t, τs,t). The smooth streak of positive shocks in ρt can be regarded as a

continuous increase input. There are four distinct cases and three restrictions bind.

� Definition 7. The cutoffs ρ∗L and ρ∗H poise ∆Dh l(τ
′
t; ρt) and |∆Nh l(τ

′
t; ρt)|

when the latter yields welfare improvements; the other two cutoffs ρ′L and ρ′H
poise ∆Dh l(τ

′
t; ρt) and ∆Nh l(τ

′
t; ρt) when both effects yield welfare cuts.

� Proposition 7. (i) When traders become risk neutral, the welfare losses caused

by the IP goes to infinity whereas the IE effect is [τu,tτε,t + τs,t(τu,t − 1)] /τs,t

that can be welfare losses or gains, contingent on the evaluation procedure; (ii)

when traders become extremely risk averse, the welfare cuts caused by the IP is[
τ 2
ε,t + 2τs,tτε,t

]
/τ 2
s,t whereas the welfare effect of the IE is zero; (iii) if there are

overall welfare gains, the IE is concave. But for overall welfare cuts, it is convex.

The IP effect is always convex. The overall welfare responds to risk aversion at

γaρt and γrρt , absolutely and relatively. (iv) the welfare patterns display four distinct

styles:

. Claim 7.1 If τu,t +Qt 6 1 and ρ∗L > 0 and ρ∗H > 0, we see net welfare gains

for ρt lies inside the two cutoffs. Otherwise, it will be the net welfare cuts.

. Claim 7.2 If τu,t+Qt 6 1 but there are no either ρ∗L or ρ∗H , we see net welfare

cuts.

. Claim 7.3 If τu,t +Qt > 1 and ρ′L > 0 and ρ′H > 0, we see net welfare cuts

and the IE dominates the IP in size when ρt lies inside the two cutoffs.

. Claim 7.4 If τu,t +Qt > 1 but there are no either ρ′L > 0 or ρ′H > 0, we see

net welfare cuts and the IP always dominates in size.

The proofs are in the Appendix Page 56.

Risk-neutral traders face unitary cost factor e2ρtkt ↘ 1, while their infinite risk adjust-

ments {ζ0, ζ1} go ad infinitum, resulting in infinitely large welfare cuts. The risk neu-

trality also drives kLt ↘ 0 and the information price is zero, leading to an overuse of

information, which worsens the welfare cuts due to the already high levels of risk. As

ρt ↗ ∞, the IP effect drops to a positive limit, provided that the risk adjustments af-

fected by other fundamentals do not reduce to zero. Depending on whether τu,t + Qt
is greater than one, the IE can be either positive or negative. As the risk aversion goes

up, the welfare effect shrinks to null, à la whatever welfare gains or losses. The reason

is intuitive. The welfare decomposition shows that the IE is associated with demand

function. Thus, a significant welfare effect entails substantial demand but, ρt ↗ ∞
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(c) τu,t +Qt > 1 and ∆‡ > 0.
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(d) τu,t +Qt > 1 and ∆‡ < 0.

Figure 6: The welfare patterns in risk aversion - ρt.

Note: parameter selection: (a){τu,t, τε,t, τs,t} = {0.5, 0.5, 10}; (b){τu,t, τε,t, τs,t} =
{0.5, 0.5, 3}; (c){τu,t, τε,t, τs,t} = {1.5, 0.5, 10}; (d){τu,t, τε,t, τs,t} = {1, 0.5, 2}; ∆† and
∆‡ are defined in the appendix.

causes zero demand, compressing the IE effect to zero. In Panel (6a) and Panel (6b),

we expect to see welfare improvements as τu,t +Qt < 1. However, only for a small de-

gree of risk aversion ρ∗L < ρt < ρ∗H , the net welfare effect produces gains. In Panel (6c)

and Panel (6d) where τu,t +Qt > 1 is met, we expect to see welfare cuts. Likewise, for

some small ρt ∈ (ρ′L, ρ
′
H), the welfare cuts are disproportionately made by the IE. Re-

garding responsiveness, the absolute responsiveness γaρ,t converges to zero as traders

become more risk-averse, even though the slopes of welfare are non-monotonic once

the IE ever yields welfare gains. The relative responsiveness γrρ,t of the first case shows

that the welfare is less sensitive in percentage when approaching to the maximum net

welfare gains, and is more sensitive in percentage when approaching to zero welfare.

After the net welfare turns cuts, the welfare becomes less sensitive in percentage in ρt.

For other cases, the welfare changes are less sensitive in percentage to an increasing

ρt. See Figure (8a) and Figure (8b).
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Figure 7: The responsiveness in absolute and relative terms - Part I.
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Figure 8: The responsiveness in absolute and relative terms - Part II.

Measurement Errors. As previously stated, the presence of measurement errors

does not affect our findings. Namely, regarding τu, the measurement errors allow for

flexibility in the cutoffs of τu. But, the welfare gains become more possible and in Panel

(3c) and Panel (3d), the dominance in the welfare cut can be switched between IP plus

errors and IE effect one more time, compared to the IP itself. In terms of τε, other

than Panel (4c) which is subject to large measurement errors, the other cases are very

precise. Even with large measurement errors, the only difference is that the welfare cut

is always more explained by the IE effect, compared to IP itself which crosses IE once.

In terms of τs, the measurement errors are not an issue. For low ρ, the measurement

errors are substantial but they converge to zero very soon. The welfare gains become

more possible. Overall, the measurement errors appear not to matter.

3.2 Continuous Case

3.2.1 Welfare Representation

In the continuous case, both uninformed traders and informed traders coexist, leading

to the problem of asymmetric information. This problem arises because uninformed

traders have a disadvantage in information and face the risk of being outperformed by

more knowledgeable traders. As a result, in the second stage of the Bayesian game,

information acquisition becomes endogenous and is affected by asymmetric informa-

tion. We regard µ∗t (kt) as the intensity of information acquisition and assume strategic

substitution.

The earliest proof of the negative impact of asymmetric information on welfare can

be found in Akerlof (1970), while Einav et al. (2010) recently estimated the welfare

losses resulting from asymmetric information in the UK annuity market. Rothschild and

Stiglitz (1976) provides some interpretive insights on this issue. Informed traders are

similar to high-risk individuals who are more likely to purchase insurance because they
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require information to secure their trading payoffs. If no one buys the signals, traders

can actually benefit, as information disclosure often leads to welfare cuts. Hence, the

externality is negative, although it could potentially be positive if information disclosure

results in welfare gains, which contrasts with their verdict. However, asymmetric in-

formation does cause welfare cuts, and this section examines the welfare dynamics

associated with varying degrees of asymmetric information. Information acquisition

can be viewed as insurance, as uninformed traders feel more secure as they learn

more from informative market prices, despite the fact that this reduces the motivation

and effectiveness of costly information acquisition. The implicit assumption behind is

strategic substitutability10. Hence, the severity of asymmetric information gets milder

as µ∗t (kt) rises and the overall welfare should be convex. This convexity should not

be confused with the classic bid-ask spread model (Glosten and Milgrom (1985)). In

that model, the specialist can certainly infer information from the history of transaction

prices, even though he quotes the prices for arriving traders. However, the specialist,

to avoid losses, immediately sets a higher spread if more insiders trade with him or

if insiders have better information. As trades continue and more insiders arrive, the

inside information will assimilated, thereby narrowing down the spread.

An interior equilibrium is achieved when the two types of unconditional expected utility

are equal. The representative welfare of such an equilibrium can be expressed as:

Wint[µ
∗
t (kt)] = µ∗t (kt)EUI + (1− µ∗t (kt))EUU = Et

{
−exp

[
−(Et(θ̇t+1|FU)− pt)2

2Vt(θ̇t+1|FU)

]}
(25)

At an interior equilibrium,

EUI = eρtkt
√
Vt(θ̇t+1|FI)/Vt(θ̇t+1|FU)EUU

in which eρtkt
√

Vt(θ̇t+1|FI)/Vt(θ̇t+1|FU) = 1 must hold, in which µ∗(kt) is endoge-

nously determined and kt is exogenous. Then the market price contains the same

information as st + [µ∗t (kt)at]
−1 ut so market price predicts the signal st with distur-

bance of noise trading. In line with Vives (2010), we define ωt = st + ut/µ
∗
t (kt)at.

Consequently, the first order and second order of moments of θ̇t+1 conditional on FU
are

Et[θ̇t+1|FU ] =
τs,t

τs,t + (µ∗t (kt)a)2τu,t
θ̄t+1 +

(µ∗t (kt)at)
2τu,t

τs,t + (µ∗t (kt)at)
2τu,t

(
st +

ut + 1

µ∗t (kt)at

)
(26)

Vt[θ̇t+1|FU ] = [τs,t + (µ∗t (kt)at)
2τu,t]

−1 + τ−1
ε,t (27)

where Et(θ̇t+1|FU) = Et(θ̇t+1|ωt) = Et(st|ωt) and Vt[θ̇t+1|FU ] = Vt[θ̇t+1|ωt] = Vt[st|ωt]+
τ−1
ε,t . For easing presentation, denote τs,t + (µ∗t (kt)at)

2τu,t as B. Thus, Grossman and

Stiglitz (1980) affirm that there exists a unique linear market price such that the market

can be clear.
10For the case of strategic complementarity, there are multiple equilibria (Ganguli and Yang (2009))

and the asymmetric information problem tends to be more severe as more informed trading is placed
because in this process, uninformed traders face more uncertainty of the insider trading patterns.
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� Lemma 5. If {st, εt, ut} follow a non-degenerate joint normal distribution and

mutually independent. Namely, recall that st ∼ N(θ̄t+1, τ
−1
s,t ), εt ∼ N(0, τ−1

ε,t ), ut ∼
N(−1, τ−1

u,t ). There is a unique linear market price clearing the market, which is

P(st, ut) = α1 + α2ωt where the parameters are constants:

α1 =
ρt(τε,tτu,tµ

∗
t (kt) + θ̄t+1τs,tρt)(1− µ∗t (kt))

τ 2
ε,tτu,tµ

∗
t (kt)

2 + τε,tρ2
tµ
∗
t (kt) + τs,tρ2

t

(28)

α2 =
µ∗t (kt)(τ

2
ε,tτu,tµ

∗
t (kt) + τε,tρ

2
t + τs,tρ

2
t )

τ 2
ε,tτu,tµ

∗
t (kt)

2 + τε,tρ2
tµ
∗
t (kt) + τs,tρ2

t

(29)

The proofs are in the Appendix Page 58.

For uninformed investors, the expected profits are

Π = Et(θ̇t+1|FU)−Pt =
τs,tθ̄t+1 + µ∗t (kt)atτu,t

B
+

[
B − τs,t
B

− α2

]
ωt − α1

This means that the uninformed investors’ ex ante expected profit only rests on the

uncertainty of ωt that determines the ex post clearing price. In this case, the ex post

market price depends on the realization of the signal and the noise trading from known

distributions. Hence, the welfare function in Equation (25) can be written as

Wint[µ
∗
t (kt)] = Et

{
−exp

[
− Π2

2
(
B−1 + τ−1

ε,t

)]} = Et
{
−exp

[
−X 2

t

]}
(30)

Therefore, the distribution of ωt should be known as a priori since the welfare fully rests

on this distribution. Given the distributions of st ∼ N(θ̄t+1, τ
−1
s,t ) and

ut/µ
∗
t (kt)at ∼ N

(
− [µ∗t (kt)at]

−1 ,
[
τu,tµ

∗
t (kt)

2a2
t

]−1
)

, ωt is also normal distributed with the mean of θ̄t+1 − [µ∗t (kt)at]
−1 and the variance of

τ−1
s,t + [τu,tµ

∗
t (kt)

2a2
t ]
−1. Hence, the welfare can be calculated in the following proposi-

tion.

� Proposition 8. Welfare in the Capital Market with Incomplete Information

Xt follows a normal distribution:

Xt ∼ N

 1√
2
·
θ̄t+1(1− α2) + α2

√
τu,t
B−τs,t − α1√

B−1 + τ−1
ε,t

,
1

2

τε,t [(1− α2)B − τs,t]2

τs,t(B − τs,t) (B + τε,t)


The linearized welfare of an interior equilibrium W̃int[µ

∗
t (kt)] can be approximated

to:

W̃int[µ
∗
t (kt)] ≈ Dint(µ

∗
t (kt)) + Nint(µ

∗
t (kt))
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where

Nint(µ
∗
t (kt)) =

[
θ̄t+1(1− α2) + α2

√
τu,t
B−τs,t − α1

]2

Bτε,tτs,t(B − τs,t)

τs,t(B − τs,t) (B + τε,t) + τε,t [(1− α2)B − τs,t]2
(31)

Dint(µ
∗
t (kt)) =

τε,t [(1− α2)B − τs,t]2

τs,t(B − τs,t) (B + τε,t)
(32)

The proofs are in the Appendix Page 58.

3.2.2 Simulation

This section will conduct several simulations aimed at providing concrete examples for

easy understanding, rather than exhaustively covering all possibilities. This is partic-

ularly important because the continuous case is not as direct as the discrete case.

The purpose of the simulations is to examine the patterns of welfare and determine

whether they align with our theoretical conjectures. According to theory, the problem of

asymmetric information should impact both IE and IP, and ultimately shape the overall

welfare.

First, the IP effect is primarily determined by the cost kt and then is subject to risk

adjustments. Unlike the discrete case, the risk adjustments cannot be written as a lin-

ear function of the cost factor. As the asymmetric information problem wanes, we can

expect the cost kt to drop. There are two conjectures about the IP patterns:

. Conjecture 1: ∂Dint(µt)
∂µt

< 0: as more traders purchase the information, the total

pecuniary costs accumulate and the total welfare tends to drop.

. Conjecture 2: ∂D2
int(µt)

∂µt∂kt
> 0: due to the declining information price, the welfare

drops slowly as the information acquisition becomes more intensified. Hence,

the IP effect is convex.

Second, the IE involves the benefits of utilizing the information and the costs of losing

market efficiency. The benefits of information utilization are influenced by the problem

of asymmetric information. Strategic substitution suggests that an increase in price

informativeness can provide insurance for uninformed traders. Therefore, as the asym-

metric information problem decreases, the benefits of utilizing information decrease

while the benefits of inferring information from prices increase. As more traders reveal

information, total efficiency losses are expected to increase. However, the marginal

cost remains constant given the fixed quality of information governed by fixed parame-

ters. There are two possible assumptions regarding the patterns of IE:

. Conjecture 3: if IE produces welfare gains, then for any 0 < µt < 1, the IE

always produces welfare gains. Then there is ∂Nint(µt)
∂µt

> 0. As µt increases, the

marginal benefits from not utilizing the information increase while the marginal
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benefits from utilizing the information decrease. Hence, the IE effect is convex

and ∂N2
int(µt)

∂µ2
t

> 0.

. Conjecture 4: if IE produces welfare cuts, then for any 0 < µt < 1, the IE always

produces welfare cuts. Then there is ∂Nint(µt)
∂µt

< 0. There is still the convexity
∂N2

int(µt)

∂µ2
t

> 0.

The simple simulations abstract from those extreme risk fundamentals. For instance,

either ρt, τε,t, τu,t, τs,t is too large to allow for enough variation. The benchmark simula-

tion assumes that the market fundamentals are unitary, which represents intermediate

intensities. In each simulation, only one parameter is altered. If a parameter is larger

(resp. smaller) than unitary, it means a high (resp. low) intensity of the specific market

feature governed by that parameter. At each time, the market state draws an evident

dichotomy between high intensity and low intensity, instead of a streak of shocks. Im-

portantly, the convexity in welfare is evident and consistent, even if the simulations may

fail to generate net welfare gains. In other possible scenarios, differences between

patterns are dependent on the specific realizations of the fundamentals and reflect in

different locations of the curves, without significantly altering the shapes.

The Returns to Information. We opt for τu,t = 0.01, which implies high returns on

information. The simulation in Panel (9a) demonstrates consistency with prior conjec-

tures about IP, where welfare cuts decrease more slowly as the asymmetric information

problem becomes less severe. The behavior of IE displays coast-to-coast convex wel-

fare improvement, which aligns with conjectures about IE. The overall welfare pattern

is convex, initially declining before bouncing back. IE generates welfare gains by bal-

ancing information quality with returns. Similar to the discrete case, welfare gains are

only possible with high information returns and limited information quality. This exam-

ple aligns with Conjecture 3. In turn, in Panel (9b) where we, however, choose τu,t = 2

representing low information returns, the IE causes small welfare cuts caused by low

returns to information. This example aligns with Conjecture 4. We evidently see that

the welfare patterns are convex in µt individually and collectively.

The Informational Advantages. We choose τε,t = 3, which represents a high degree

of informational advantage, or equivalently, a high Qt ceteris peribus, as in Panel (9c),

where we observe that as more traders become informed, the welfare patterns take on

a convex shape. Given the intermediate returns to information and high quality of the

information, the IE tends to decrease when µt is not high, as in the discrete case. But,

the difference is evident that the IE reverts to increase when µt becomes large enough

and this is because of the waning asymmetric information problem. As conjectured,

when the IE produces welfare detriments, the net marginal benefits of not utilizing the

information are rising as µt rises. Given the initial welfare cuts, the welfare tends to drop

slowly and then revert to increase. The bouncing-back right tail exactly captures the

overturn rise when the marginal benefits from not utilizing the information exceed the

marginal benefits from utilizing the information minus the marginal cost of information

revealing. In Panel (9d), the IE effect does not show significant patterns once the
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informational advantages are low, because the net benefits are almost balanced by

information acquisition and information spreading due to limiting information quality.

The Informational Informativeness. This is an analog to the welfare patterns in in-

formational advantages since the high informativeness in information raises an upward

impetus to the relative information quality Qt while the low informativeness, neverthe-

less, imposes a downward stress on it. Hence, in Panel (9e), the patterns are U-shape

and in Panel (9f), it becomes kind of flatter due to imposing poor information quality.

Again, the welfare patterns are still convex in µt individually and collectively.

The Degree of Risk Aversion. For low risk-aversion ρt = 0.5, the welfare patterns

of the IE effect looks like Panel (9c) and actually that is because of the indirect ef-

fect of ρt, which means that a low risk-aversion can affect the welfare in the manner

of informational advantages throughout increasing the risk-tolerance-adjusted informa-

tional advantages at. Consequently, after adjusting for risk attitude, low risk-aversion,

in effect, strengthens the effect driven by informational advantages per se. That is why

Panel (9g) can be alike as Panel (9c), even though τε,t = 1 versus τε,t = 3. In the

other way around, a high risk-aversion, say ρt = 1.5, the real effect of informational

advantages will be scaled down by adjusting for the risk tolerance. So Panel (9h) also

displays a flat pattern as Panel (9d), even though τε,t = 1 versus τε,t = 0.5. The real

effect of informational advantages for a high risk-aversion is 2/3 and for a low risk-

aversion is 2, which are similar in magnitude to 0.5 and 3 as in Panel (9c) and (9d).

Given that ρt affects the welfare only through at, there is no direct effect. Since τε,t

has direct effect, the welfare patterns will bear some slight differences, even though the

risk-tolerance-adjusted informational advantages are hypothetically equalized. Hence,

the indirect effect of ρt through at only partially scales up and down the effect of in-

formational advantages. This amplification/compression mechanism can be justified

because less risk-averse traders tend to trade more aggressively and therefore, the

welfare tends to be more sensitive whereas more risk-averse traders are supposed to

be subject to less sensitive welfare patterns.

4 Conclusion

This paper minimally deviates from the classic model and requires parsimonious as-

sumptions. However, it delivers the important analysis of welfare from the perspective

of information quality and the returns to information, as a key complementarity of Gross-

man and Stiglitz (1980). Focusing on these perspectives resolves the uncomfortable

conflict between information spreading and information acquisition since information

quality and the returns to information can successfully confine the information spread-

ing and mitigate the frustration in information acquisition. The paper clearly figures

out the benefit and cost sources of acquiring information. Importantly, the conclusions

are general, rather than being only valid for specific cases. The findings are counter-

intuitive since we find the possibility of welfare gains from information acquisition. This

is restricted by the information quality and returns collectively in a dynamic trade-off.
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(d) Low informational advantages: τε,t = 0.5.
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(h) High risk aversion: ρt = 1.5.

Figure 9: Simulated interior welfare patterns.
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This finding considers the reason from the signals per se and the reason from the

market. Moreover, this paper retrieves the full picture of welfare patterns in the funda-

mentals. Last but not least, this paper confirms that the asymmetric information actually

causes welfare cuts that weaken as price informativeness increases.
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Supplementary Appendix

� Lemma 1. First, the conditional expected utility of uninformed traders is:

Et[U̇(XU(Pt(ut)))|P(ut)] = −exp
{
− (Et[θ̇t+1|Pt(ut)]−Pt(ut))2

2Vt[θ̇t+1|pt]

}
= −exp

{
− (θ̄t+1−Pt(ut))2

2σθ
2
t

}
= −exp

(
−ρ2

tσθ
2
t+1u

2
t

2

)
= −exp

[
− τε,t(τs,t+τε,t)u2

t

2a2
t τs,t

]
(A.1)

where according to Equation (26) and Equation (27), there are

Et(θ̇t+1|P(ut)) = θ̄t+1

Vt(θ̇t+1|P(ut)) = σs
2
t + σε

2
t+1 = σθ

2
t+1

once µ∗t (kt) = 0. Formally, define the linear market price in the Grossman and Stiglitz’s

fashion as P(ut) = β1 + β2ut. According to the market clearance condition, there is

P(ut) = θ̄t+1 − ρtσ2
θut

where β1 = θ̄t+1 and β2 = −ρtσθ2
t+1.

Second, following the generalized Rao’s formula in Demange and Laroque (1995) and

Vives (2010): in this case, define Y ∼ N(−ρtσθt+1√
2
,
ρ2
tσθ

2
t+1σu

2
t

2
) and thus, the welfare

−Et
{
exp

[
− τε,t(τs,t+τε,t)u2

t

2a2
t τs,t

]}
can be written as

W (τ ′t; ρt)lce =−
exp

(
− ρ2

tσθ
2
t+1

2(1+ρ2
tσθ

2
t+1σu

2
t )

)
√

1 + ρ2
tσθ

2
t+1σu

2
t

= −
exp

(
−1

2

τε,tτu,t(τs,t+τε,t)

a2
t τs,t+τε,t(τs,t+τε,t)

)
√

1 + τε,t(τs,t+τε,t)

a2
t τs,tτu,t

(A.2)

� Lemma 2. First, the conditional expected utility of uninformed traders is:

Et{U̇ [XU(P(st, ut))]|P(st, ut)} = −exp
{
− (Et[θ̇t+1|P(st,ut)]−P(st,ut))2

2Vt[θ̇t+1|P(st,ut)]

}
= −exp

{
−

[
τs,t(θ̄t+1−st−

ut
at )+atτu,t

a2
t τu,t+τs,t

]2

2[(τs,t+a2
t τu,t)

−1+τ−1
ε,t ]

}
(A.3)

Assume that market prices follow P(st, ut) = γ1 + γ2ωt where ωt = st + ut
µ∗t (kt)at

is

the informational proxy that contains exactly the same information as market prices,
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repeatedly used in this paper. At the HCE, the market price is

P(st, ut) = st +
ut
at

so the result follows since γ1 = 0 and γ2 = 1. Then the following conditional expectation

and variance also follow Equation (26) and Equation (27).

Et(θ̇t+1|P(st, ut))−P(st, ut) = θ̄t+1 +
C(st + ε̇t+1, st + ut

at
)

Vt(st + ut
at

)

(
st +

ut
at
− θ̄t+1 +

1

at

)
− st −

ut
at

=
τs,t

(
θ̄t+1 − st − ut

at

)
+ atτu,t

a2
t τu,t + τs,t

(A.4)

Vt(θ̇t+1|P(st, ut)) = (τs,t + a2τu,t)
−1 + τ−1

ε,t (A.5)

The unconditional expected utility of informed traders satisfies

Et{U̇ [XI(st,P(st, ut))]|P(st, ut)} = eρtk
L
t

√
Vt[θ̇t+1|st]

Vt[θ̇t+1|P(st, ut)]
Et{U̇ [XU(P(st, ut))]|P(st, ut)}

= −exp

{
−

[
τs,t(θ̄t+1−st−

ut
at )+atτu,t

a2
t τu,t+τs,t

]2

2[(τs,t+a2τu,t)−1+τ−1
ε,t ]

}
(A.6)

as in equilibrium eρtk
L
t

√
Vt[θ̇t+1|st]

Vt[θ̇t+1|P(st,ut)]
= eρtk

L
t

√
τ−1
ε,t

(τs,t+a2
t τu,t)

−1+τ−1
ε,t

= 1.

Second, apply the generalized Rao’s formula again, after defining Y ′ =
τs,t(θ̄t+1−st−

ut
at )+atτu,t

a2
t τu,t+τs,t√

2[(τs,t+a2
t τu,t)

−1+τ−1
ε,t ]

.

Given that the informational proxy ωt follows N(θ̄t+1 − 1
at
, τ−1
s,t + (a2

t τu,t)
−1), the distri-

bution of Y ′ is also normal and follows

Y ′ ∼ N

 τs,ta
−1
t + atτu,t

(a2
t τu,t + τs,t)

√
2
[
(τs,t + a2

t τu,t)
−1 + τ−1

ε,t

] , τs,t + τ 2
s,t(a

2
t τu,t)

−1

2(a2
t τu,t + τs,t)2

[
(τs,t + a2

t τu,t)
−1 + τ−1

ε,t

]


and the welfare of the HCE is

W (τ ′t; ρt)hce = −Et
[
e−Y

′2
]

= −

exp

−
(
τs,ta

−1
t + atτu,t

)2

2(a2
t τu,t+τs,t)

2[(τs,t+a2
t τu,t)

−1+τ−1
ε,t ]

1+
τs,t+τ

2
s,t(a

2
t τu,t)

−1

(a2
t τu,t+τs,t)

2[(τs,t+a2
t τu,t)

−1+τ−1
ε,t ]

√
1 +

τs,t+τ2
s,t(a

2
t τu,t)

−1

(a2
t τu,t+τs,t)

2[(τs,t+a2
t τu,t)

−1+τ−1
ε,t ]

= −
exp

(
−1

2

τu,tτε,t
a2
t τu,t+τε,t

)
√

1 + τs,tτε,t
a2
t τu,t(τε,t+a

2
t τu,t+τs,t)

(A.7)

� Lemma 3. The simple procedure follows with the first step in which we take a

simple logarithm on both sides of each welfare function (Equation (A.8) and Equa-

tion (A.11)); the second step is to extract the proportional terms (Equation (A.9) and
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Equation (A.12)).

ln [−W (τ ′t; ρt)lce] = −1

2

τε,tτu,t(τs,t + τε,t)

a2
t τs,t + τε,t(τs,t + τε,t)

− 1

2
ln

[
1 +

τε,t(τs,t + τε,t)

a2
t τs,tτu,t

]
(A.8)

∝ τε,tτu,t(τs,t + τε,t)

a2
t τs,t + τε,t(τs,t + τε,t)

+ ln

[
1 +

τε,t(τs,t + τε,t)

a2
t τs,tτu,t

]
(A.9)

=
τε,tτu,t(τs,t + τε,t)

a2
t τs,t + τε,t(τs,t + τε,t)

+ ln
τε,t(τs,t + τε,t)

a2
t τs,tτu,t

+ κl (A.10)

ln [−W (τ ′t; ρt)hce] = −1

2

τu,tτε,t
a2
t τu,t + τε,t

− 1

2
ln

[
1 +

τs,tτε,t
a2
t τu,t(τε,t + a2

t τu,t + τs,t)

]
(A.11)

∝ τu,tτε,t
a2
t τu,t + τε,t

+ ln

[
1 +

τs,tτε,t
a2
t τu,t(τε,t + a2

t τu,t + τs,t)

]
(A.12)

=
τu,tτε,t

a2
t τu,t + τε,t

+ ln
τs,tτε,t

a2
t τu,t(τε,t + a2

t τu,t + τs,t)
+ κh (A.13)

where κl and κh capture measurement errors such that:

κl = ln

[
1 +

τε,t(τs,t + τε,t)

a2
t τs,tτu,t

]
− ln

τε,t(τs,t + τε,t)

a2
t τs,tτu,t

(A.14)

κh = ln

[
1 +

τs,tτε,t
a2
t τu,t(τε,t + a2

t τu,t + τs,t)

]
− ln

τs,tτε,t
a2
t τu,t(τε,t + a2

t τu,t + τs,t)
(A.15)

� Lemma 4. First, we express the IP as the change rate as in the Proposition 1, so

we have the approximated IP:

ln Dlce − ln Dhce = ln

(
Dlce

Dhce

)
=

Dlce

Dhce

− 1 (A.16)

Thus, the actual IP is:

ln(1 + Dlce)− ln(1 + Dhce) =
1 + Dlce

1 + Dhce

− 1 (A.17)

Thus, the measurement error is:

κl − κh =
Dhce −Dlce

Dhce(1 + Dhce)
(A.18)

Second, following the same procedure, the approximated IE is:

ln

(
Nlce

Nhce

)
=

Nlce

Nhce

− 1 (A.19)

Meanwhile, the actual IE is:

Nlce

Nhce

− 1 (A.20)

Thus, the measurement error is: ψ = 0.
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� Proposition 1. First, the ratio of D(τ ′t; ρt) equals to

Dlce(τ
′
t; ρt)

Dhce(τ ′t; ρt)
=
τε,t(τs,t + τε,t)

a2
t τs,tτu,t

a2
t τu,t(τε,t + a2

t τu,t + τs,t)

τs,tτε,t

= 1 +
τs,t(τε,t + a2

t τu,t) + τε,t(τε,t + a2
t τu,t) + τε,tτs,t

τ 2
s,t

(A.21)

Hence, the change rate is Dlce(τ
′
t;ρt)

Dhce(τ
′
t;ρt)
− 1 =

τs,t(τε,t+a2
t τu,t)+τε,t(τε,t+a

2
t τu,t)+τε,tτs,t

τ2
s,t

> 0 and

there is always Dlce(τ
′
t; ρt) > Dhce(τ

′
t; ρt). Use the equilibrium condition again

eρtk
L
t

√
τ−1
ε,t

(τs,t + a2
t τu,t)

−1 + τ−1
ε,t

= 1

and then rewrite the change rate that is the proxy for the IP effect as:

∆Dh l(τ
′
t; ρt) =

Dlce(τ
′
t; ρt)

Dhce(τ ′t; ρt)
− 1 =

τs,t(τε,t + a2
t τu,t) + τε,t(τs,t + a2

t τu,t)e
2ρtkLt

τ 2
s,t

= nt

(
1 + nt

τu,tτε,t
ρ2
t

)
e2ρtkLt + nt

(
1 +

τu,tτε,t
ρ2
t

)
(A.22)

Thus, the effect is linear in e2ρtkLt with a positive slope ζ1(τ ′t; ρt) = nt

(
1 + nt

τu,tτε,t
ρ2
t

)
and a positive intercept ζ0(τ ′t; ρt) = nt

(
1 + τu,tτε,t

ρ2
t

)
.

Second, the change rate in N (τ ′t; ρt), as the proxy for the IE effect, equals to

∆Nh l(τ
′
t; ρt) =

Nlce(τ
′
t; ρt)

Nhce(τ ′t; ρt)
− 1 =

τε,tτu,t(τs,t + τε,t)

a2
t τs,t + τε,t(τs,t + τε,t)

a2
t τu,t + τε,t
τu,tτε,t

− 1

=
1

1 +
ρ2
t

τε,t(1−Qt)

[
τu,t

1−Qt
− 1

]
(A.23)

The sign of ∆Nh l(τ
′
t; ρt) depends on the aggregation of the degree of the noise trad-

ing τu,t and the relative information qualityQt. Hence, its absolute size |∆Nh l(τ
′
t; ρt)|

follows the piecewise function:

|∆Nh l(τ
′
t; ρt)| =


τs,tτε,t

τs,tτε,t+ρ2
t (τs,t+τε,t)

[
τu,t

1−Qt − 1
]

, if τu,t +Qt > 1

0 , if τu,t +Qt = 1

τs,tτε,t
τs,tτε,t+ρ2

t (τs,t+τε,t)

[
1− τu,t

1−Qt

]
, if τu,t +Qt < 1

(A.24)

Together with the effect delivered by the factor of D(τ ′t; ρt), the overall effect rests on a

few contingent cases.

. Claim 1.1: τu,t + Qt > 1: there are simultaneously ∆Dh l(τ
′
t; ρt) > 0 and

∆Nh l(τ
′
t; ρt) > 0. Hence, the overall effect on the welfare must satisfy W̃ (τ ′t; ρt)lce >

W̃ (τ ′t; ρt)hce.

. Claim 1.2: τu,t + Qt < 1: there are simultaneously ∆Dh l(τ
′
t; ρt) > 0 and

∆Nh l(τ
′
t; ρt) < 0. Hence, the two effects are in the battlefield.
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� If ∆Dh l(τ
′
t; ρt) > |∆Nh l(τ

′
t; ρt)|, then welfare at the LCE must be higher:

W̃ (τ ′t; ρt)lce > W̃ (τ ′t; ρt)hce. The sufficient condition holds if for some quadru-

ples {τ ′t; ρt} such that [(τs,t + τε,t)(τε,t + a2
t τu,t) + τε,tτs,t]/τ

2
s,t > {a2

t [τs,t −
τu,t(τε,t + τs,t)]}/[a2

t τs,t + τε,tτs,t + τ 2
ε,t].

� If ∆Dh l(τ
′
t; ρt) < |∆Nh l(τ

′
t; ρt)|, then welfare at the HCE must be higher:

W̃ (τ ′t; ρt)lce < W̃ (τ ′t; ρt)hce. The sufficient condition holds if for some quadru-

ples {τ ′t; ρt} such that [(τs,t + τε,t)(τε,t + a2
t τu,t) + τε,tτs,t]/τ

2
s,t < {a2

t [τs,t −
τu,t(τε,t + τs,t)]}/[a2

t τs,t + τε,tτs,t + τ 2
ε,t].

� If ∆Dh l(τ
′
t; ρt) = |∆Nh l(τ

′
t; ρt)|, then welfare is the same at either the

LCE or the HCE: W̃ (τ ′t; ρt)lce = W̃ (τ ′t; ρt)hce. The sufficient condition holds

if some quadruples {τ ′t; ρt} such that [(τs,t+τε,t)(τε,t+a
2
t τu,t)+τε,tτs,t]/τ

2
s,t =

{a2
t [τs,t − τu,t(τε,t + τs,t)]}/[a2

t τs,t + τε,tτs,t + τ 2
ε,t].

� Proposition 2. (i) ∂∆Dh+ l− (τ ′t;ρt)

∂kt
=

2ζ1(τ ′t;ρt)e
2ρtktρt

(1−ϕL)2 > 0 for any 0 < kt < kLt , so
∂∆W̃ (τ ′t;ρt)h+ l−

∂kt
> 0. Hence, for any ∆kt < 0, ∆W̃ (τ ′t; ρt)h+ l− 6 0.

(ii) As kt ↘ 0, limkt↘0 ∆Dh+ l−(τ ′t; ρt) = ζ1(τ ′t; ρt) + ζ0(τ ′t; ρt) > 0 and therefore

limkt↘0 ∆W̃ (τ ′t; ρt)h+ l− > 0.

(iii)
∂D

kt>k
H
t

(τ ′t;ρt)

∂kt
≡ 0 for any kt > kHt and therefore ∆Dh+ l−(τ ′t; ρt) = 0.

(iv) The cross-partial derivatives:

∂∆D2
h+ l−(τ ′t; ρt)

∂kt∂ρt
=

2e2ρtkt

(1− ϕL)2

τε,t
τs,t

[
1 + 2ktρt +

τ 2
ε,tτu,t

ρt

(
2kt −

1

ρt

)]
(A.25)

∂∆D2
h+ l−(τ ′t; ρt)

∂kt∂τε,t
=

2e2ρtktρt
(1− ϕL)2

∂ζ1(τ ′t; ρt)

∂τε,t
> 0 (A.26)

∂∆D2
h+ l−(τ ′t; ρt)

∂kt∂τs,t
=

2e2ρtktρt
(1− ϕL)2

∂ζ1(τ ′t; ρt)

∂τs,t
6 0 (A.27)

∂∆D2
h+ l−(τ ′t; ρt)

∂kt∂τu,t
=

2e2ρtktρt
(1− ϕL)2

∂ζ1(τ ′t; ρt)

∂τu,t
> 0 (A.28)

The first derivative is open ended but if 2kt >
1
ρt

, the sign must be positive. It means

that the risk tolerance is constrained. The signs for the rest derivatives follow Remark

2.1 in the main text.

� Proposition 3. The limits of two effects when the insurance opportunities are fully

realized are:

lim
τs,t↗∞

∆Dh l(τ
′
t; ρt) = lim

τs,t↗∞

(τs,t + τε,t)(τε,t + a2
t τu,t) + τε,tτs,t

τ 2
s,t

= lim
τs,t↗∞

(
2τε,t
τs,t

+
τ 2
ε,tτu,t

ρ2
t τs,t

+
τ 3
ε,tτu,t

ρ2
t τ

2
s,t

+
τ 2
ε,t

τ 2
s,t

)
= 0 (A.29)
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lim
τs,t↗∞

∆Nh l(τ
′
t; ρt) = lim

τs,t↗∞

a2
t [−τs,t + τu,t(τε,t + τs,t)]

a2
t τs,t + τε,tτs,t + τ 2

ε,t

=
τ 2
ε,t

ρ2
t

limτs,t↗∞

(
−1 + τu,t(τε,t+τs,t)

τs,t

)
limτs,t↗∞

(
τ2
ε,t

ρ2
t

+ τε,t +
τ2
ε,t

τs,t

)
=
τε,t(τu,t − 1)

ρ2
t + τε,t

(A.30)

Hence, the IP effect ∆Dh l(τ
′
t; ρt) can be zero whereas the sign of the IE effect

∆Nh l(τ
′
t; ρt) is not determined, but rather contingent to τu,t.

Suppose that the event of no insurance is A = {θt+1 : τs,t � ∞} and the event of

welfare cuts is B = {∆W̃ (τ ′t; ρt) : ∆W̃ (τ ′t; ρt) > 0}. The Hirshleifer effect implies

A⇒ B. If we observe that full insurance have caused welfare cuts, this directly entails

Ā = {θt+1 : τs,t ↗ ∞} ⇒ B. Its contrapositive is B̄ = {∆W̃ (τ ′t; ρt) : ∆W̃ (τ ′t; ρt) 6

0} ⇒ A that is the negation of B̄ ⇒ Ā that is the contrapositive of A ⇒ B. Thus, the

Hirshleifer effect is false. Furthermore, suppose that B′ means no welfare cuts such

that B′ = B̄, If we observe Ā ⇒ B′, this will be the converse to the Hirshleifer effect’s

contrapositive B̄ ⇒ Ā. Hence, the Hirshleifer effect is irrelevant to us.

� Proposition 4. (i) In the first case, the limits of the IP effect and the IE effect are

limτu,t↘0∆Dh l(τ
′
t; ρt) =

2τs,tτε,t + τ 2
ε,t

τ 2
s,t

> 0 (A.31)

limτu,t↘0∆Nh l(τ
′
t; ρt) = − τs,tτε,t

(τs,t + τε,t)ρ2
t + τs,tτε,t

6 0 (A.32)

When τu,t ↘ 0 and Qt 6 1, the second effect must be non-positive and necessarily

create welfare improvements, which backward affirms the finding in Proposition 1. The

overall welfare effect ∆W̃h l(τ
′
t; ρt) is:

∆W̃h l(τ
′
t; ρt) =

τs,tτ
3
ε,t + τ 3

ε,tρ
2
t + 2τ 2

s,tτ
2
ε,t + 3τs,tτ

2
ε,tρ

2
t + 2τ 2

s,tτε,tρ
2
t − τ 3

s,tτε,t

τ 2
s,t [τs,tτε,t + ρ2

t (τs,t + τε,t)]
(A.33)

The overall welfare effect is welfare cuts if τ 3
s,t < (2τs,t + τε,t) [ρ2

t (τs,t + τε,t) + τs,tτε,t]

and is welfare gains otherwise.

(ii) In the second case, market prices become P(st) = st− 1
at

due to ut = E(ut) = −1

and market prices display a one-for-one relationship with the signals. As the signal

has been fully revealed, which means that prices reveal the signals and people can

learn the signals from prices without purchasing, the welfare must stay, so there is

limτu,t↗∞∆W̃h l(τ
′
t; ρt) = eρtkt . Otherwise there is no closed-form solution since

∆Dh l(τ
′
t; ρt) and ∆Nh l(τ

′
t; ρt) encounter poor approximation.

49



(iii) ∆Dh l(τ
′
t; ρt) and ∆Nh l(τ

′
t; ρt) are increasing in τu,t:

∂∆Dh l(τ
′
t; ρt)

∂τu,t
=
τs,tτ

2
ε,t + τ 3

ε,t

τ 2
s,tρ

2
t

> 0 (A.34)

∂∆Nh l(τ
′
t; ρt)

∂τu,t
=

(
τs,t

τε,t + τs,t
+
ρ2
t

τε,t

)−1

> 0 (A.35)

The second order derivatives are zero, say ∂2∆Dh l(τ
′
t;ρt)

∂τ2
u,t

=
∂2∆Nh l(τ

′
t;ρt)

∂τ2
u,t

= 0 so both

effects are linear in τu,t. The absolute responsiveness of the overall welfare in τu,t is

defined as γaτu,t =
∂∆Dh l(τ

′
t;ρt)

∂τu,t
+

∂∆Nh l(τ
′
t;ρt)

∂τu,t
that can be shown constant and positive.

γaτu,t =
τs,tτ

2
ε,t + τ 3

ε,t

τ 2
s,tρ

2
t

+

(
τs,t

τε,t + τs,t
+
ρ2
t

τε,t

)−1

> 0 (A.36)

Moreover, the relative responsiveness of the overall welfare in τu,t is defined as γrτu,t

that is
∂∆W̃h l(τ

′
t;ρt)

∂τu,t

∆W̃h l(τ
′
t;ρt)

. As high τu,t raises the overall welfare while the γaτu,t is constant,

γrτu,t is falling in τu,t, when the net welfare is cuts whereas it is rising when the net

welfare is gains. Assume that ∆W̃h l(τ
′
t; ρt) 6= 0, the relative responsiveness can be

written as:

γrτu,t =

τs,tτ2
ε,t+τ

3
ε,t

τ2
s,tρ

2
t

+ τε,t(τε,t+τs,t)

τ2
ε,t+ρ

2
t (τε,t+τs,t)

(τs,t+τε,t)(τε,t+τ2
ε,tρ
−2
t τu,t)+τε,tτs,t

τ2
s,t

+
τu,tτ2

ε,t+(τu,t−1)τε,tτs,t

τε,tτs,t+ρ2
t (τε,t+τs,t)

> 0 (A.37)

(iv) Suppose that when ∆Nh l(τ
′
t; ρt) > 0, τ ∗u,t poises the two effects, say ∆Dh l(τ

′
t; ρt|τ ∗u,t) =

∆Nh l(τ
′
t; ρt|τ ∗u,t). Recall that the slopes of both effects in τu,t are linear so they can

only intersect once. Thus, given the limits at zero τu,t, if τ ∗u,t < 0, this means that in

τu,t ∈ (0,∞), ∆Dh l(τ
′
t; ρt) always dominates ∆Nh l(τ

′
t; ρt). Otherwise if τ ∗u,t > 0, it

is the fixed point under which τu,t ∈ (0, τ ∗u,t), ∆Dh l(τ
′
t; ρt) dominates ∆Nh l(τ

′
t; ρt),

and above which τu,t ∈ (τ ∗u,t, τ
†
u,t) the dominance switches. This τ ∗u,t can be solved as:

τ ∗u,t =
ρ2
t (τ

3
s,t + 2τ 2

s,tτε,t + 2τ 2
s,tρ

2
t + τs,tτ

2
ε,t + 3τs,tτε,tρ

2
t + τ 2

ε,tρ
2
t )

τ 3
s,tρ

2
t − τ 2

s,tτ
2
ε,t − τs,tτ 3

ε,t − 2τs,tτ 2
ε,tρ

2
t − τ 3

ε,tρ
2
t

(A.38)

Consequently, the sign of τ ∗u,t depends on the sign of τ 3
s,tρ

2
t−τ 2

s,tτ
2
ε,t−τs,tτ 3

ε,t−2τs,tτ
2
ε,tρ

2
t−

τ 3
ε,tρ

2
t .

The second constraint concerns the stark difference in the limits at zero τu,t. When

τu,t = 1−Qt, there is ∆Nh l(τ
′
t; ρt) = 0. Before ∆Nh l(τ

′
t; ρt) touches down to zero,

the conflict raises the concern about if there is a switch in the sign of the overall wel-

fare. The question entails the comparison between ∆Dh l(τ
′
t; ρt) and |∆Nh l(τ

′
t; ρt)|.

Suppose that τ̃u,t ∈ (0, 1−Qt) such that ∆Dh l(τ
′
t; ρt|τ̃u,t) = |∆Nh l(τ

′
t; ρt|τ̃u,t)| and

this is also a fixed point:

τ̃u,t =
ρ2
t (τ

3
s,t − 2τ 2

s,tτε,t − 2τ 2
s,tρ

2
t − τs,tτ 2

ε,t − 3τs,tτε,tρ
2
t − τ 2

ε,tρ
2
t )

τ 3
s,tρ

2
t + τ 2

s,tτ
2
ε,t + τs,tτ 3

ε,t + 2τs,tτ 2
ε,tρ

2
t + τ 3

ε,tρ
2
t

(A.39)

That limτu,t↘0 |∆Nh l(τ
′
t; ρt)|is larger than limτu,t↘0 ∆Dh l(τ

′
t; ρt) entails τ̃u,t ∈ (0, 1−

Qt) necessarily.
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. Claim 4.1: If there are some tuples {τs,t, τε,t, ρt} such that τ 3
s,tρ

2
t > τ 2

ε,t[(τs,t +

ρ2
t )(τε,t + τs,t) + ρ2

t τs,t] and τ 3
s,tτε,t > (2τs,tτε,t + τ 2

ε,t)[(τs,t + τε,t)ρ
2
t + τs,tτε,t],

∆W̃h l(τ
′
t; ρt) < 0 in τu,t ∈ (0, τ̃u) and the size ordering is |∆Nh l(τ

′
t; ρt)| >

∆Dh l(τ
′
t; ρt) > 0 > ∆Nh l(τ

′
t; ρt). ∆W̃h l(τ

′
t; ρt) > 0 in τu,t ∈ (τ̃u, 1−Qt) and

the size ordering is ∆Dh l(τ
′
t; ρt) > |∆Nh l(τ

′
t; ρt)| > 0 > ∆Nh l(τ

′
t; ρt). The

size ordering for any τu,t ∈ (1 − Qt, τ ∗u,t) is ∆Dh l(τ
′
t; ρt) > ∆Nh l(τ

′
t; ρt) > 0

and for any τu,t ∈ (τ ∗u,t, τ
†
u,t) is ∆Nh l(τ

′
t; ρt) > ∆Dh l(τ

′
t; ρt) > 0. For any

τu,t ∈ (1−Qt, τ †u,t), ∆W̃h l(τ
′
t; ρt) > 0.

. Claim 4.2: If there are some tuples {τs,t, τε,t, ρt} such that τ 3
s,tρ

2
t > τ 2

ε,t[(τs,t +

ρ2
t )(τε,t+τs,t)+ρ

2
t τs,t] and τ 3

s,tτε,t < (2τs,tτε,t+τ
2
ε,t)[(τs,t+τε,t)ρ

2
t+τs,tτε,t], there is no

such a non-negative τ̃u such that the overall welfare switches its sign and there-

fore, ∆W̃h l(τ
′
t; ρt) > 0 for all possibly positive τu,t but there is a non-negative τ ∗u

such that the importance for the overall welfare cuts switches. The size ordering:

for any τu,t ∈ (0, 1−Qt), ∆Dh l(τ
′
t; ρt) > |∆Nh l(τ

′
t; ρt)| > 0 > ∆Nh l(τ

′
t; ρt),

while for any τu,t ∈ (1−Qt, τ ∗u,t), ∆Dh l(τ
′
t; ρt) > ∆Nh l(τ

′
t; ρt) > 0 and for any

τu,t ∈ (τ ∗u,t, τ
†
u,t), ∆Nh l(τ

′
t; ρt) > ∆Dh l(τ

′
t; ρt) > 0.

. Claim 4.3: If there are some tuples {τs,t, τε,t, ρt} such that τ 3
s,tρ

2
t < τ 2

ε,t[(τs,t +

ρ2
t )(τε,t + τs,t) + ρ2

t τs,t] and τ 3
s,tτε,t > (2τs,tτε,t + τ 2

ε,t)[(τs,t + τε,t)ρ
2
t + τs,tτε,t], there

is no such a non-negative τ ∗u,t but there is a non-negative τ̃u in (0, 1−Qt). Thus,

∆W̃h l(τ
′
t; ρt) < 0 and the size ordering is |∆Nh l(τ

′
t; ρt)| > ∆Dh l(τ

′
t; ρt) >

0 > ∆Nh l(τ
′
t; ρt) for any τu,t ∈ (0, τ̃u), and ∆W̃h l(τ

′
t; ρt) > 0 for any τu,t ∈

(τ̃u, τ
†
u,t). For any τu,t ∈ (τ̃u, 1 − Qt), the size ordering is ∆Dh l(τ

′
t; ρt) >

|∆Nh l(τ
′
t; ρt)| > 0 > ∆Nh l(τ

′
t; ρt) while it is ∆Dh l(τ

′
t; ρt) > ∆Nh l(τ

′
t; ρt) >

0, for any τu,t ∈ (1−Qt, τ †u,t).

. Claim 4.4: If there are some tuples {τs,t, τε,t, ρt} such that τ 3
s,tρ

2
t < τ 2

ε,t[(τs,t +

ρ2
t )(τε,t+τs,t)+ρ

2
t τs,t] and τ 3

s,tτε,t < (2τs,tτε,t+τ
2
ε,t)[(τs,t+τε,t)ρ

2
t+τs,tτε,t], there is no

either a non-negative τ̃u or a non-negative τ ∗u,t. Thus, ∆W̃h l(τ
′
t; ρt) > 0 for any

non-negative τu,t. The size ordering: for any τu,t ∈ (0, 1 − Qt), ∆Dh l(τ
′
t; ρt) >

0 > ∆Nh l(τ
′
t; ρt) while for any τu,t ∈ (1−Qt, τ †u,t), ∆Dh l(τ

′
t; ρt) > ∆Nh l(τ

′
t; ρt) >

0.

� Proposition 5. (i) When τε,t ↘ 0, the two effects are being trivial and therefore,

the net welfare change goes to zero because evidently, there are:

∆Dh l(τ
′
t; ρt|τε,t ↘ 0) = 0 (A.40)

∆Nh l(τ
′
t; ρt|τε,t ↘ 0) = lim

τε,t↘0

τu,t
τε,t+τs,t
τs,t

− 1

1 +
ρ2
t

τε,t
τs,t

τε,t+τs,t

=
τu,t − 1

∞
= 0 (A.41)

Thus, ∆W̃h l(τ
′
t; ρt|τε,t ↘ 0) ≈ ∆Dh l(τ

′
t; ρt|τε,t ↘ 0) + ∆Nh l(τ

′
t; ρt|τε,t ↘ 0) = 0,

which means that the net welfare effect is almost non-existent. However, ∆W̃h l(τ
′
t; ρt) =

0 does not necessarily imply τε,t = 0.
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(ii) When τε,t ↗∞, the limit of the first effect is evidently positive infinity:

lim
τε,t↗∞

∆Dh l(τ
′
t; ρt) =∞ (A.42)

The limit of the second effect is

lim
τε,t↗∞

∆Nh l(τ
′
t; ρt) =

limτε,t↗∞[τs,t(τu,t − 1) + τu,tτε,t]

limτε,t↗∞

[
τs,t + ρ2

t

(
τs,t
τε,t

+ 1
)] =

∞
τs,t + ρ2

t

=∞ (A.43)

and therefore, limτε,t↗∞∆W̃h l(τ
′
t; ρt) =∞.

(iii) The absolute responsiveness of the overall welfare to informational advantages

is:

γaτε,t =
∂∆W̃h l(τ

′
t; ρt)

∂τε,t
=
∂∆Dh l(τ

′
t; ρt)

∂τε,t
+
∂∆Nh l(τ

′
t; ρt)

∂τε,t
(A.44)

where

∂∆Dh l(τ
′
t; ρt)

∂τε,t
=

{
3τ 2
ε,tτu,t + 2τε,tρ

2
t + 2τs,tτε,tτu,t + 2τs,tρ

2
t

τ 2
s,tρ

2
t

}
(A.45)

∂∆Nh l(τ
′
t; ρt)

∂τε,t
=

{
τs,tτ

4
ε,tτu,t + τ 4

ε,tρ
2
t τu,t + 2τs,tτ

3
ε,tρ

2
t τu,t + τ 2

s,tτ
2
ε,tρ

2
t (τu,t − 1)[

τs,tτ 2
ε,t + τε,tρ2

t (τs,t + τε,t)
]2

}
(A.46)

∂∆Dh l(τ
′
t;ρt)

∂τε,t
> 0 is evident while the sign of ∂∆Nh l(τ

′
t;ρt)

∂τε,t
is not unambiguous. The sec-

ond order derivatives are ∂2∆Dh l(τ
′
t;ρt)

∂τ2
ε,t

=
6τu,tτε,t+2τu,tτs,t+2ρ2

t

ρ2
t τ

2
s,t

> 0 and ∂2∆Nh l(τ
′
t;ρt)

∂τ2
ε,t

=

2τ2
s,tρ

2
t τ

3
ε,t[τs,t(1−τu,t)+ρ2

t ]

[τs,tτ2
ε,t+ρ

2
t τε,t(τε,t+τs,t)]

3 . Thus, ∆Dh l(τ
′
t; ρt) is convex and ∆Nh l(τ

′
t; ρt) is convex if

τs,t(1 − τu,t) + ρ2
t > 0 and is concave if τs,t(1 − τu,t) + ρ2

t < 0. But this is not too

surprising because the IE works differently on information of different quality. Define a

function O(τε,t; ρt, τs,t, τu,t) = τs,tτ
4
ε,tτu,t + τ 4

ε,tρ
2
t τu,t + 2τs,tτ

3
ε,tρ

2
t τu,t + τ 2

s,tτ
2
ε,tρ

2
t (τu,t − 1)

that pins down the indeterminacy of the sign. O(τε,t; ρt, τs,t, τu,t) = 0 delivers three

real roots and wherein the first one is weakly negative, and the second is zero, and

the last one, however, owns an ambiguous sign. In fact, the indeterminacy can be

affirmed by pinning down this ambiguous sign. This root can be shown equal to
τs,tρt

[√
τu,t(τs,t−τs,tτu,t+ρ2

t )−τu,tρt
]

τu,t(τs,t+ρ2
t )

, denoted as τ̃ε,t. Since O(τε,t; ρt, τs,t, τu,t) has a criti-

cal point at τε,t = 0, there are only two cases where this critical point is a local maxima

once τ̃ε,t > 0 or a local minima once τ̃ε,t 6 0. Given thatO(τε,t; ρt, τs,t, τu,t|τε,t = 0) = 0,

the first case implies thatO(τε,t; ρt, τs,t, τu,t) will becomes negative in τε,t ∈ R+ whereas

the second case implies that it turns positive in τε,t ∈ R+.

. If τ̃ε,t 6 0, there is ∂∆Nh l(τ
′
t;ρt)

∂τε,t
> 0 for any τε,t > 0. The condition

τs,tρt
[√

τu,t(τs,t−τs,tτu,t+ρ2
t )−τu,tρt

]
τu,t(τs,t+ρ2

t )
6

0 implies (τs,t + ρ2
t )(1− τu,t) 6 0 and further entails τu,t > 1 that is, however, not

sufficient to pin down the curvature.

. If τ̃ε,t > 0, there is ∂∆Nh l(τ
′
t;ρt)

∂τε,t
< 0 and ∆Nh l(τ

′
t; ρt) < 0 in 0 < τε,t < τ̃ε,t,

given ∆Nh l(τ
′
t; ρt|τε,t ↘ 0) = 0 while it will be ∂∆Nh l(τ

′
t;ρt)

∂τε,t
> 0 for any
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τε,t > τ̃ε,t. The condition
τs,tρt

[√
τu,t(τs,t−τs,tτu,t+ρ2

t )−τu,tρt
]

τu,t(τs,t+ρ2
t )

> 0 implies (τs,t +

ρ2
t )(1 − τu,t) > 0 and further entails τu,t < 1 that enforces strict convexity due

to ∆Nh l(τ
′
t; ρt|τu,t < 1) > 0.

Likewise, the relative responsiveness can be written as γrτε,t =
∂∆W̃h l(τ

′
t;ρt)

∂τε,t

∆W̃h l(τ
′
t;ρt)

, if assume

∆W̃h l(τ
′
t; ρt) 6= 0.

γrτε,t =

3τ2
ε,tτu,t+2τε,tρ2

t+2τs,tτε,tτu,t+2τs,tρ2
t

τ2
s,tρ

2
t

+
τs,tτ4

ε,tτu,t+τ
4
ε,tρ

2
t τu,t+2τs,tτ3

ε,tρ
2
t τu,t+τ

2
s,tτ

2
ε,tρ

2
t (τu,t−1)

[τs,tτ2
ε,t+τε,tρ

2
t (τs,t+τε,t)]

2

(τs,t+τε)(τε,t+τ2
ε,tρ
−2
t τu,t)+τετs,t

τ2
s,t

+
τu,tτ2

ε,t+(τu,t−1)τε,tτs,t

τε,tτs,t+ρ2
t (τε,t+τs,t)

(A.47)

(iv) The overall welfare patterns are subject to two constraints. The first one is if τ̃ε,t > 0

such that for some small τε,t, ∆Nh l(τ
′
t; ρt) is negative and convex, and the second

one is if two effects can cross such that the dominance in increasing overall welfare cuts

might switch, when both effects cause welfare cuts. In the first place, define τ ∗ε,t > 0 at

which the two effects are poised, say ∆D = ∆N :

τ ∗ε,t =
ρtχt − τs,tτu,tρ2

t − τs,tρ2
t − ρ4

t

2[(τs,t + ρ2
t )τu,t]

(A.48)

where χt = (4τ 3
s,tτ

2
u,t− 4τ 3

s,tτu,t + 5τ 2
s,tτ

2
u,tρ

2
t − 10τ 2

s,tτu,tρ
2
t + τ 2

s,tρ
2
t − 6τs,tτu,tρ

4
t + 2τs,tρ

4
t +

ρ6
t )

1
2

11. The further scrutinizing enforces τ ∗ε,t < 0 and it implicitly requires τu,t ∈(
0,

2ρ2
t+τs,t
τs,t

)
. Therefore, when τu,t < 1, τ ∗ε,t must be negative. This means that when

∆N (τ ′t; ρt) is convex, there will be no positive intersection between ∆D(τ ′t; ρt) and

∆N (τ ′t; ρt). Moreover, when τu,t ∈
(

1,
2ρ2
t+τs,t
τs,t

)
, there is still τ ∗ε,t < 0 whereas once

τu,t >
2ρ2
t+τs,t
τs,t

, τ ∗ε,t > 0 and therefore, the intersection can be seen.

On the one hand, let us focus on the case of τ ∗ε,t > 0 and the straight-up ques-

tion is in what patterns the two effects move to the point τ ∗ε,t. Intuitively, the vari-

ety depends on the curvature of ∆N (τ ′t; ρt), given that ∆D(τ ′t; ρt) is known convex

at all times. Using the derived second-order derivative, the convexity is obtained if

τu,t ∈
(

1,
τs,t+ρ2

t

τs,t

)
and otherwise if τu,t >

τs,t+ρ2
t

τs,t
, it becomes concave. Irrespective of

the curvature, once τ ∗ε,t > 0, there are the following size orderings. When τε,t < τ ∗ε,t,

∆Nh l(τ
′
t; ρt) > ∆Dh l(τ

′
t; ρt), and when τε,t > τ ∗ε,t, ∆Nh l(τ

′
t; ρt) < ∆Dh l(τ

′
t; ρt).

On the other hand, if τ ∗ε,t 6 0, there will be no intersection in R+, which means that

one effect always dominates the other one. Given the root distribution of τ ∗ε,t = 0, it

implies that ∆D −∆N must be positive for τε,t > 0 and therefore, it is ∆D(τ ′t; ρt) that

dominates. Denote τ̂ε,t = (1−τu,t)τs,t
τu,t

such that ∆Nh l(τ
′
t; ρt) = 0.

. Claim 5.1: If τu,t < 1, ∆Nh l(τ
′
t; ρt) < 0 in τε,t ∈ (0, τ̂ε,t) and it drops to the

minimum at τε,t = τ̃ε,t before bouncing back. In this case, τ ∗ε,t < 0. Define

τ ′ε,t > 0 at which |∆Nh l(τ
′
t; ρt)| = ∆Dh l(τ

′
t; ρt) (τ ′ε,t not shown but solv-

11Denote the four roots as {τ [1]ε,t , τ
[2]
ε,t , τ

[3]
ε,t , τ

[4]
ε,t} and the solutions are τ [1]ε,t = 0, τ [2]ε,t = −τs,t, τ [3]ε,t = τ∗ε,t,

τ
[4]
ε,t = −ρtχt+τs,tτu,tρ

2
t+τs,tρ

2
t+ρ

4
t

2[(τs,t+ρ2t )τu,t]
. Among them, τ [2]ε,t and τ [4]ε,t are weakly negative for sure, so they are

not useful to pin down the question. τ [1]ε,t is zero and affirms the derivation earlier that zero is a fixed
point, irrespective of all else. τ∗ε,t is used here for pinning down the question once it is positive.
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able because it is also a fixed point). |∆Nh l(τ
′
t; ρt)| and ∆Dh l(τ

′
t; ρt) can

cross if limτε,t↘0
∂|∆Nh l(τ

′
t;ρt)|

∂τε,t
> limτε,t↘0

∂∆Dh l(τ
′
t;ρt)

∂τε,t
, say τu,t > 1 +

2ρ2
t

τs,t
, and

this is the same restriction for ∆D(τ ′t; ρt) crossing ∆N (τ ′t; ρt). Thus, the size

ordering is that when τε,t ∈ (0, τ ′ε,t), there are net welfare improvements and

|∆Nh l(τ
′
t; ρt)| > ∆Dh l(τ

′
t; ρt) > 0 > ∆Nh l(τ

′
t; ρt). When τε,t ∈ (τ ′ε,t, τ̂ε), the

welfare cuts dominate the welfare gains and ∆Dh l(τ
′
t; ρt) > |∆Nh l(τ

′
t; ρt)| >

0 > ∆Nh l(τ
′
t; ρt), and when τε,t ∈ (τ̂ε,∞), , the welfare cuts caused by

∆D(τ ′t; ρt) dominate the welfare cuts caused by ∆N (τ ′t; ρt) and ∆Dh l(τ
′
t; ρt) >

∆Nh l(τ
′
t; ρt) > 0.

. Claim 5.2: The only difference from Claim 5.1 is that τu,t 6 1 +
2ρ2
t

τs,t
and τ ′ε,t > 0

cannot be found. Thus, the size ordering is that when τε,t ∈ (0, τ̂ε), ∆Dh l(τ
′
t; ρt) >

|∆Nh l(τ
′
t; ρt)| > 0 > ∆Nh l(τ

′
t; ρt), and when τε,t ∈ (τ̂ε,∞), ∆Dh l(τ

′
t; ρt) >

∆Nh l(τ
′
t; ρt) > 0.

. Claim 5.3: If τu,t > 1 and τ ∗ε,t > 0, ∂∆Dh l(τ
′
t;ρt)

∂τε,t
> 0 and ∂∆Nh l(τ

′
t;ρt)

∂τε,t
> 0 for

any τε,t > 0, but there is a switch in dominance at τ ∗ε,t. Moving to this point,

∆Nh l(τ
′
t; ρt) is concave if τu,t >

τs,t+ρ2
t

τs,t
and is convex if τu,t ∈

(
1,

τs,t+ρ2
t

τs,t

)
.

Hence, the size ordering is that when τε,t ∈ (0, τ ∗ε,t), ∆Nh l(τ
′
t; ρt) > ∆Dh l(τ

′
t; ρt) >

0, and when τε,t ∈ (τ ∗ε,t,∞), ∆Dh l(τ
′
t; ρt) > ∆Nh l(τ

′
t; ρt) > 0.

. Claim 5.4: If τu,t > 1 and τ ∗ε,t 6 0, the only difference from Claim 5.3 is the losses

of the switch in dominance at τ ∗ε,t. Hence, the size ordering is that for any τε,t > 0,

∆Dh l(τ
′
t; ρt) > ∆Nh l(τ

′
t; ρt) > 0 is always the case.

� Proposition 6. (i) All else constant, when τs,t ↘ 0, the limits of each effect are:

∆Dh l(τ
′
t; ρt|τs,t ↘ 0) = lim

τs,t↘0

2τε,t +
τ2
ε,t

ρ2
t
τu,t

2τs,t
=∞ (A.49)

∆Nh l(τ
′
t; ρt|τs,t ↘ 0) =

τε,tτu,t
ρ2
t

> 0 (A.50)

Given that the tuples (τu,t, τε,t, ρt) are limited, limτs,t↘0 ∆W̃h l(τ
′
t; ρt) =∞.

(ii) When τs,t ↗∞, the limits of each effect are solved in Proposition 3. When τs,t ↗∞,

the overall welfare is limτs,t↗∞∆W̃h l(τ
′
t; ρt) = τε,t(τu,t−1)

τε,t+ρ2
t

that is positive if τu,t > 1 and

that is, however, negative if τu,t < 1.

(iii) The absolute responsiveness of the overall welfare to signal informativeness is

defined as:

γaτs,t =
∂∆W̃h l(τ

′
t; ρt)

∂τs,t
=
∂∆Dh l(τ

′
t; ρt)

∂τs,t
+
∂∆Nh l(τ

′
t; ρt)

∂τs,t

=
−τ 2

ε,tτu,t(τs,t + 2τε,t)− 2τε,tρ
2
t τs,t − 2τ 2

ε,tρ
2
t

ρ2
t τ

3
s,t

+
τ 2
ε,t(−τ 3

ε,tτu,t − τ 2
ε,tρ

2
t )

(τ 2
ε,tτs,t + τε,tρ2

t τs,t + τ 2
ε,tρ

2
t )

2
(A.51)
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It is evident that ∂∆Dh l(τ
′
t;ρt)

∂τε,t
6 0 and ∂∆Nh l(τ

′
t;ρt)

∂τε,t
6 0. The relative responsiveness is:

γrτs,t =

−τ2
ε,tτu,t(τs,t+2τε,t)−2τε,tρ2

t τs,t−2τ2
ε,tρ

2
t

ρ2
t τ

3
s,t

+
τ2
ε,t(−τ3

ε,tτu,t−τ2
ε,tρ

2
t )

(τ2
ε,tτs,t+τε,tρ

2
t τs,t+τ

2
ε,tρ

2
t )

2

(τs,t+τε,t)(τε,t+τ2
ε,tρ
−2
t τu,t)+τε,tτs,t

τ2
s,t

+
τu,tτ2

ε,t+(τu,t−1)τε,tτs,t

τε,tτs,t+ρ2
t (τε,t+τs,t)

(A.52)

The second derivatives are

∂2∆Dh l(τ
′
t; ρt)

∂τ 2
s,t

=
2τε,t(τε,tτu,tτs,t + 2ρ2

t τs,t + 3τ 2
ε,tτu,t + 3τε,tρ

2
t )

ρ2
t τ

4
s,t

> 0 (A.53)

∂2∆Nh l(τ
′
t; ρt)

∂τ 2
s,t

= −
2τ 2
ε,t(τ

3
ε,tτu,t + τ 2

ε,tρ
2
t )(τ

2
ε,t + τε,tρ

2
t )

(τ 2
ε,tτs,t + τε,tρ2

t τs,t + τ 2
ε,tρ

2
t )

3
> 0 (A.54)

so both effects are convex.

(iv) The first constraint is from the limits in (ii). On the one hand, if the overall wel-

fare converges to a positive number, say τu,t > 1, then the effect of N is positive and

declining in τs,t. To poise the two individual effects, there are three real roots12 and

τu,t > 1 can determine only one positive root that is τ [2]
s,t , denoted as τ̃s,t. On the other

hand, if it converges to a negative number, say τu,t < 1, ∆Dh l(τ
′
t; ρt) does not cross

∆Nh l(τ
′
t; ρt) even once in all possible τs,t ∈ R+. But, the fixed point theorem en-

forces ∆Dh l(τ
′
t; ρt) to cross |∆Nh l(τ

′
t; ρt)| once because they are continuous and

limτs,t↘0 ∆Dh l(τ
′
t; ρt) − limτs,t↘0 |∆Nh l(τ

′
t; ρt)| > 0 and limτs,t↗∞∆Dh l(τ

′
t; ρt) −

limτs,t↗∞ |∆Nh l(τ
′
t; ρt)| < 0, there must exist a τ ∗s,t such that ∆Dh l(τ

′
t; ρt|τs,t =

τ ∗s,t) = |∆Nh l(τ
′
t; ρt|τs,t = τ ∗s,t)|. Furthermore, when τs,t = τε,tτu,t

1−τu,t , ∆Nh l(τ
′
t; ρt) = 0,

as denoted as τ̂s,t. Hence, there are only two distinct cases:

. Claim 6.1: If τu,t > 1, the welfare cuts are reinforced in general by either IP or IE.

But when τs,t < τ̃s,t, the IP dominates, say ∆Dh l(τ
′
t; ρt) > ∆Nh l(τ

′
t; ρt) > 0

whereas the dominance switches to the IE as long as τs,t > τ̃s,t, say ∆Nh l(τ
′
t; ρt) >

∆Dh l(τ
′
t; ρt) > 0.

. Claim 6.2: If τu,t < 1, the welfare cuts caused by both effects but the IP happen to

be the dominant force when τs,t < τ̂s,t, say ∆Dh l(τ
′
t; ρt) > ∆Nh l(τ

′
t; ρt) > 0.

Even though the IE starts to create welfare gains, it cannot offset the welfare cuts

caused by the IP when τ̂s,t < τs,t < τ ∗s,t, say ∆Dh l(τ
′
t; ρt) > |∆Nh l(τ

′
t; ρt)| >

0 > ∆Nh l(τ
′
t; ρt). It, however, turns out to be net welfare improvements pro-

duced by the IE, say |∆Nh l(τ
′
t; ρt)| > ∆Dh l(τ

′
t; ρt) > 0 > ∆Nh l(τ

′
t; ρt) as

12Denote these roots as τ [1]s,t , τ
[2]
s,t , τ

[3]
s,t , which equal to:

τ
[1]
s,t = −τε,t

τ
[2]
s,t =

−
√
B2 − 4(ρ2t − τu,tρ2t )(τ2ε,tτu,tρ2t + τε,tρ4t )− B

2 [ρ2t (1− τu,t)]

τ
[3]
s,t =

√
B2 − 4(ρ2t − τu,tρ2t )(τ2ε,tτu,tρ2t + τε,tρ4t )− B

2 [ρ2t (1− τu,t)]

where B = τ2ε,tτu,t+τε,tτu,tρ
2
t +τε,tρ

2
t +2ρ4t . Evidently, τu,t > 1 implies [B2−4(ρ2t −τu,tρ2t )(τ2ε,tτu,tρ2t +

τε,tρ
4
t )]

1
2 > B and therefore, τ [2]s,t > 0 and τ

[3]
s,t < 0. Moreover, τu,t < 1 implies [B2 − 4(ρ2t −

τu,tρ
2
t )(τ

2
ε,tτu,tρ

2
t + τε,tρ

4
t )]

1
2 < B and therefore, τ [2]s,t < 0 and τ [3]s,t < 0. τ [1]s,t 6 0 for any cases.
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long as τs,t > τ ∗s,t.

� Proposition 7. (i) The limits of the two effects as ρt ↘ 0 are:

lim
ρt↘0

∆Dh l(τ
′
t; ρt) =∞ (A.55)

lim
ρt↘0

∆Nh l(τ
′
t; ρt) =

τu,tτε,t + τs,t(τu,t − 1)

τs,t

> 0, if τu,t +Qt > 1

6 0, if τu,t +Qt 6 1
(A.56)

Therefore, as ρt ↘ 0, the overall welfare effect goes to limρt↘0 ∆W̃h l(τ
′
t; ρt) =∞.

(ii) The limits of the two effects as ρt ↗∞ are:

lim
ρt↗∞

∆Dh l(τ
′
t; ρt) =

τ 2
ε,t + 2τs,tτε,t

τ 2
s,t

> 0 (A.57)

lim
ρt↗∞

∆Nh l(τ
′
t; ρt) = 0 (A.58)

Therefore, as ρt ↗ ∞, the overall welfare effect goes to limρt↗∞∆W̃h l(τ
′
t; ρt) =

τ2
ε,t+2τs,tτε,t

τ2
s,t

.

(iii) The absolute responsiveness is

γaρt =
∂∆W̃h l(τ

′
t; ρt)

∂ρt
=
∂∆Dh l(τ

′
t; ρt)

∂ρt
+
∂∆Nh l(τ

′
t; ρt)

∂ρt

= −
2τ 2
ε,tτu,t(τs,t + τε,t)

τ 2
s,tρ

3
t

+
2τ 3
ε,tρt(τε,t + τs,t)[(1− τu,t)τs,t − τu,tτε,t]

(τs,tτ 2
ε,t + τs,tτε,tρ2

t + τ 2
ε,tρ

2
t )

2
(A.59)

and the relative responsiveness:

γrρt =
−2τ2

ε,tτu,t(τs,t+τε,t)

τ2
s,tρ

3
t

+
2τ3
ε,tρt(τε,t+τs,t)[(1−τu,t)τs,t−τu,tτε,t]

(τs,tτ2
ε,t+τs,tτε,tρ

2
t+τ

2
ε,tρ

2
t )

2

(τs,t+τε,t)(τε,t+τ2
ε,tρ
−2
t τu,t)+τε,tτs,t

τ2
s,t

+
τu,tτ2

ε,t+(τu,t−1)τε,tτs,t

τε,tτs,t+ρ2
t (τε,t+τs,t)

(A.60)

When τu,t + Qt > 1 holds, γaρt < 0 and γrρt < 0. The change rate in the overall

welfare is not monotonic if τu,t + Qt 6 1. The second derivatives are ∂2∆Dh l(τ
′
t;ρt)

∂ρ2
t

=
6τ2
ε,tτu,t(τs,t+τε,t)

τ2
s,tρ

4
t

> 0 and ∂2∆Nh l(τ
′
t;ρt)

∂ρ2
t

=
2τ4
ε,t(τs,tτε,t+3τε,tρ2

t+3τs,tρ2
t )(τs,t+τε,t)[(τu,t−1)τs,t+τs,tτε,t]

v(τs,tτ2
ε,t+τs,tτε,tρ

2
t+τ

2
ε,tρ

2
t )

3 >

0 if τu,t +Qt > 1 holds and the two effects are convex. If τu,t +Qt 6 1, ∆Nh l(τ
′
t; ρt)

is concave in ρt, which offers the other possible welfare pattern.

(iv) If τu,t + Qt 6 1, ∆Nh l(τ
′
t; ρt) is negative and concave, and converges to zero

when ρt ↗∞. ∆Dh l(τ
′
t; ρt) is positive and convex, and also converges to zero when

ρt ↗ ∞. The overall welfare pattern concerns if the absolute size of N can be larger

than D . So let ∆Dh l(τ
′
t; ρt) = |∆Nh l(τ

′
t; ρt)| and denote ut = ρ2

t and u2
t = ρ4

t and
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simplify it:

λ1u
2
t + λ2ut + λ0 = 0 (A.61)

where λ0 = τ 3
ε,tτu,tτ

2
s,t + τ 4

ε,tτu,tτs,t

λ1 = τ 3
ε,t+2τε,tτ

2
s,t + 3τ 2

ε,tτs,t

λ2 = τ 4
ε,tτu,t + τε,tτu,tτ

3
s,t − τε,tτ 3

s,t + 2τ 2
ε,tτu,tτ

2
s,t + 2τ 2

ε,tτ
2
s,t + 2τ 3

ε,tτu,tτs,t + τ 3
ε,tτs,t

This becomes a simple one-dimension quadratic equation. If the discriminant ∆† =

λ2
2 − 4λ1λ0 > 0, there will be four distinct real roots in which two positive and two neg-

ative are the solutions13. The two positive roots are of interest and denote the smaller

one as ρ∗L and the larger one as ρ∗H . The net welfare gains only occur between the

two cutoffs whereas out of the range, the net welfare effect is welfare loss. Otherwise

if ∆† = λ2
2 − 4λ1λ0 6 0, the net welfare cuts are for all possible ρt, which are explained

mainly by the IP.

If τu,t + Qt > 1, ∆Dh l(τ
′
t; ρt) and ∆Nh l(τ

′
t; ρt) are positive and convex, and con-

verge to zero when ρt ↗∞. The overall welfare pattern concerns the exact number of

N and D . So in this case, let ∆Dh l(τ
′
t; ρt) = ∆Nh l(τ

′
t; ρt) and denote ut = ρ2

t and

u2
t = ρ4

t and simplify it:

ν1u
2
t + ν2ut + ν0 = 0 (A.62)

where ν0 = λ0

ν1 = λ1

ν2 = τ 4
ε,tτu,t − τε,tτu,tτ 3

s,t + τε,tτ
3
s,t + 2τ 2

ε,tτ
2
s,t + τ 3

ε,tτs,t + 2τ 3
ε,tτu,tτs,t

If the discriminant ∆‡ = λ2
2−4λ1λ0 > 0, again there will be four distinct real roots two of

which are positive and the other two of which are negative. The two positive roots are

of interest and denote the smaller one as ρ
′
L and the larger one as ρ

′
H . There are no

welfare gains but rather, the IE causes more welfare cuts only between the two cutoffs

and out of this range, the other effect explains the main welfare cuts. Otherwise if

∆† = λ2
2− 4λ1λ0 6 0, the net welfare cuts are for all possible ρt. Also, it is worth noting

that there are some special cases. For example, when (τu,t, τs,t, τε,t) = (0.5, 0.5, 0.5),

there is ∆Nh l(τ
′
t; ρt) = 0 for any ρt > 0. In addition, when ∆† = ∆‡ = 0, there is only

one intersection between the two effects but in either case, it does not affect the overall

dominance of one effect over the other effect. Thus, these special cases are trivial.

. Claim 7.1: If τu,t +Qt 6 1 and ∆† > 0, welfare cuts can be expected when ρt <

ρ∗L or ρt > ρ∗H whereas welfare gains can be expected when ρ∗L < ρt < ρ∗H . The

size ordering: when ρt ∈ (0, ρ∗L) ∪ (ρ∗H ,∞), ∆Dh l(τ
′
t; ρt) > |∆Nh l(τ

′
t; ρt)| >

0 > ∆Nh l(τ
′
t; ρt). When ρt ∈ (ρ∗L, ρ

∗
H), |∆Nh l(τ

′
t; ρt)| > ∆Dh l(τ

′
t; ρt) > 0 >

∆Nh l(τ
′
t; ρt).

. Claim 7.2: If τu,t + Qt 6 1 and ∆† 6 0, welfare cuts are always expected. The

size ordering is ∆Dh l(τ
′
t; ρt) > |∆Nh l(τ

′
t; ρt)| > 0 > ∆Nh l(τ

′
t; ρt).

13To save space, they are not shown. It can be seen that ut and u2t must be non-negative. For
instance, each ut > 0 can generate two roots - ρ[1]t =

√
ut and ρ[2]t = −√ut. There are at most four

distinct real roots.

57



. Claim 7.3: If τu,t +Qt > 1 and ∆‡ > 0, welfare cuts are always expected but the

dominance switches at two cutoffs. When ρt ∈ (0, ρ′L)∪(ρ∗H ,∞), ∆Dh l(τ
′
t; ρt) >

∆Nh l(τ
′
t; ρt) > 0 whereas as ρt ∈ (ρ∗L, ρ

∗
H), ∆Nh l(τ

′
t; ρt) > ∆Dh l(τ

′
t; ρt) >

0.

. Claim 7.4: If τu,t + Qt > 1 and ∆‡ 6 0, ∆Dh l(τ
′
t; ρt) > ∆Nh l(τ

′
t; ρt) > 0

entails welfare cuts at all possible ρt.

� Lemma 5. Given that ωt = st + ut
µ∗t (kt)at

contains the same information as price,

plug the informed and uninformed demand into the market clearing condition and then

apply Bayes’ Rule.

µ∗t (kt) · at(st −P(st, ut))︸ ︷︷ ︸
XI(st,pt)

+ (1− µ∗t (kt)) ·
Et(θ̇t+1|ωt)−P(st, ut)

ρtVt(θ̇t+1|ωt)︸ ︷︷ ︸
XU (pt)

+ ut = 0

P(st, ut) =
µ∗t (kt)atst + ut +

(1−µ∗t (kt))Et(θ̇t+1|ωt)
ρtVt(θ̇t+1|ωt)

µ∗t (kt)at +
1−µ∗t (kt)

ρtVt(θ̇t+1|ωt)

=

(1−µ∗t (kt))(τs,tθ̄t+1+µ∗t (kt)atτu,t)

τs,t+(µ∗t (kt)at)2τu,t

ρtµ∗t (kt)at {[τs,t + (µ∗t (kt)at)
2τu,t]−1 + σε2

t}+ 1− µ∗t (kt)︸ ︷︷ ︸
α1

+

[
(1−µ∗t (kt))(µ∗t (kt)at)2τu,t
τs,t+(µ∗t (kt)at)2τu,t

+ ρtµ
∗
t (kt)at {[τs,t + (µ∗t (kt)at)

2τu,t]
−1 + σε

2
t}
]

ρtµ∗t (kt)at {[τs,t + (µ∗t (kt)at)
2τu,t]−1 + σε2

t}+ 1− µ∗t (kt)︸ ︷︷ ︸
α2

· ωt (A.63)

where α1 and α2 are constants and can be further simplified:

α1 =
ρt(τε,tτu,tµ

∗
t (kt) + θ̄t+1τs,tρt)(1− µ∗t (kt))

τ 2
ε,tτu,tµ

∗
t (kt)

2 + τε,tρ2
tµ
∗
t (kt) + τs,tρ2

t

(A.64)

α2 =
µ∗t (kt)(τ

2
ε,tτu,tµ

∗
t (kt) + τε,tρ

2
t + τs,tρ

2
t )

τ 2
ε,tτu,tµ

∗
t (kt)

2 + τε,tρ2
tµ
∗
t (kt) + τs,tρ2

t

(A.65)

� Proposition 8. Provided that the only randomness in the random variable Xt is

from ωt = st + ut
µ∗t (kt)at

∼ N
(
θ̄t+1 −

√
τu,t
B−τs,t , τ

−1
s,t + 1

B−τs,t

)
, Xt also follows a normal

distribution. The mean of Xt is

µX =

τs,tθ̄t+1+
√
τu,t(B−τs,t)
B +

[
B−τs,t
B − α2

] (
θ̄t+1 −

√
τu,t
B−τs,t

)
− α1√

2 {[τs,t + (µ∗t (kt)at)
2τu,t]−1 + σε2

t}

=
1√
2
·
θ̄t+1(1− α2) + α2

√
τu,t
B−τs,t − α1√

B−1 + τ−1
ε,t

(A.66)
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and the variance of Xt is

σ2
X =

(
B−τs,t
B − α2

)2 (
τ−1
s,t + 1

B−τs,t

)
2
(
B−1 + τ−1

ε,t

)
=

1

2

τε,t [(1− α2)B − τs,t]2

τs,t(B − τs,t) (B + τε,t)
(A.67)

Hence, the welfare of an interior equilibrium can be written as

Wint(τ
′
t; ρt) = Et

(
−e−X 2

t

)
= −

exp
{
− µ2

X
1+σ2

X

}
√

1 + σ2
X

= −

exp

−1
2

[
θ̄t+1(1−α2)+α2

√
τu,t
B−τs,t

−α1

]2

Bτε,tτs,t(B−τs,t)

τs,t(B−τs,t)(B+τε,t)+τε,t[(1−α2)B−τs,t]2

√
1 + τε,t[(1−α2)B−τs,t]2

τs,t(B−τs,t)(B+τε,t)

(A.68)

The logarithm linearized welfare function W̃ (·)int is derived à la the same decomposi-

tion as the discrete case. Define the terms Dint and Nint on behave of the behavior in

IP and the behavior in IE:

W̃int(·) = − ln (−Wint(τ
′
t; ρt)) =

1

2
Dint(µ

∗
t (kt)) +

1

2
ln (1 + Nint(µ

∗
t (kt)))

≈ Dint(µ
∗
t (kt)) + Nint(µ

∗
t (kt)) (A.69)

where

Dint(µ
∗
t (kt)) =

τε,t [(1− α2)B − τs,t]2

τs,t(B − τs,t) (B + τε,t)
(A.70)

Nint(µ
∗
t (kt)) =

[
θ̄t+1(1− α2) + α2

√
τu,t
B−τs,t − α1

]2

Bτε,tτs,t(B − τs,t)

τs,t(B − τs,t) (B + τε,t) + τε,t [(1− α2)B − τs,t]2
(A.71)
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