CBDCs, Financial Inclusion, and Optimal Monetary Policy

David Murakami¹ Ivan Shchapov² Ganesh Viswanath-Natraj³

¹University of Milan and University of Pavia

²Institut Polytechnique de Paris, CREST ³University of Warwick WBS

29 August 2023 EEA - ESEM

Introduction

Introduction

- Central banks are actively studying the potential adoption of central bank digital currencies (CBDCs).
- Notable examples include Sweden's E-Krona and China's Digital Currency Electronic Payment.
- Emerging macroeconomic literature:
 - Macro effects: (George, Xie, and Alba 2020; Ikeda 2020; Kumhof et al. 2021; Cong and Mayer 2021; Benigno, Schilling, and Uhlig 2022; Ferrari Minesso, Mehl, and Stracca 2022).
 - Financial stability: (Chiu et al. 2019; Benigno 2019; Skeie 2019; Fernández-Villaverde et al. 2021; Agur, Ari, and Dell'Ariccia 2022).
- We focus on the monetary policy transmission, financial inclusion and welfare aspects of CBDCs.

Research Questions

We address the following research questions:

- 1. Do CBDCs attenuate or amplify monetary policy transmission channels?
- 2. Do CBDCs increase welfare of the unbanked through financial inclusion?
- 3. Should the interest rate on the CBDC be adjustable or fixed?

This Paper

- Using a TANK model, we find that the introduction of a CBDC amplifies monetary policy transmission.
- Optimal policy exercise: CBDC rate should track deposit rate.

This Presentation

TANK model

- * Monetary policy transmission
- Optimal policy and macroprudential policy
 - * Ramsey planner problem and instruments

New Keynesian Model

Model Overview

Households

- * Two types: banked and unbanked
- * Both types consume and supply labour
- * Heterogeneity wrt. access to savings technology
- * Banked have access to deposits, equity, and digital currency.
- * Unbanked use money and digital currency.
- Production
 - * Cobb-Douglas production with labour and capital
 - * Staggered price setting as in Rotemberg (1982)

Banks

- * Standard as in Gertler and Kiyotaki (2010)
- * Take deposits and issue equity

Policy authorities

Model Overview

Introduction

TANK Model

OP and Macroprudential Poli

BHH Problem

Utility function,

$$\mathbb{V}_{t}^{h} = \max_{\{C_{t+s}^{h}, L_{t+s}^{h}, D_{t+s}, K_{t+s}^{h}, DC_{t+s}^{h}\}_{s=0}^{\infty}} E_{t} \sum_{s=0}^{\infty} \beta^{s} \ln\left(C_{t+s}^{h} - \zeta_{0}^{h} \frac{(L_{t+s}^{h})^{1+\zeta}}{1+\zeta}\right),$$

s.t.,

$$C_{t}^{h} + D_{t} + Q_{t}K_{t}^{h} + \chi_{t}^{h} + DC_{t}^{h} + \chi_{t}^{DC,h} + T_{t}^{h}$$

= $w_{t}L_{t}^{h} + \Pi_{t} + (Z_{t}^{k} + (1 - \delta)Q_{t})K_{t-1}^{h} + \frac{R_{t-1}D_{t-1} + R_{t-1}^{DC}DC_{t-1}^{h}}{\pi_{t}}$.

BHH pays cost of adjusting equity holdings:

$$\chi_t^h = \frac{\varkappa^h}{2} \left(\frac{\kappa_t^h}{\kappa_t}\right)^2 \Gamma_h \kappa_t.$$

UHH Problem

Analogously, the UHH's problem is:

$$\mathbb{V}_{t}^{u} = \max_{\{C_{t+s}^{u}, L_{t+s}^{u}, M_{t+s}, DC_{t+s}^{u}\}_{s=0}^{\infty}} E_{t} \sum_{s=0}^{\infty} \beta^{s} \ln\left(C_{t}^{u} - \zeta_{o}^{u} \frac{(L_{t}^{u})^{1+\zeta}}{1+\zeta}\right),$$

subject to its budget constraint,

$$C_{t}^{u} + M_{t} + \chi_{t}^{M} + DC_{t}^{u} + \chi_{t}^{DC,u} + T_{t}^{u} = w_{t}L_{t}^{u} + \frac{M_{t-1} + R_{t-1}^{DC}DC_{t-1}^{u}}{\pi_{t}},$$

and the CIA constraint

$$C_t^u \le \frac{M_{t-1}}{\Pi_t}$$

Bankers

- Bankers (j = b) share a perfect insurance scheme with the BHH (Gertler and Kiyotaki 2010).
- Intermediate financing between households and firms (through deposits, DC, and equity).
- Bankers seek to maximise franchise value, \mathbb{V}_t^b :

$$\mathbb{V}_t^b = E_t \left[\sum_{s=1}^{\infty} \Lambda_{t,t+s}^h \sigma_b^{s-1} (1-\sigma_b) n_{t+s} \right].$$

- A financial friction (moral hazard) is used to limit the banker's ability to raise funds.
- **•** Banker can abscond with fraction θ^b of assets.
- > Thus, the bankers face the following incentive compatibility constraint:

$$\mathbb{V}_t^b \geq \theta^b Q_t k_t^b,$$

Bank Balance Sheet and Flow of Funds

Bank balance sheet contains digital currency deposits and net worth:

Assets	Liabilities + Equity
Loans Q _t k ^b	Deposits d _t
Management costs χ^b_t	Digital currency deposits <i>dc</i> t
	Net worth n_t

Flow of funds of an individual banker:

$$n_t = [z_t^k + (1 - \delta)Q_t]k_{t-1}^b - \frac{R_{t-1}}{\pi_t}d_{t-1} - \frac{R_{t-1}^{DC}}{\pi_t}dc_{t-1},$$

• Management costs of the banker governed by $\varkappa^b > 0$ and $x_t = \frac{dc_t}{Q_t k_t^b}$, a banker's digital currency deposit leverage ratio:

$$\chi_t^b = \frac{\varkappa^b}{2} x_t^2 Q_t k_t^b,$$

Firms

- Firms and production in the model are standard.
- Final goods are produced by perfectly competitive firms using intermediate goods as inputs into production.
- Each differentiated intermediate good is produced by a constant returns to scale technology given as follows:

$$Y_{t}(i) = A_{t}K_{t-1}(i)^{\alpha}L_{t}(i)^{1-\alpha},$$

Intermediate firms are subject to nominal rigidities à la Rotemberg.

Fiscal and Monetary Policy

Central bank is assumed to operate an inertial Taylor Rule for the nominal interest rate:

$$\frac{R_t}{\bar{R}} = \left(\frac{R_{t-1}}{\bar{R}}\right)^{\rho_R} \left(\pi_t^{\phi_\pi} X_t^{\phi_\gamma}\right)^{1-\rho_R} \exp(\varepsilon_t^R)$$

The central bank sets the nominal return on digital currency one-for-one in-line with the nominal interest rate on deposits:

$$R_t^{DC} = R_t$$

#13

Market Clearing

Aggregate consumption, labor supply, and digital currency holdings by the BHH and UHH are given as:

$$C_{t} = \Gamma_{h}C_{t}^{h} + \Gamma_{u}C_{t}^{u},$$
$$L_{t} = \Gamma_{h}L_{t}^{h} + \Gamma_{u}L_{t}^{u},$$
$$DC_{t} = \Gamma_{h}DC_{t}^{h} + \Gamma_{u}DC_{t}^{u}$$

The aggregate resource constraint of the economy is:

$$\mathbf{Y}_{t} = \mathbf{C}_{t} + \left[\mathbf{1} + \Phi\left(\frac{I_{t}}{\overline{I}}\right)\right]\mathbf{I}_{t} + \frac{\kappa}{2}(\pi_{t} - \mathbf{1})^{2}\mathbf{Y}_{t} + \Gamma_{h}(\boldsymbol{\chi}_{t}^{h} + \boldsymbol{\chi}_{t}^{b} + \boldsymbol{\chi}_{t}^{DC,h}) + \Gamma_{u}(\boldsymbol{\chi}_{t}^{DC,u}),$$

Aggregate capital:

$$K_t = \Gamma_h (K_t^h + K_t^b).$$

.

IRFs to a 1% Annualised Monetary Policy Shock

Introduction

TANK Model

OP and Macroprudential Policy

15

Optimal Policy

Introduction

Optimal Monetary Policy

Ramsey planner has two instruments: R and R^{DC}:

$$\max_{\{R_{t+s}, R_{t+s}^{DC}\}_{s=0}^{\infty}} \mathbb{V}_t = \Gamma_h \mathbb{V}_t^h + \Gamma_u \mathbb{V}_t^u,$$

- As CBDC and deposits are imperfect substitutes: no colinearity
- Using this framework, we can evaluate whether CBDC rates need to track the policy rate: i.e. should they be adjustable or fixed?

Optimal Policy w/ Commitment

- Economy is subject to TFP and cost-push shocks.
- Baseline economy: TANK w/o CBDC.
- The welfare improvements associated with optimal policy come from
 - 1. Introduction of CBDC (with $R_t = R_t^{DC}$)
 - 2. Optimal monetary policy (one instrument)
 - 3. Optimal R_t^{DC} policy (two instruments)

► We decompose welfare improvements into these three components

Optimal Policy w/Commitment, TFP Shock

Figure Welfare decomposition, TFP shock, DC near-perfect substitute (χ^{DC} low)

Optimal Policy w/Commitment, Cost-Push Shock

Figure Welfare decomposition, cost-push shock, DC near-perfect substitute (χ^{DC} low)

Optimal Policy w/Commitment, TFP Shock

Figure Welfare decomposition, TFP shock, DC imperfect substitute (χ^{DC} high)

Introduction

Optimal Policy w/ Commitment, Cost-Push Shock

Figure Welfare decomposition, cost-push shock, DC imperfect substitute (μ^{DC} high)

Introduction

Welfare of Different Interest Rate Rules

• Assume policymaker sets a CBDC rate at a spread δ^{DC} over the policy rate,

$$R_t^{DC} = R_t + \delta^{DC}.$$

- We compare welfare outcomes to the case when the spread between CBDC rates and deposit rates are zero in response to a 1% TFP shock.
- Aggregate welfare is maximized when $R_t^{DC} = R_t$, with distributional effects when spreads are non-zero.

22

Welfare of Different Interest Rate Rules

Concluding Remarks

- ▶ In this paper we focus on the financial inclusion effects of introducing a CBDC.
- Our results suggest that the introduction of a CBDC increases welfare for the unbanked, and amplifies monetary policy transmission.
- Optimal policy requires the CBDC rate to track the policy rate, yielding higher welfare than rules that require a constant rate of remuneration on the CBDC.

Thank You!

References I

Agur, Itai, Anil Ari, and Giovanni Dell'Ariccia. 2022. "Designing central bank digital currencies." Journal of Monetary Economics 125:62–79.

- **Benigno, Pierpaolo.** 2019. "Monetary Policy in a World of Cryptocurrencies." Centre of Economic Policy Research, *discussion papers*.
- Benigno, Pierpaolo, Linda M. Schilling, and Harald Uhlig. 2022. "Cryptocurrencies, Currency Competition, and the Impossible Trinity." *Journal of International Economics*, 103601.
- **Chiu, Jonathan, Seyed Mohammadreza Davoodalhosseini, Janet Hua Jiang, and Yu Zhu.** 2019. "Bank market power and central bank digital currency: Theory and quantitative assessment." *Available at SSRN 3331135.*

Cong, Lin William, and Simon Mayer. 2021. "The Coming Battle of Digital Currencies." *Available at SSRN 3992815,* https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4068564.

Introduction

25

References II

- **Fernández-Villaverde, Jesús, Daniel Sanches, Linda Schilling, and Harald Uhlig.** 2021. "Central Bank Digital Currency: Central Banking for All?" *Review of Economic Dynamics* 41:225–242.
- Ferrari Minesso, Massimo, Arnaud Mehl, and Livio Stracca. 2022. "Central Bank Digital Currency in an Open Economy." *Journal of Monetary Economics*.
- **George, Ammu, Taojun Xie, and Joseph D Alba.** 2020. "Central Bank Digital Currency with Adjustable Interest Rate in Small Open Economies." *Available at SSRN 3605918,* https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3605918.
- **Gertler, Mark, and Nobuhiro Kiyotaki.** 2010. "Financial Intermediation and Credit Policy in Business Cycle Analysis." *Handbook of Monetary Economics* 3:547–599.
- **Ikeda, Daisuke.** 2020. "Digital Money as a Unit of Account and Monetary Policy in Open Economies." Institute for Monetary and Economic Studies, Bank of Japan.

26

References III

Kumhof, Michael, Marco Pinchetti, Phurichai Rungcharoenkitkul, and Andrej Sokol. 2021. "Central Bank Digital Currencies, Exchange Rates and Gross Capital Flows." *ECB working paper series*, no. No 2488, https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2488~fede33ca65.en.pdf.

Rotemberg, Julio J. 1982. "Sticky Prices in the United States." *Journal of Political Economy* 90 (6): 1187–1211.

Skeie, David R. 2019. "Digital Currency Runs." *Available at SSRN 3294313,* https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3294313.