Long-term interest rates and bank loan supply: Evidence from firm-bank loan-level data

Arito Ono (Chuo University)

Kosuke Aoki (University of Tokyo)
Shinichi Nishioka (Japan Research Institute)
Kohei Shintani (Bank of Japan)
Yosuke Yasui (Japan Research Institute)

2023 EEA meeting 28 August 2023

^{*} The views expressed are ours and do not necessarily reflect those of the Bank of Japan or any of the institutions with which we are affiliated.

Research background

- Empirical evidence on unconventional monetary policies (MP):
 - Unconventional MP lowered long-term interest rates (Fukunaga et al. 2015, Gagnon et al. 2011, Krishnamurthy and Vissing-Jorgensen 2011).
 - Institutional investors rebalanced their portfolios towards riskier assets (Carpenter et al. 2015, Joyce et al. 2014, Foley-Fisher et al. 2016).

Research background

- Mixed evidence on the impact of unconventional MP on bank loan supply
 - Unconventional MP increased bank loan supply (Bottero et al. 2022, Rodnyansky and Darmouni 2017).
 - Unconventional MP (esp. negative interest rates)
 reduced bank loan supply (Brunnermeier and Koby 2018,
 Heider et al. 2019).

What we do

- We examine whether the decline in long-term interest rates has stimulated bank loan supply.
 - We examine three transmission channels of a change in long-term interest rates <u>simultaneously</u>.
 - (i) portfolio balance channel
 - (ii) bank balance sheet (BS) channel
 - (iii) risk-taking channel
 - Previous studies have examined these channels independently.
 - Data: Firm-bank panel data in Japan during 2002– 2014

MP and long-term interest rates

What we find

- Portfolio balance channel: Unanticipated reductions in long-term interest rates increased bank loan supply.
 - The effect is stronger for banks with higher expected returns on loans.
- Bank BS channel: Banks that enjoyed capital gains on their bond holdings increased bank loan supply. However, we find an insignificant result when firm-year fixed effects are controlled for.
- Risk-taking channel: The positive effect of capital gains on bonds was stronger in the case of loans to smaller, more leveraged, and less creditworthy firms.
- The transmission channels of MP are heterogeneous among banks and firms.

Outline

- Developments in monetary policy and bank portfolios in Japan
- Theoretical model (intuition)
- Data, empirical strategy
- Results
- Conclusion

THEORETICAL MODEL

Overview

- A simple mean-variance model of bank portfolio selection, subject to the value-at-risk (VaR) constraint (Adrian and Shin 2011)
 - We consider a bank that invests in loans and government bonds, taking the prices of those assets as given.
 - VaR constraint: Bank should hold sufficient net worth to absorb losses from loans and bonds under the stress event.

Overview

- Three transmission channels through which a change in the price of bonds (long-term interest rates) affects bank loans supply
 - Portfolio balance channel: net of "substitution effect" and "income effect"
 - Bank BS channel: net worth effect
 - Risk taking channel: larger net worth effect for riskier loans.

Overview

Bank's BS and expected profit

Balance sheet constraint

$$L + B = D + N$$

where L: loan, B: bond, D: deposit, N: net worth

Expected profit

$$E[\pi] = E[r_L L + r_B B - r_D D]$$

= $E[(r_L - r_D)L + (r_B - r_D)B - r_D N]$

where r_i : interest rate of i. r_L and r_B are stochastic variables with mean and standard deviation (μ_L, σ_L) and (μ_B, σ_B) . We assume $Corr(r_L, r_B) = 0$.

Bank's portfolio selection

Bank's optimization problem

Max
$$E[\pi] - \frac{\gamma}{2} Var[\pi]$$

VaR constraint

$$(\mu_{L} - n\sigma_{L} - r_{D})L + (\mu_{B} - n\sigma_{B} - r_{D})B + r_{D}N \ge 0$$

$$\frac{r_{D} - (\mu_{L} - n\sigma_{L})}{r_{D}}L + \frac{r_{D} - (\mu_{B} - n\sigma_{B})}{r_{D}}B \le N$$

Loss from loans under the stress event

Loss from bonds under the stress event

n: the magnitude of stress (the volatility of bank assets under which the bank is solvent)

Effect of a decrease in μ_B

event, which tightens

the VaR constraint

 $\left[\frac{\partial L}{\partial \mu_B}\right]$, substitution effect>income effect

Effect of an increase in N

Effect of an increase in N

- Introducing 2 types of loans: safe L and risky R
- Risky loans have a higher mean, higher standard deviation, and lower Sharpe ratio (risk premium),

$$\mu_L < \mu_R, \sigma_L < \sigma_R, \frac{\mu_L - r_D}{\sigma_L} > \frac{\mu_R - r_D}{\sigma_R}.$$

Under the above assumptions, we can show:

$$\frac{\partial [R^{**}/L^{**}]}{\partial N} > 0$$

 In response to an increase in net worth, the bank increases risky loans more than safe loans.

DATA, EMPIRICAL STRATEGY, AND VARIABLES

Data and sample selection

- Firm-bank matched loan-level data for 2002-2014
 - Unbalanced panel: <u>379,989</u> observations
- Firm and loan data: Teikoku Databank (TDB) database
 - Sample selection: Firms for which data on (i) the total loans outstanding, (ii) the amount of loans outstanding from at least two banks, and (iii) the TDB credit score are available
 - → 48,975 firms
- Bank-level data: Nikkei Financial Quest, JBA, annual reports
 - Sample selection: City banks, regional banks, Shinkin banks.
 - → <u>408</u> banks
- Macroeconomic variables: Nikkei Financial Quest

Identification challenges

- Disentangling the effect on loan supply from that on loan demand.
 - Our strategy: Using firm-bank panel data to control for loan demand using fixed effects (e.g., firm-year FE).
- Endogeneity of MP
 - If a change in MP is anticipated, there is a possibility of reverse causality (Khawaja and Mian 2008).
 - Our strategy: Employing changes in long-term forward interest rates, which reflect unanticipated component of expected returns on bonds
 - Some studies rely on settings where MP is independent of economic conditions (Jiménez et al. 2012, Ioannidou et al. 2015)

Empirical strategy

• Usual OLS regression yields biased estimates of α if a firm-specific loan demand shock is unobservable.

• If we observe a change in loans to the same firm by another bank j', we can eliminate $F_DEMAND(i)$ by taking differences of two equations. Sample selection: firms that

$$\Delta LOANS(i,j) - \Delta LOANS(i,j') = \text{ are excluded}$$

$$\alpha_2 \{BK_CAPGAIN(j) - BK_CAPGAIN(j')\} + \{\varepsilon(i,j) - \varepsilon(i,j')\}$$

transacts with only one bank

Empirical specification (1)

Main estimations

 $\beta_1 < 0$ if substitution effect > income effect

$$\Delta LOANS(i,j,t) = \beta_0 + \beta_1 \Delta BONDRATE(t-1) + \beta_2 BK_CAPGAIN(j,t-1)$$
i: firm, j: bank, t: year
$$\beta_2 > 0 \text{ if net worth effect exists}$$

 $+\beta_3$ CONTROLS + Fixed Effects + $\varepsilon(i,j,t)$

- (i) firm, bank, (ii) firm, year, bank, (iii) firm-year, bank
- Specifications (ii) and (iii): we cannot estimate $\Delta BONDRATE$

Empirical specification (2)

Cross-term estimations

$$\Delta LOANS(i, j, t) = \theta_0$$

 $\theta_1 < 0$ if substitution effect is stronger for banks facing higher loan rates

$$+\theta_1 \Delta BONDRATE(t-1) \times BK_\Delta LOANRATE(j,t-1) + \theta_2 BK_CAPGAIN(j,t-1)$$

 $+\theta_3$ CONTROLS + Fixed Effects + $\varepsilon(i,j,t)$

firm-year, bank

 Interaction terms with bank-specific loan interest rates show the heterogeneity among banks regarding the portfolio balance channel.

Empirical specification (3)

Cross-term estimations

$$\Delta LOANS(i,j,t) = \lambda_0$$

 $\beta_2 > 0$ if net worth effect is stronger for loans to risky firms

$$+\lambda_1 BK_CAPGAIN(j,t-1) \times FIRM_RISK(i,t-1)$$

$$+\lambda_3$$
CONTROLS + Fixed Effects + $\varepsilon(i, j, t)$

firm-year, bank

– Interaction terms with firm-level variables representing firms' riskiness (size, leverage, credit score) show whether the effect of increase in bank net worth is stronger for loans to riskier firms (risk-taking channel).

RESULTS

	(i)	(ii)	(iii)	(iv)
Key independent variables				
$\triangle BONDRATE$	-1.84 * (0.95)			
BK_CAPGAIN	5.11 *** (1.38)	3.37 * (2.00)	4.33 (2.71)	4.20 (2.72)
$\triangle BONDRATE \times BK_\triangle LOANRATE$				-4.57 *** (1.15)
Macroeconomic controls	YES	_	_	_
Bank characteristics	YES	YES	YES	YES
Firm characteristics	YES	YES	_	_
Fixed effects				
Firm	YES	YES	_	_
Year	_	YES	_	_
Firm-year	_	_	YES	YES
Bank	YES	YES	YES	YES
Observations	379,989	379,989	379,989	379,846
Adjusted R ²	0.04	0.04	0.21	0.21

(i) (ii) (iii) (iv) **Key independent variables** -1.84**ABONDRATE** (0.95)**Portfolio balance channel:** $\triangle BONDRATE$ is negative and weakly/significant/NRATE •MaModest but not negligible economic significance: A 100basis point decrease in the long-term forward rate

increases loan growth rate (mean: -5.2%) by 1.8 nercentage noints

Phercentage points.	YES	YES	_	_	
Year	_	YES	_	_	
Firm-year	_	_	YES	YES	
Bank	YES	YES	YES	YES	
Observations	379,989	379,989	379,989	379,846	_
Adjusted R ²	0.04	0.04	0.21	0.21	_

26

Bank BS channel: BK_CAPGAIN is significantly positive in column (i), but it is weakly significant in column (ii) and Bank characteristics in column (iii) and insignificant in column (iii) and yes

Fixed	effects
IIACU	CIICUIS

Firm	YES	YES	_	_
Year	_	YES	_	_
Firm-year Bank	_	_	YES	YES
Bank	YES	YES	YES	YES
Observations	379,989	379,989	379,989	379,846
Adjusted R ²	0.04	0.04	0.21	0.21

27

	(i)	(ii)	(iii)	(iv)
Key independent variables				
$\triangle BONDRATE$	-1.84 * (0.95)			
BK_CAPGAIN	5.11 ** (1.38)	* 3.37 * (2.00)	* 4.33 (2.71)	4.20 (2.72)
$\triangle BONDRATE \times BK_\triangle LOANRATE$				-4.57 *** (1.15)

Relative strength of the portfolio balance channel is $\Delta BONDRATE \times BK_\Delta LOANRATE$ is significantly negative.

Fixed The substitution effect is larger than the income effect Firm especially for a bank facing a higher loan rate.

Firm-year	_	_	YES	YES
Bank	YES	YES	YES	YES
Observations	379,989	379,989	379,989	379,846
Adjusted R ²	0.04	0.04	0.21	0.21

Risk-taking channel (Table 4)

		(i)	(ii)	(iii)
	Interaction term with BK_CAPGAIN	dum_F_ lnTA_small	dum_F_ CAP_small	dum_F_ SCORE_low
Below ,	/ Small (low)	15.29 *** (4.97)	8.83 *** (2.79)	6.57 * (3.62)
above mediar	Large (high)	0.54 (2.87)	-2.76 (4.57)	3.64 (3.36)
]	Bank characteristics	YES	YES	YES
]	Fixed effects			
	Firm-year	YES	YES	YES
in the	Bank	YES	YES	YES
(Observations	379,989	379,989	379,109
	Adjusted R ²	0.21	0.21	0.21

Risk-taking channel (Table 4)

	(i)	(ii)	(iii)
Interaction term with BK_CAPGAIN	dum_F_ lnTA_small	dum_F_ CAP_small	dum_F_ SCORE_low
Below / above median Small (low) Large (high)	15.29 *** (4.97) 0.54 (2.87)	8.83 *** (2.79) -2.76 (4.57)	6.57 * (3.62) 3.64 (3.36)

Risk-taking channel: Significant positive coefficients for firms that are smaller, have a lower capital-asset ratio, and have a lower credit score

• Net worth effect is stronger for loans to riskier firms.

Adjusted R ²	0.21	0.21	0.21	30
· · · · · · · · · · · · · · · · · · ·				

CONCLUSION

Summary

- It is important to take the heterogeneity across banks and borrowing firms into account when examining the transmission channels of MP.
- The portfolio balance channel was stronger for banks with higher expected returns on loans.
- The bank BS channel was stronger in the case of loans to smaller, more leveraged, and less creditworthy firms (risk-taking channel).

END OF PRESENTATION THANK YOU

SUPPLEMENTARY SLIDES

Variables: Δ*LOANS*

Log change in firm i's total loans outstanding from bank j

Variables: $\triangle BONDRATE$, $BK_CAPGAIN$

• ΔBONDRATE: Difference between the forward interest rates observed in year t-1 for 10-year bonds starting in year t and the forward rate observed in year t-2 for the same 10-year bond starting in year t

$$\Delta BONDRATE = f_{t-1}(t, t+10) - f_{t-2}(t, t+10)$$

• **BK_CAPGAIN**: Bank-specific capital gains/losses due to changes in prices of bonds held

$$-\sum_{s} (\Delta BONDRATE_SPOT_{t}(s) \times BK_BOND_{t-1}(s) \times s)$$

 $BK_{-}TA_{t-1}$

where s: maturity of bonds

Variables: $\triangle BONDRATE$, $BK_CAPGAIN$

ABONDRATE

BK_CAPGAIN

Other control variables

- Macroeconomic controls: $\Delta LOANRATE$, ΔNPL , ΔGDP , $\Delta TOPIX$
- Bank characteristics: BK_CAP , BK_CAP_SQ , BK_NPL , BK_LIQ , BK_ROA , BK_lnTA
- Bank-firm relationships: BK_MAIN
- Firm characteristics: F_CAP , F_LIQ , F_ROA , $F_\Delta SALES$, F_lnTA , F_AGE , $F_lnNBANKS$
- To deal with possible outliers, following variables are winsorized at the upper and lower 0.5 percentiles : $\Delta LOANS$, F_CAP , F_LIQ , F_ROA , $F_\Delta SALES$