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Setup

We have panel data with two dimensions denoted by j = 1, ...,m and
i = 1, ...n. We can distinguish two sorts of applications:

1 Traditional panel data where we observe the same units over
multiple periods. Example: the effect of union status on wages using
the PSID. j identifies the individual and i the time period.

2 Grouped data where each observation belongs to one group. j
identifies the group and i the individual within the group. Examples:

• Effect of import competition on the within-industry wage distribution.
Individual level data but the treatment varies at the level of the
commuting zone (Autor, Dorn and Hanson, 2013).

• Effect of the food stamp program on the distribution of birth weights.
Individual level data but the treatment varies at the county-time level
(Almond, Hoynes and Schanzenbach, 2011).
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Summary

• We suggest quantile versions of traditional panel data estimators
(fixed effects, random effects, between, and Hausman and Taylor
estimators). We consider the coefficients of both group-level and
individual-level variables.

• We use the minimum distance approach:
• For each group j regress with quantile regression the outcome on the

individual-level regressors.
• Regress the first stage fitted values on all the regressors with GMM

using the appropriate instruments.

• Simple to implement, flexible, computationally fast, and are useful in
various applied fields. Inference is straightforward: cluster-robust
standard errors in the second stage.

• We provide codes in R and Stata.
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Model

We assume that the τ th conditional quantile function of yij in group j can
be represented by

Q(τ, yij |x1ij , x2j , vj) = x ′1ijβ(τ) + x ′2jγ(τ) + α(τ, vj) (1)

• x1ij is a K1-dimensional vector of individual-level variables.

• x2j is a K2-dimensional vector of group-level variables (includes a
constant).

• vj is an unobserved random vector.

• x1ij and x2j are potentially correlated with α(τ, vj).

• The group unobserved effects are normalized E[α(τ, vj)] = 0.

• zij is a L-dimensional vector of valid instruments, i.e.
E[zijα(τ, vj)] = 0.
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Minimum Distance Quantile Estimator

1 First stage: For each group j and quantile τ , regress yij on the
individual-level variables using quantile regression.

β̂j(τ) ≡
(
β̂0,j , β̂

′
1,j

)′
= argmin

(b0,b1)∈RK1+1

1

n

n∑
i=1

ρτ (yij − b0 − x ′1ijb1) (2)

where ρτ (x) = (τ − 1{x < 0})x for x ∈ R is the check function.

2 Second Stage: Regress the fitted values from the first stage on all
the variables using GMM with the moment condition E[gj(δ, τ)] = 0

where gj(δ, τ) = Zj(Ŷj(τ)− Xjδ(τ)).

δ̂(Ŵ , τ) =
(
X ′ZŴ (τ)Z ′X

)−1
X ′ZŴ (τ)Z ′Ŷ (τ) (3)

Ŵ (τ) is a L× L symmetric weighting matrix and δ = (β′, γ′)′.
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Traditional panel data estimators as MD estimators

Consider
yij = x1ijβ + x2jγ + αj + εij

and define ȳj = n−1
∑n

i=1 yij , x̄1j = n−1
∑n

i=1 x1ij , ẏij = yij − ȳj and
ẋ1ij = x1ij − x̄1j .

OLS fitted values of the group-level regressions: ŷij .

We obtain numerically the traditional (average) estimators:

• FE: Regress ŷij on x1ij with instrument ẋ1ij .

• BE: Regress ŷij on x1ij and x2j with instruments x̄j and x2j .

• Pooled: Regress ŷij on x1ij and x2j with OLS.

• RE: Efficient GMM with instruments (ẋ1ij , x̄1j , x2j)

In the paper we do the same with first-stage quantile regression.
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Sampling error

δ̂(Ŵ , τ)− δ(τ) =
(
S ′
ZX Ŵ (τ)SZX

)−1
S ′
ZX Ŵ (τ)

× 1

mn

m∑
j=1

n∑
i=1

zij

(
x̃ ′ij(β̂j(τ)− βj(τ)) + αj(τ)

)
where SZX = 1

nm

∑m
j=1

∑n
i=1 zijx

′
ij and x̃ij = (1, x ′1ij)

′.

1 In yellow: first-stage error

2 In blue: second-stage error
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Sampling error (cont.)

δ̂(Ŵ , τ)− δ(τ) =
(
S ′
ZX Ŵ (τ)SZX

)−1
S ′
ZX Ŵ (τ)

×
(

1

mn

m∑
j=1

n∑
i=1

zij x̃
′
ij(β̂j(τ)− βj(τ))︸ ︷︷ ︸

ḡ
(1)
mn (δ̂,τ)

+
1

m

m∑
j=1

z̄jαj(τ)︸ ︷︷ ︸
ḡ
(2)
mn (δ̂,τ)

)

where z̄j := n−1
∑n

i=1 zij

The first-stage quantile regression bias is of order 1/
√
n =⇒ the number

of observations per group must diverge to infinity.

The standard deviation of the first sample mean converges at the 1/
√
nm

rate while the second only at the 1/
√
m rate =⇒ the second component

dominates except if it converges to zero quickly enough.
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Asymptotic distribution of the sample moments
Under Assumptions more ,

• If m(log n)2

n → 0,

√
mnḡ

(1)
mn (δ̂, ·)⇝ Z1(·), in l∞(T ),

where Z1(·) is a mean-zero Gaussian process with uniformly
continuous sample paths and covariance function Ω1(τ, τ

′).

• If
√
m(log n)

n → 0

√
mḡ

(2)
mn (δ̂, ·)⇝ Z2(·), in l∞(T ),

where Z2(·) is a mean-zero Gaussian process with uniformly
continuous sample paths and covariance function Ω2(τ, τ

′)

• If m(log n)2

n → 0

sup
τ,τ ′∈T

∥∥∥Cov (ḡ (1)
mn (δ̂, τ), ḡ

(2)
mn (δ̂, τ

′)
)∥∥∥ = op

(
1√
mn

)
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Two cases and two types of instruments

1 Homogeneous groups: Var(αj(τ)) = 0. In this case, Ω2(τ, τ
′) is a

matrix of zeros. All coefficients are estimated at the
√
mn rate.

2 Heterogeneous groups: Var(αj(τ)) > ε > 0. We can distinguish two
sorts of instruments:

• L1 instruments in z1ij satisfy z̄1j = 0 for all j ,
• L2 instruments in z2ij do not satisfy z̄2j = 0 for all j .

=⇒ Only the L2 × L2 bottom-right elements of Ω2(τ) are different from
zero.

=⇒ The elements of δ(τ) that are identified using only z1ij can be
estimated at the 1/

√
mn rate. In contrast, the remaining elements can

only be estimated at the 1/
√
m rate. We denote the first with δ1(τ)

and the second with δ2(τ).

• The asymptotic distribution of the slow coefficients δ̂2(W , τ) are
discontinuous in Var(z̄jαj(τ)) at 0 =⇒ adaptive inference.
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Two examples (with heterogeneous groups)

1 Regressors: x1ij , 1 and x2j . Instruments: ẋ1ij , 1, and x2j . Then,

ΣZX =

(
Σ11 0
Σ21 Σ22

)
The coefficient on x1ij converges at the

√
mn rate while the other

coefficients converge at the
√
m rate.

2 Regressors: x1ij , 1 and x2j . Instruments: ẋ1ij , x̄1j , 1, and x2j .
With a full-rank weighting matrix (e.g. 2SLS), the slow moments will
contaminate the fast coefficients. We avoid that with

W (τ) =

(
W11(τ) anW12(τ)
anW21(τ) anW22(τ)

)
where an(τ) is a sequence that converges to zero.
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Efficient estimator and adaptive inference
• Following standard GMM arguments, the efficient weighting matrix is

W (τ)∗ = (Ω1(τ)/n +Ω2(τ))
−1 .

• Both the efficient weighting matrix and the asymptotic
variance-covariance matrix can be estimated with a cluster robust
covariance matrix estimator (which neglects the fact that the
dependent variable has been estimated).

• Inference is adaptive and does not require knowing the rate of
convergence of the estimator. For instance, let η ∈ RK with
||η|| > ϵ > 0. Then, uniformly in Var(αj(τ)),

η′
(
δ̂(τ)− δ(τ)

)
η[

η′V̂δ(τ)η
]1/2 d−→ N(0, 1).

More formally
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Related Literature

• (IV) Quantile regression: Koenker and Bassett (1978), Chernozhukov
and Hansen (2005). We consider different parameters (conditionally
on the group effects).

• Minimum distance QR: Chamberlain (1994). We generalize his results
by allowing m → ∞, individual-level regressors, and GMM.

• Grouped (IV) quantile regression: Chetverikov et al. (2016). We
provide a better estimator, relax the growth rate condition, and also
study individual-level variables. See next section.

• Fixed effects quantile regression: Koenker (2004), Galvao and Wang
(2015), Galvao et al. (2020). Special case of our framework.

• Random effects quantile regression: Galvao and Poirier (2019) use
pooled quantile regression and estimate unconditional parameters.
We suggest a new random effects estimator and a new Hausman test.
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Grouped IV Quantile Regression

Chetverikov et al. (2016) consider a grouped (IV) quantile regression
model, which fits into our setup. They are only interested in γ(τ). They
suggest a different two-stages estimator:

1 For each group j and quantile τ , regress the yij on x1ij using quantile
regression.

2 Regress the intercept from the first stage on the x2j variables with
OLS or 2SLS, using one observation per group.

This is the same as our estimator in the absence of individual-level
covariates.
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Comparison with our estimator

• It is not-invariant to linear reparametrization of x1ij .

• It is vulnerable to misspecification (the intercept is the fitted value for
x1ij = 0, which may be outside of the support of x1ij).

• It has a higher variance because (i) it does not impose equality of
βj(τ) across j and (ii) it does not exploit the exogeneity of the
between variation of x1ij .

• If in reality βj(τ) is not constant across groups j =⇒ the treatment
effect is heterogeneous: γ(τ, x1ij). Chetverikov et al. (2016) estimator
converges to γ(τ, x1ij = 0).

More
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Simulations

• Simulations for γ̂

• Same DGP as Chetverikov et al. (2016) DGP

• 10’000 Monte Carlo Replications.

• (m, n) = {(200, 25), (200, 200)}
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Simulation Results for γ DGP More results

Table: Bias, Standard Deviation and Relative MSE

Quantile MD CLP Rel. MSE

(m,n) = (200, 25)

0.1 0.024 0.004 0.063

(0.067) (0.285)

0.5 -0.006 0.000 0.086

(0.069) (0.238)

0.9 -0.017 -0.003 0.223

(0.075) (0.164)

(m,n) = (200, 200)

0.1 0.003 -0.003 0.062

(0.025) (0.101)

0.5 -0.001 -0.001 0.222

(0.044) (0.093)

0.9 -0.003 -0.001 0.762

(0.071) (0.082)

Note:

Simulation performed using 10,000 simulations.

Standard deviations in parenthesis.
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The effect of the food stamp program (FSP) on the
distribution of birth weight

• We build on the work Almond et al. (2011) and estimate the
distributional effects.

• 1964: Foot Stamp Act enabled counties to start their own (federally
founded) FSP.

• 1973: amendment to the FSA required all counties to establish a FSP
by 1975.

• We use Natality data from 1968 to 1977 augmented with information
on FSP rollout and county control variables.

• Groups: county-trimester cells.

• We estimate the effect for black and white mothers separately (2.8
and 16 million individual observations, respectively).
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Model

We consider the following model for black and white mothers separately:

Q(τ, bwij |fspj , x1ij , x2j , vj) = fspjγ1(τ) + x1ijβ(τ) + x2jγ2(τ) + α(τ, vj),

where

• bwij is the birth weight of individual i born in county–trimester j .

• fspj is a binary variable indicating that there is a FSP in place.

• x1ij births-specific covariates (e.g., mother’s age, marital status,
gender).

• x2j county-level controls (e.g., annual medial spending, per-capita
income, 1960 county-level characteristics interacted with a linear time
trend) and county , trimester and state × year fixed effects.
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Results - Black Mothers CLP
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Summary and limitations

• Summary
• We suggest a general framework for quantile panel data models.
• New random effects quantile estimator, new Hausman test, new

Hausman-Taylor quantile estimator, new grouped (IV) quantile
regression estimator.

• The estimators are straightforward to implement and computationally
fast also in large data sets. We have implemented them in Stata and R.

• Limitations
• Large n asymptotics (but simulations show good performance in finite

n).
• Cannot accommodate time fixed effects (but linear, quadratic, etc.

trends).
• Conditional quantile effects (but it is possible to integrate over the

group effects, see Bargain, Etienne, and Melly (2018)).
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Assumptions I

1 Sampling. (i) The processes {(yij , xij , zij) : i ∈ Z} are independent across j .
(ii) For each j , the observations (yij , x1ij , z1ij)i=1,...,n are i.i.d. across i .

2 Covariates. (i) For all j = 1, . . . ,m and all i = 1, . . . , n, ∥xij∥ ≤ C almost
surely. (ii) The eigenvalues of Ei|j [x̃ij x̃

′
ij ] are bounded away from zero and

infinity uniformly across j .

3 Conditional distribution. The conditional distribution Fyij |x1ij (y |x) is twice
differentiable w.r.t. y, with the corresponding derivatives fyij |x1ij (y |x) and
f ′yij |x1ij (y |x). Further, assume that

fmax := sup
j

sup
y∈R,x∈X

|fyij |x1ij (y |x)| < ∞

and

f̄ ′ := sup
j

sup
y∈R,x∈X

|f ′yij |x1ij (y |x)| < ∞.

where X is the support of x1ij
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Assumptions II

4 Bounded density. There exists a constant fmin < fmax such that

0 < fmin ≤ inf
j

inf
τ∈T

inf
x∈X

fyij |x1ij (Q(τ, yij |x)|x).

5 Instruments. (i) For all j = 1, . . . ,m and all i = 1, . . . , n, ||zij || ≤ C a.s.
(ii) For all j = 1, . . . ,m and all i = 1, . . . , n, E[zijαj(τ)] = 0. (iii) For all
j = 1, . . . ,m and all i = 1, . . . , n, yij is independent of zij conditional on
(xij , vj). (iv) As m → ∞, m−1

∑m
j=1 Ei|j [zijx

′
ij ] → ΣZX where the singular

values of ΣZX are bounded from below and from above.

6 group effects. (i) For all j = 1, . . . ,m, E
[
supτ∈T |αj(τ)|4+εC

]
≤ C for

εC > 0. (ii) For some (matrix-valued) function Ω2 : T × T → RL×L,
m−1

∑m
j=1 Ei|j [αj(τ1)αj(τ2)zijz

′
ij ] →p Ω2(τ1, τ2) uniformly over τ1, τ2 ∈ T .

(iii) For all τ1, τ2 ∈ T , |αj(τ2)− αj(τ1)| ≤ C |τ2 − τ1|.

7 Coefficients. For all τ1, τ2 ∈ T and j = 1, . . . ,m,
||βj(τ2)− βj(τ1)|| ≤ C |τ2 − τ1|.
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Assumptions III

8 Growth rates. (a) logm
n → 0, (b)

√
m log n
n → 0, (c) m(log n)2

n → 0.

Back
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Adaptive estimation

Uniformly in τ ∈ T and k ∈ {1, . . . ,K},

δ̂k(τ)− δk(τ) =
m∑
j=1

dj(k, τ) + op (ζ(k , τ))

where

dj(k , τ) = Gk(τ)

(
1

mn
ΣZXj

(
1

n

n∑
i=1

ϕj ,τ (x̃ij , yij)

)
+

1

m
z̄jαj(τ)

)

where

ζ(k , τ) =
1√
mn

+
1√
m

∥∥Gk(τ)Ω2(τ)Gk(τ)
′∥∥1/2 .

Back

Blaise Melly and Martina Pons Minimum Distance ESEM Barcelona, August 2023 21 / 21



Estimation of the variance

Define the n × 1 vector of residuals ûj(τ) = X̃j β̂j(τ)− Xj δ̂(τ). Then the

covariance matrix of δ̂(τ) is estimated by

V̂δ(τ) =(
X ′ZŴZ ′X

)−1
X ′ZŴ

 m∑
j=1

Z ′
j ûj(τ)ûj(τ)

′Zj

 ŴZ ′X
(
X ′ZŴZ ′X

)−1
.

Back
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Efficient Estimator

Note that
√
mḡnm(δ̂, ·)⇝

Z1(·)
n

+ Z2(·). (4)

Following standard GMM arguments, the efficient weighting matrix is
given by

W (τ)∗ = (Ω1(τ)/n +Ω2(τ))
−1 . (5)

Then under Assumptions ,

√
m(δ̂(Ω̂(·)−1, ·)− δ(·))⇝ G (·)

(
Z1(·)
n

+ Z2(·)
)
, in ℓ∞(T ), (6)
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Proposition

Denote δ̂MD
GMM the coefficient vector of a linear GMM regression of Ŷ on X

with instrument Z . Let δ̂GMM be the coefficient vector of the same GMM
regression but with regressand Y . If C (X̃j) ⊆ C (Zj), then δ̂MD

GMM = δ̂GMM .

Poof: Let P = X̃j(X̃
′
j X̃j)

−1X̃ ′
j . Since C (X̃j) ⊆ C (Zj):

PZj = Zj (7)

The MD estimator with a GMM second stage is:

δ̂MD
GMM =

(
X ′ZWZ ′X

)−1
X ′ZWZ ′Ŷ .
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For δ̂MD
GMM to be equal to δ̂GMM , it suffices that Z ′Ŷ = Z ′Y . Note that

Z ′Ŷ =
n∑

i=1

Zj Ŷj

=
n∑

i=1

Zj X̃j β̂j

=
n∑

i=1

Zj X̃j(X̃
′
j X̃j)

−1X̃ ′
j yj

=
n∑

i=1

(PZj)
′yj

=
n∑

i=1

Z ′
j yj = Z ′Y

back
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RE - Optimal Instruments

• Suppose economic theory implies some conditional moment restriction

E[gj(δ, τ)|Zj ] = 0

• If the moment condition holds conditional on Zj , an infinite set of
valid moments exist.

• Optimal Instrument: Z ∗
j = E [gj(δ, τ)gj(δ, τ)

′|Zj ]
−1 Rj(δ) where

Rj(δ) = E
[
∂
∂δgj(δ, τ)|Zj

]
(Chamberlain, 1987, Newey, 1993)

• Let gj(δ, τ) = X̃j β̂(τ)− Xjδ(τ) and Zj = Xj

Ẑ ∗
j =

(
X̃j

V̂j

T
X̃ ′
j + l ′T lTσ

2
α

)+

Xj

where V̂j(τ) =
̂Avar(β̂j(τ))
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Hausman and Taylor

• Assumptions imply instruments from within the model.

• Some variables in xij might be correlated with αj(τ)

• We partition xij into four types of variables: xx1ij , x
n
1ij , x

x
2j , x

n
2j ,

where n = endogenous and x = exogenous.
• E[xx1ijαj(τ)] = 0
• E[xx2jαj(τ)] = 0

• Identification requires dim(xx1ij) ≥ dim(xn2it)

• Hausman-Taylor can be estimated by using the instrument
zij = (ẋx1ij , ẋ

n
1ij , x̄

x
1i , x

x
2j) in the second stage.
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Hausman Test

• Consistency of the RE estimator requires stronger assumptions.

• Hausman (1978) suggests a test for RE against FE.

• Ahn and Low (1996) show equivalence between the Hausman Test
and the Hansen GMM statistics in the 3SLS estimator.

• We suggest an overidentification test based on the efficient GMM.

Define Zj = (x̄j , ẋ1ij), gj(δ, τ) = Z ′
j

(
Ŷj(τ)− Xjδ(τ)

)
and

ḡn(δ, τ) =
1
N

∑n
i=1 gj(δ, τ). Under the H0:

J
(
δ̂∗, τ

)
= NḡN(δ̂

∗, τ)′Ŵ ∗ḡN(δ̂
∗, τ)

d−→ χ2
L−K (8)

More
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Simulations

• Simulations for β̂ DGP

• 10’000 Monte Carlo Replications.

• (N,T ) = {(25, 25), (200, 25), (200, 10), (200, 200)}
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Simulation Results for β DGP

Table: Bias and Standard Deviation

Quantile Pooled BE FE RE opt. in. RE GMM

(N, T) = (25, 25)

0.1 0.003 0.000 0.015 0.016 0.008

(0.175) (0.222) (0.141) (0.120) (0.124)

0.5 -0.003 -0.004 0.000 -0.002 -0.002

(0.171) (0.218) (0.102) (0.106) (0.099)

0.9 -0.009 -0.007 -0.017 -0.018 -0.013

(0.177) (0.223) (0.138) (0.120) (0.124)

(N, T) = (200, 25)

0.1 0.006 0.004 0.015 0.017 0.011

(0.061) (0.075) (0.049) (0.042) (0.041)

0.5 0.000 0.000 0.000 0.000 0.000

(0.059) (0.073) (0.036) (0.036) (0.032)

0.9 -0.006 -0.004 -0.015 -0.017 -0.012

(0.061) (0.075) (0.049) (0.042) (0.041)

Note:

Simulation performed using 10000 simulations. Standard deviations in

parentheses.
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Simulation Results for β DGP

Table: Bias and Standard Deviation

Quantile Pooled BE FE RE opt. in. RE GMM

(N, T) = (200, 10)

0.1 0.011 0.005 0.040 0.046 0.019

(0.068) (0.080) (0.092) (0.067) (0.061)

0.5 0.001 0.001 0.001 0.001 0.001

(0.063) (0.076) (0.059) (0.063) (0.047)

0.9 -0.010 -0.003 -0.040 -0.045 -0.018

(0.067) (0.080) (0.091) (0.068) (0.060)

(N, T) = (200, 200)

0.1 0.000 0.000 0.002 0.002 0.002

(0.058) (0.073) (0.017) (0.016) (0.017)

0.5 0.000 0.000 0.000 0.000 0.000

(0.058) (0.072) (0.013) (0.012) (0.012)

0.9 -0.001 -0.001 -0.002 -0.002 -0.002

(0.058) (0.073) (0.017) (0.017) (0.017)

Note:

Simulation performed using 10000 simulations. Standard deviation in

parentheses.
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DGP for panel data simulations

yij = βx1ij + αj + (1 + 0.1x1ij)νij

where β = 1 and νij ∼ N (0, 1).
x1ij = hj + 0.5uij where uij ∼ N (0, 1) and(

hj
αj

)
∼ N

((
0
0

)
,

(
1 0
0 1

))
.

β(τ) = β + 0.1F−1(τ) where β = 1, and F is the standard normal CDF.
Back

Blaise Melly and Martina Pons Minimum Distance ESEM Barcelona, August 2023 21 / 21



DGP of CLP

DGP with unobserved Heterogeneity:

yij = β0(uij) + x1ijβ(uij) + x2jγ(uij) + αj(uij) (9)

αj(uij) = uijηj −
uij
2

(10)

Where

• x1ij and x2j are distributed exp(0.25 · N[0, 1])

• ηj and uij are U[0, 1] distributed.

• γ(uij) = β(uij) =
√
uij and β0(uij) =

uij
2

• True parameters: γ(τ) = β(τ) =
√
τ , α1(τ) =

τ
2 .

Back: Results
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Simulation Results for γ DGP Back

Table: Bias, Standard Deviation and Relative MSE

Quantile MD CLP Rel. MSE

(N, T) = (25, 25)

0.1 0.022 -0.010 0.052

(0.195) (0.860)

0.5 -0.011 0.000 0.088

(0.204) (0.691)

0.9 -0.020 -0.004 0.216

(N, T) = (25, 200)

0.1 0.003 -0.001 0.066

(0.074) (0.291)

0.5 -0.001 -0.001 0.233

(0.134) (0.278)

0.9 -0.001 0.001 0.769

(0.217) (0.247)

Note:

Simulation performed using 10000 simulations.

Standard deviation in parenthesis.

Back: Results
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Simulation Results for γ DGP More results

Table: Properties of the 95% Confidence Intervals

Rel. length Coverage Rate

Quantile MD/CLP MD CLP

(N, T) = (200, 25)

0.1 0.233 0.932 0.948

0.5 0.296 0.945 0.946

0.9 0.475 0.941 0.945

(N, T) = (200, 200)

0.1 0.254 0.947 0.945

0.5 0.483 0.952 0.948

0.9 0.872 0.950 0.950

Note:

Simulation performed using 10,000 simula-

tions.
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Random Effects

• RE can be estimated by overidentified 3SLS with instruments
zij = (x1ij − x̄1i , x̄1i , x2j). (Im et al., 1999)

• RE can be estimated using the theory on optimal instruments and a
just identified 2SLS regression (Im et al., 1999)

Both estimators are special cases of GMM, thus, using ŷij as a dependent
variable does not affect the results.

Back
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Estimation of W ∗ and the covariance matrix

• Both the efficient weighting matrix and the asymptotic
variance-covariance matrix can be easily estimated with a cluster
robust covariance matrix estimator.

• The covariance matrix estimator, does not require estimation of the
density of the first stage, and it is computationally easy to compute.

• Clustering takes implicitly the first stage estimation error into account.

More
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Estimation of W ∗ and the covariance matrix

• Efficient weighting matrix

Ŵ ∗ = Ŝ−1 =
1

N

n∑
i=1

Z ′
j ûj(τ)ûj(τ)

′Zj

where ûj(τ) is a T × 1 vector defined as ûj(τ) = Ŷj(τ)− Xj δ̂(τ).

• Estimator of the asymptotic variance-covariance matrix:

V̂δ(τ) =
(
X ′ZŴZ ′X

)−1
X ′ZŴ ŜŴ Z ′X

(
X ′ZŴZ ′X

)−1
.

Back to the covariance matrix Back to Hausman test

Blaise Melly and Martina Pons Minimum Distance ESEM Barcelona, August 2023 21 / 21



Black Mothers with CLP Back to our results
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CLP and normalized regressors Back to our results
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Extrapolation Back
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Vulnerability to misspecification Back
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Simulations Back

• Simulations for γ̂

• Same DGP as Chetverikov et al. (2016) DGP

• 10’000 Monte Carlo Replications.

• (m, n) = {(200, 25), (200, 200)}
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Simulation Results for γ DGP More results Back

Table: Bias, Standard Deviation and Relative MSE

Quantile MD CLP Rel. MSE

(m,n) = (200, 25)

0.1 0.024 0.004 0.063

(0.067) (0.285)

0.5 -0.006 0.000 0.086

(0.069) (0.238)

0.9 -0.017 -0.003 0.223

(0.075) (0.164)

(m,n) = (200, 200)

0.1 0.003 -0.003 0.062

(0.025) (0.101)

0.5 -0.001 -0.001 0.222

(0.044) (0.093)

0.9 -0.003 -0.001 0.762

(0.071) (0.082)

Note:

Simulation performed using 10,000 simulations.

Standard deviations in parenthesis.
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