No time to die: The patent-induced bias towards acute conditions pharmaceutical R&D

EEA Annual Congress

Johan Moen-Vorum

August, 2023

London Business School

- Private and social R&D incentives are generally not aligned
- Require empirical evidence to pin down distortions

- Private and social R&D incentives are generally not aligned
- Require empirical evidence to pin down distortions

This paper

• Study private-social wedge arising from \neq time horizons in pharmaceutical R&D

- Private and social R&D incentives are generally not aligned
- Require empirical evidence to pin down distortions

This paper

- Study private-social wedge arising from \neq time horizons in pharmaceutical R&D
- Proposes a novel metric for quantifying the wedge

- Private and social R&D incentives are generally not aligned
- Require empirical evidence to pin down distortions

This paper

- Study private-social wedge arising from \neq time horizons in pharmaceutical R&D
- Proposes a novel metric for quantifying the wedge
- Estimate the elasticity of R&D w.r.t. demand

- Private and social R&D incentives are generally not aligned
- Require empirical evidence to pin down distortions

This paper

- Study private-social wedge arising from \neq time horizons in pharmaceutical R&D
- Proposes a novel metric for quantifying the wedge
- Estimate the elasticity of R&D w.r.t. demand. Findings
 - Bias towards improving survival, rather than overall health
 - Adjusting for the wedge, this bias goes away

- Private and social R&D incentives are generally not aligned
- Require empirical evidence to pin down distortions

This paper

- Study private-social wedge arising from \neq time horizons in pharmaceutical R&D
- Proposes a novel metric for quantifying the wedge
- Estimate the elasticity of R&D w.r.t. demand. Findings
 - Bias towards improving survival, rather than overall health
 - Adjusting for the wedge, this bias goes away

 $\rightarrow\,$ Provides evidence for a distortion in the direction of R&D

- 1) Private and social value of medical treatments
 - Wedge arising from surplus appropriability problem (Jones and Williams 2000)
- 2) R&D production function
- 3) Empirical analysis: estimating the elasticity of R&D

The private and social value of treatments

Willingness to pay

Murphy and Topel (2006) define the remaining lifetime expected utility at age a as

```
\int_{a}^{\infty} H(t)u(c(t), l(t)) \tilde{S}(t, a) e^{-\rho(t-a)} dt
```

Willingness to pay

Murphy and Topel (2006) define the remaining lifetime expected utility at age a as

$$\overset{\infty}{}$$
 $H(t)u(c(t), l(t)) \, \widetilde{S}(t,a) e^{-
ho(t-a)} dt$

Willingness to pay for ΔS and ΔH

$$WTP(a) = \int_{a}^{\infty} \left[\underbrace{v(t)\Delta S(a,t)}_{WTP_{S}} + \underbrace{\frac{\Delta H(t)}{H(t)} \frac{u(c(t), l(t))}{u_{c}(c(t), l(t))}}_{WTP_{H}} \right] dt$$

Willingness to pay

Murphy and Topel (2006) define the remaining lifetime expected utility at age a as

$$\overset{\infty}{}$$
 $H(t)u(c(t), l(t)) \, \widetilde{S}(t, a) e^{-
ho(t-a)} dt$

Willingness to pay for ΔS and ΔH

$$WTP(a) = \int_{a}^{\infty} \left[\underbrace{v(t)\Delta S(a,t)}_{WTP_{S}} + \underbrace{\frac{\Delta H(t)}{H(t)} \frac{u(c(t), l(t))}{u_{c}(c(t), l(t))}}_{WTP_{H}} \right] dt$$

Private-social wedge

- Data source: Global Burden of Disease Study (1990-2019)
- Estimate $WTP_{j,20}$ and $WTP_{j,\infty}$ for each j
- Approximate the private-social wedge $(1 \tau) \sim \frac{\text{WTP}_{20}}{\text{WTP}_{\infty}}$

Does the private-social wedge matter for drug development?

DALY

Firm profit

$$\pi_j = f(z_j) D_j - \delta z_j^{\alpha}$$

where D_j is the willingness to pay for a treatment for condition j, z_j is the number of treatments developed, $f(z) = 1 - \frac{1}{z}$ denotes the share of total demand that can be appropriated with z treatments, and $\delta > 0$, $\alpha > 1$ describes the R&D cost. Hence

$$\frac{\partial \pi_j}{\partial z_j} = 0 \iff z_j = \left(\frac{1}{\alpha \delta} D_j\right)^{\frac{1}{\alpha+1}}$$

Empirical analysis

Objective

$$\log(z_j) = \underbrace{\beta_S D_j^S + \beta_H D_j^H}_{D_j = D_j^S + D_j^H} + w_j' \gamma + \varepsilon_j$$

where

- z_j R&D intensity of condition j
- D_j demand for treatments for condition j measured in WTP
 - D_i^S and D_i^H measure demand for survival and health, respectively
- w_j vector of controls

Objective

$$\log(z_j) = \underbrace{\beta_S D_j^S + \beta_H D_j^H}_{D_j = D_j^S + D_j^H} + w_j' \gamma + \varepsilon_j$$

Shift-share IV - Intuition Instrument

- Demographic shift induced by the aging of the "baby boom" generation Population shares
- Age groups are differentially exposed to diseases Age profiles

$\mathsf{Predictor:}\ \mathbf{WTP}$

	(1)	(2)	(3)	(4)	(5)	(6)
β	0.142	0.155				
	(0.015)	(0.016)				
β_S			0.078	0.079	0.074	0.075
			(0.011)	(0.011)	(0.010)	(0.010)
β_H			0.001	0.004	0.013	0.018
			(0.009)	(0.010)	(0.009)	(0.009)
p-value for $H_0: \beta_S/\bar{D}_S = \beta_H/\bar{D}_H$			0.00	0.00	0.00	0.00
Controls						
period and category FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
trial length		\checkmark		\checkmark		\checkmark
income		\checkmark			\checkmark	\checkmark
Instrument relevance						
Cragg-Donald	142.9	144.4	124.8	112.5	135.1	126.6
N	950	950	950	950	950	950

Caveat: firms only appropriate a fraction of the generated surplus, as generic alternatives enter and monopoly rents disappear after patent expiry

Corrected specification

$$z_j = \beta_S \left((1 - \tau_j)^S D_j^S \right) + \beta_H \left((1 - \tau_j)^H D_j^H \right) + w'_j \gamma + \varepsilon_j$$

with

•
$$(1-\tau)^S = \frac{\mathsf{WTP}_{20}^S}{\mathsf{WTP}_{\infty}^S}$$
 and $(1-\tau)^H = \frac{\mathsf{WTP}_{20}^H}{\mathsf{WTP}_{\infty}^H}$

Predictor: WTP corrected by $(1 - \tau)$

	(1)	(2)	(3)	(4)	(5)	(6)
β	0.180	0.201				
	(0.022)	(0.025)				\frown
β_S			0.047	0.048	0.045	0.046
			(0.009)	(0.010)	(0.008)	(0.008)
β_H			0.011	0.013	0.026	0.031
			(0.011)	(0.013)	(0.011)	(0.012)
p-value for $\beta_S/\bar{D}_S = \beta_H/\bar{D}_H$			0.00	0.00	0.08	0.19
Controls						
period and category FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
trial length		\checkmark		\checkmark		\checkmark
income		\checkmark			\checkmark	\checkmark
Instrument relevance						
Cragg-Donald	89.8	85.1	105.5	94.8	107.5	101.5
N	950	950	950	950	950	950

This paper

- Proposes a novel metric for quantifying the gap between social and private returns to health innovations
- Study the elasticity of R&D to demand for survival and health
- Findings
 - Bias towards improving survival rates, rather than overall health
 - Adjusting for the wedge, this bias goes away

Next steps

- Explore innovation policies correcting for the wedge, including variable patent lengths
- Quantify the effect of policies on R&D allocations

Questions or comments? jmoen@london.edu

Thank you!

Appendix

Willingness to pay in the United States

Drugs introduced vs. Disability-adjusted life years (DALY)

Back

Measuring pharmaceutical R&D

Challenge: no harmonized classification system for R&D per medical condition

- FDA
- Clinical trials

Measuring R&D

- Source: pharmaceutical patents (USPTO)
- Method: textual similarity

Innovation pipeline

Patent relevance

$$z_{j,t} = \sum_{i \in N_t} d(p_i, t_j)$$

where

- d(.,.) measure of textual similarity
- p_i patent title
- t_j medical condition
- N_t set of all patents granted in year t

Validating the measure

Local projections: $c_{j,t+h} = \alpha_{j,h} + \gamma_{t,h} + \frac{\beta_h}{\beta_h} z_{j,t} + \sum_{l=0}^L a_{h,l} c_{j,t-l} + \sum_{l=1}^L b_{h,l} x_{j,t-l} + \xi_{j,h}$

- c_{j,t} number of Phase I clinical trials targeting condition j in year t
- *z*_{j,t} average relevance of patents for condition *j* in year *t*

Innovation pipeline

Population shares

Disease burden per age group

Shift-share instrumental variable

Shift-share instruments

$$d'_{j,t} = \sum_{n} \underbrace{\alpha'_{j,0} w'_{j,n,0}}_{s'_{j,n,0}} g_{n,t}$$

where

- $g_{n,t}$ is the population of age group n at time t
- $w_{j,n,0}^1$ fraction of the overall YLL of condition j borne by age group n
- $\alpha_{i,0}^1$ fraction of the overall disease burden (DALY) due to YLL
- $\sum_{n} \left[s_{j,n,0}^{1} + s_{j,n,0}^{2} \right] = 1$

SSIV specification

$$D_{j,t}^{S} = \lambda_{1}d_{j,t}^{1} + \lambda_{2}d_{j,t}^{2} + w_{j,t}'\phi + \eta_{j,t}$$
$$D_{j,t}^{H} = \lambda_{1}d_{j,t}^{1} + \lambda_{2}d_{j,t}^{2} + w_{j,t}'\phi + \eta_{j,t}$$
$$z_{j,t} = \alpha_{1}d_{j,t}^{1} + \alpha_{2}d_{j,t}^{2} + w_{j,t}'\gamma + \varepsilon_{j,t}$$

The shift-share instrument is consistent if it is

- Correlated with the treatment variable (Relevance)
- Uncorrelated with the unobserved residual (Validity)

Borusyak et al. (2021) show that orthogonality between the instrument and residual is achieved when the shocks g_n are as-good-as-randomly assigned, conditional on observables. Formally, the instrument is consistent if

- $\mathbb{E}[g_n|\bar{\varepsilon},q,s] = q'_n\mu$
- $\mathbb{E}\left[\sum_{n} s_{n}^{2}\right] \rightarrow 0$
- $\operatorname{Cov}\left(\widetilde{g}_{n},\widetilde{g}_{n'}|\bar{\varepsilon},q,s
 ight)=0$, where $\widetilde{g}_{n}=g_{n}-q_{n}'\mu$ is the residualized shock