Long-term interest rates and bank loan supply: Evidence from firm-bank loan-level data

Arito Ono (Chuo University)
Kosuke Aoki (University of Tokyo)
Shinichi Nishioka (Japan Research Institute)
Kohei Shintani (Bank of Japan)
Yosuke Yasui (Japan Research Institute)

2023 EEA meeting
 28 August 2023

* The views expressed are ours and do not necessarily reflect those of the Bank of Japan or any of the institutions with which we are affiliated.

Research background

- Empirical evidence on unconventional monetary policies (MP):
- Unconventional MP lowered long-term interest rates (Fukunaga et al. 2015, Gagnon et al. 2011, Krishnamurthy and Vissing-Jorgensen 2011).
- Institutional investors rebalanced their portfolios towards riskier assets (Carpenter et al. 2015, Joyce et al. 2014, Foley-Fisher et al. 2016).

Research background

- Mixed evidence on the impact of unconventional MP on bank loan supply
- Unconventional MP increased bank loan supply (Bottero et al. 2022, Rodnyansky and Darmouni 2017).
- Unconventional MP (esp. negative interest rates) reduced bank loan supply (Brunnermeier and Koby 2018, Heider et al. 2019).

What we do

- We examine whether the decline in long-term interest rates has stimulated bank loan supply.
- We examine three transmission channels of a change in long-term interest rates simultaneously.
- (i) portfolio balance channel
- (ii) bank balance sheet (BS) channel
- (iii) risk-taking channel
- Previous studies have examined these channels independently.
- Data: Firm-bank panel data in Japan during 20022014

MP and long-term interest rates

What we find

- Portfolio balance channel: Unanticipated reductions in long-term interest rates increased bank loan supply.
- The effect is stronger for banks with higher expected returns on loans.
- Bank BS channel: Banks that enjoyed capital gains on their bond holdings increased bank loan supply. However, we find an insignificant result when firm-year fixed effects are controlled for.
- Risk-taking channel: The positive effect of capital gains on bonds was stronger in the case of loans to smaller, more leveraged, and less creditworthy firms.
- The transmission channels of MP are heterogeneous among banks and firms.

Outline

- Developments in monetary policy and bank portfolios in Japan
- Theoretical model (intuition)
- Data, empirical strategy
- Results
- Conclusion

THEORETICAL MODEL

Overview

- A simple mean-variance model of bank portfolio selection, subject to the value-at-risk (VaR) constraint (Adrian and Shin 2011)
- We consider a bank that invests in loans and government bonds, taking the prices of those assets as given.
- VaR constraint: Bank should hold sufficient net worth to absorb losses from loans and bonds under the stress event.

Overview

- Three transmission channels through which a change in the price of bonds (long-term interest rates) affects bank loans supply
- Portfolio balance channel: net of "substitution effect" and "income effect"
- Bank BS channel: net worth effect
- Risk taking channel: larger net worth effect for riskier loans.

Overview

Bank's BS and expected profit

- Balance sheet constraint

$$
L+B=D+N
$$

where L : loan, B : bond, D : deposit, N : net worth

- Expected profit

$$
\begin{aligned}
& \mathrm{E}[\pi]=\mathrm{E}\left[r_{L} L+r_{B} B-r_{D} D\right] \\
& =\mathrm{E}\left[\left(r_{L}-r_{D}\right) L+\left(r_{B}-r_{D}\right) B-r_{D} N\right]
\end{aligned}
$$

where r_{i} : interest rate of $i . r_{L}$ and r_{B} are stochastic variables with mean and standard deviation (μ_{L}, σ_{L}) and $\left(\mu_{B}, \sigma_{B}\right)$. We assume $\operatorname{Corr}\left(r_{L}, r_{B}\right)=0$.

Bank's portfolio selection

- Bank's optimization problem

$$
\operatorname{Max} \mathrm{E}[\pi]-\frac{\gamma}{2} \operatorname{Var}[\pi]
$$

- VaR constraint

$$
\left(\mu_{L}-n \sigma_{L}-r_{D}\right) L+\left(\mu_{B}-n \sigma_{B}-r_{D}\right) B+r_{D} N \geq 0
$$

$$
\underbrace{\frac{r_{D}-\left(\mu_{L}-n \sigma_{L}\right)}{r_{D}} L+\frac{r_{D}-\left(\mu_{B}-n \sigma_{B}\right)}{r_{D}} B \leq N}_{\substack{\text { Loss from loans under } \\ \text { the stress event }}}
$$

n : the magnitude of stress (the volatility of bank assets under which the bank is solvent)

Effect of a decrease in μ_{B}

Increase in relative profitability of loans

Increase in loss from bonds under the stress event, which tightens the VaR constraint

【 $\frac{\partial L}{\partial \mu_{B}}$, substitution effect>income effect】

Effect of an increase in N

【 $\frac{\partial L}{\partial N}$, net worth effect】

L

Effect of an increase in N

- Introducing 2 types of loans: safe L and risky R
- Risky loans have a higher mean, higher standard deviation, and lower Sharpe ratio (risk premium),

$$
\mu_{L}<\mu_{R}, \sigma_{L}<\sigma_{R}, \frac{\mu_{L}-r_{D}}{\sigma_{L}}>\frac{\mu_{R}-r_{D}}{\sigma_{R}} .
$$

- Under the above assumptions, we can show:

$$
\frac{\partial\left[R^{* *} / L^{* *}\right]}{\partial N}>0
$$

- In response to an increase in net worth, the bank increases risky loans more than safe loans.

DATA, EMPIRICAL STRATEGY, AND VARIABLES

Data and sample selection

- Firm-bank matched loan-level data for 2002-2014
- Unbalanced panel: 379,989 observations
- Firm and loan data: Teikoku Databank (TDB) database
- Sample selection: Firms for which data on (i) the total loans outstanding, (ii) the amount of loans outstanding from at least two banks, and (iii) the TDB credit score are available
$\rightarrow \underline{48,975}$ firms
- Bank-level data: Nikkei Financial Quest, JBA, annual reports
- Sample selection: City banks, regional banks, Shinkin banks.
$\rightarrow 408$ banks
- Macroeconomic variables: Nikkei Financial Quest

Identification challenges

- Disentangling the effect on loan supply from that on loan demand.
- Our strategy: Using firm-bank panel data to control for loan demand using fixed effects (e.g., firm-year FE).
- Endogeneity of MP
- If a change in MP is anticipated, there is a possibility of reverse causality (Khawaja and Mian 2008).
- Our strategy: Employing changes in long-term forward interest rates, which reflect unanticipated component of expected returns on bonds
- Some studies rely on settings where MP is independent of economic conditions (Jiménez et al. 2012, loannidou et al. 2015)

Empirical strategy

- Usual OLS regression yields biased estimates of α if a firm-specific loan demand shock is unobservable.

$$
\begin{aligned}
& \triangle L O A N S(i, j) \text { Portfolio balance channel } \\
& =\alpha_{0}+\alpha_{1} \triangle B O N D R A T E+\alpha_{2} B K_{-} C A P G A I N(j) \\
& +\alpha_{3} F_{-} D E M A N D(i)+\varepsilon(i, j) \quad \text { Bank BS channel }
\end{aligned}
$$

- If we observe a change in loans to the same firm by another bank j^{\prime}, we can eliminate $F_{\text {_ }} D E M A N D(i)$ by taking differences of two equations. Sample selection: firms that

$$
\begin{aligned}
& \Delta L O A N S(i, j)-\Delta L O A N S\left(i, j^{\prime}\right)=\text { are excluded } \\
& \alpha_{2}\left\{B K_{-} C A P G A I N(j)-B K_{-} C A P G A I N\left(j^{\prime}\right)\right\}+ \\
& \left\{\varepsilon(i, j)-\varepsilon\left(i, j^{\prime}\right)\right\}
\end{aligned}
$$

Empirical specification (1)

- Main estimations
$\beta_{1}<0$ if substitution effect > income effect

$$
\Delta \operatorname{LOANS}(i, j, t)=\beta_{0}+\beta_{1} \triangle B O N D R A T E(t-1)
$$

$i:$ firm, j : bank, t : year
$+\boldsymbol{\beta}_{\mathbf{3}}$ CONTROLS + Fixed Effects $+\varepsilon(i, j, t)$
$\beta_{\beta_{2}>0 \text { if net worth effect exists }}^{+\beta_{2} B K_{-} \operatorname{CAPGAIN}(j, t-1)}$
(i) firm, bank, (ii) firm, year, bank, (iii) firm-year, bank

- Specifications (ii) and (iii): we cannot estimate $\triangle B O N D R A T E$

Empirical specification (2)

- Cross-term estimations
$\Delta \operatorname{LOANS}(i, j, t)=\theta_{0}$
$\theta_{1}<0$ if substitution effect is
stronger for banks facing higher loan rates
$+\theta_{1} \triangle B O N D R A T E(t-1) \times B K _\Delta L O A N R A T E(j, t-1)$ $+\theta_{2} B K_{-} C A P G A I N(j, t-1)$
$+\theta_{3}$ CONTROLS + Fixed Effects $+\varepsilon(i, j, t)$
firm-year, bank
- Interaction terms with bank-specific loan interest rates show the heterogeneity among banks regarding the portfolio balance channel.

Empirical specification (3)

- Cross-term estimations

$$
\Delta \operatorname{LOANS}(i, j, t)=\lambda_{0}
$$

$\beta_{2}>0$ if net worth effect is stronger for loans to risky firms $+\lambda_{1} B K_{-} C A P G A I N(j, t-1) \times F I R M_{-} R I S K(i, t-1)$ $+\lambda_{3}$ CONTROLS + Fixed Effects $+\varepsilon(i, j, t)$ firm-year, bank

- Interaction terms with firm-level variables representing firms' riskiness (size, leverage, credit score) show whether the effect of increase in bank net worth is stronger for loans to riskier firms (risk-taking channel).

RESULTS

Main results (Table 3)

	(i)	(ii)	(iii)	(iv)
Key independent variables				
$\triangle B O N D R A T E$	$\begin{array}{ll} -1.84 & * \\ (0.95) & \end{array}$			
BK_CAPGAIN	$\begin{aligned} & 5.11 \quad * * * \\ & (1.38) \end{aligned}$	$\begin{aligned} & 3.37 \\ & (2.00) \end{aligned}$	$\begin{aligned} & 4.33 \\ & (2.71) \end{aligned}$	$\begin{aligned} & 4.20 \\ & (2.72) \end{aligned}$
$\triangle B O N D R A T E \times B K _\triangle L O A N R A T E$				$\begin{aligned} & -4.57 \quad * * * \\ & (1.15) \end{aligned}$
Macroeconomic controls	YES	-	-	-
Bank characteristics	YES	YES	YES	YES
Firm characteristics	YES	YES	-	-
Fixed effects				
Firm	YES	YES	-	-
Year	-	YES	-	-
Firm-year	-	-	YES	YES
Bank	YES	YES	YES	YES
Observations	379,989	379,989	379,989	379,846
Adjusted R^{2}	0.04	0.04	0.21	0.21

Main results (Table 3)

(i)
(ii)
(iii)
(iv)

Key independent variables

$\triangle B O N D R A T E$	-1.84	$*$

Portfolio balance channel: $\triangle B O N D R A T E$ is inegative and weakly significantNRATE
MaModest but not negligible economic significance: A 100${ }^{\text {Ba }}$ Batsis foint decrease in the long-term forward râte Firp charateristicloan growth rate (mean: -5.2%) by 1.8
percentage points.

YES

Year	-	YES	-	-
Firm-year	-	-	YES	YES
Bank	YES	YES	YES	YES
Observations	379,989	379,989	379,989	379,846
Adjusted R^{2}	0.04	0.04	0.21	0.21

Main results (Table 3)

Bank BS channel: BK_CAPGAIN is significantly positive in column' (i), buit it is weakly significant in column (ii) and insignificant in column (iii).

Fixed effects

Firm	YES	YES	-	-
Year	-	YES	-	-
Firm-year	-	-	YES	YES
Bank	YES	YES	YES	YES
Observations	379,989	379,989	379,989	379,846
Adjusted R^{2}	0.04	0.04	0.21	0.21

Main results (Table 3)

	(i)	(ii)	(iii)	(iv)
Key independent variables				
ABONDRATE	$\begin{aligned} & -1.84 \\ & (0.95) \end{aligned}$			
BK_CAPGAIN	$\begin{array}{cc} 5.11 & * * * \\ (1.38) & \\ \hline \end{array}$	$\begin{gathered} 3.37 \\ (2.00) \\ \hline \end{gathered}$	$\begin{aligned} & 4.33 \\ & (2.71) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.20 \\ & (2.72) \\ & \hline \end{aligned}$
$\triangle B O N D R A T E \times B K _$ILOANRATE				$\begin{array}{ll} \hline-4.57 & * * * \\ (1.15) & \\ \hline \end{array}$
Relativecstrength of the porstfolio balancechannel:				
$\triangle B O N D R A T c E \times B K _\triangle L O Y N R A T E E$ is significantly negative.				
irm easpecially for a bank facing a higher loan rate.				
Firm-year	-	-	YES	YES
Bank	YES	YES	YES	YES
Observations	379,989	379,989	379,989	379,846
Adjusted R^{2}	0.04	0.04	0.21	0.21

Risk-taking channel (Table 4)

(i)

(ii)
(iii)

Interaction term with	$d u m_{-} F_{-}$	$d u m_{-} F_{-}$	$d u m_{-} F_{-}$
$B K_{-} C A P G A I N$	$\operatorname{lnT} A_{-}$small	$C A P_{-}$small	$S C O R E_{-} l o w$

Risk-taking channel (Table 4)

(i)
(ii)
(iii)

Interaction term with $\quad d u m_{-} F_{-} \quad d u m_{-} F_{-} d u m_{-} F_{-}$
BK_CAPGAIN InTA_small CAP_small SCORE_low

Below /
above
median

Large (high)\end{array}\right.\)

$15.29 * * *$	$8.83 * * *$	$6.57 \quad *$	
(4.97)	(2.79)	(3.62)	
0.54	-2.76	3.64	
(2.87)	(4.57)	(3.36)	

Risk-taking channel: Significant positive coefficients for firms that are smaller, have a lower capital-asset ratio, and have a lower credit score
 Obsetvatons worth effect is stronger for loans to riskier firms.

Adjusted R^{2}	0.21	0.21	0.21

CONCLUSION

Summary

- It is important to take the heterogeneity across banks and borrowing firms into account when examining the transmission channels of MP.
- The portfolio balance channel was stronger for banks with higher expected returns on loans.
- The bank BS channel was stronger in the case of loans to smaller, more leveraged, and less creditworthy firms (risk-taking channel).

END OF PRESENTATION THANK YOU

SUPPLEMENTARY SLIDES

Variables: $\triangle L O A N S$

Log change in firm i 's total loans outstanding from bank j

Variables: $\triangle B O N D R A T E, B K _C A P G A I N$

- \triangle BONDRATE : Difference between the forward interest rates observed in year $t-1$ for 10 -year bonds starting in year t and the forward rate observed in year t-2 for the same 10-year bond starting in year t \triangle BONDRATE $=f_{t-1}(t, t+10)-f_{t-2}(t, t+10)$
- BK_CAPGAIN : Bank-specific capital gains/losses due to changes in prices of bonds held

$$
\frac{-\sum_{s}\left(\triangle B O N D R A T E_{-} S P O T_{t}(s) \times B K_{-} B O N D_{t-1}(s) \times s\right)}{B K_{-} T A_{t-1}}
$$

where s : maturity of bonds

Variables: $\triangle B O N D R A T E, B K _C A P G A I N$

Other control variables

- Macroeconomic controls: $\triangle L O A N R A T E, \triangle N P L, \triangle G D P$, \triangle TOPIX
- Bank characteristics: $B K_{-} C A P, B K_{-} C A P _S Q, B K_{-} N P L$, BK_LIQ, BK_ROA, BK_lnTA
- Bank-firm relationships: BK_MAIN
- Firm characteristics: $F_{-} C A P, F_{-} L I Q, F_{-} R O A$, $F_{-} \triangle S A L E S, F_{-} l n T A, F_{-} A G E, F_{-} \ln N B A N K S$
- To deal with possible outliers, following variables are winsorized at the upper and lower 0.5 percentiles : $\triangle L O A N S, F_{-} C A P, F_{-} L I Q, F_{-} R O A, F_{-} \Delta S A L E S$

