Introduction 00	Model and Estimator	Asymptotics 0000000	Grouped 0000	Empirical Application	Conclusion O

Minimum Distance Estimation of Quantile Panel Data Models

Blaise Melly and Martina Pons

University of Bern

blaise.melly@unibe.ch

ESEM Barcelona, August 2023

Introduction ●0	Model and Estimator	Asymptotics 0000000	Grouped 0000	Empirical Application	Conclusion O
Setup					

We have panel data with two dimensions denoted by j = 1, ..., m and i = 1, ..., n. We can distinguish two sorts of applications:

Introduction ●○	Model and Estimator	Asymptotics 0000000	Grouped 0000	Empirical Application	Conclusion O
Setup					

We have panel data with two dimensions denoted by j = 1, ..., m and i = 1, ..., n. We can distinguish two sorts of applications:

• **Traditional panel data** where we observe the same units over multiple periods. Example: the effect of union status on wages using the PSID. *j* identifies the individual and *i* the time period.

Introduction ●0	Model and Estimator	Asymptotics 0000000	Grouped 0000	Empirical Application	Conclusion O
Setup					

We have panel data with two dimensions denoted by j = 1, ..., m and i = 1, ..., n. We can distinguish two sorts of applications:

• **Traditional panel data** where we observe the same units over multiple periods. Example: the effect of union status on wages using the PSID. *j* identifies the individual and *i* the time period.

Grouped data where each observation belongs to one group. *j* identifies the group and *i* the individual within the group. Examples:

- Effect of import competition on the within-industry wage distribution. Individual level data but the treatment varies at the level of the commuting zone (Autor, Dorn and Hanson, 2013).
- Effect of the food stamp program on the distribution of birth weights. Individual level data but the treatment varies at the county-time level (Almond, Hoynes and Schanzenbach, 2011).

Introduction ○●	Model and Estimator	Asymptotics 0000000	Grouped 0000	Empirical Application	Conclusion O
Summary	y				

- We suggest quantile versions of traditional panel data estimators (fixed effects, random effects, between, and Hausman and Taylor estimators). We consider the coefficients of both group-level and individual-level variables.
- We use the minimum distance approach:
 - For each group *j* regress with quantile regression the outcome on the individual-level regressors.
 - Regress the first stage fitted values on all the regressors with GMM using the appropriate instruments.
- Simple to implement, flexible, computationally fast, and are useful in various applied fields. Inference is straightforward: cluster-robust standard errors in the second stage.
- We provide codes in R and Stata.

Introduction 00	Model and Estimator	Asymptotics 0000000	Grouped 0000	Empirical Application	Conclusion O

Model

We assume that the τ th conditional quantile function of y_{ij} in group j can be represented by

$$Q(\tau, y_{ij}|x_{1ij}, x_{2j}, v_j) = x'_{1ij}\beta(\tau) + x'_{2j}\gamma(\tau) + \alpha(\tau, v_j)$$
(1)

- x_{1ij} is a K_1 -dimensional vector of individual-level variables.
- x_{2j} is a K₂-dimensional vector of group-level variables (includes a constant).
- v_j is an unobserved random vector.
- x_{1ij} and x_{2j} are potentially correlated with $\alpha(\tau, v_j)$.
- The group unobserved effects are normalized $\mathbb{E}[\alpha(\tau, v_j)] = 0$.
- z_{ij} is a *L*-dimensional vector of valid instruments, i.e. $\mathbb{E}[z_{ij}\alpha(\tau, v_j)] = 0.$

Minimum Distance Quantile Estimator

1 First stage: For each group j and quantile τ , regress y_{ij} on the individual-level variables using quantile regression.

$$\hat{\beta}_{j}(\tau) \equiv \left(\hat{\beta}_{0,j}, \hat{\beta}_{1,j}'\right)' = \arg\min_{(b_{0},b_{1}) \in \mathbb{R}^{K_{1}+1}} \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(y_{ij} - b_{0} - x_{1ij}'b_{1}) \quad (2)$$

where $\rho_{\tau}(x) = (\tau - 1\{x < 0\})x$ for $x \in \mathbb{R}$ is the check function.

Minimum Distance Quantile Estimator

Model and Estimator

0.00

1 First stage: For each group j and quantile τ , regress y_{ij} on the individual-level variables using quantile regression.

Asymptotics

$$\hat{\beta}_{j}(\tau) \equiv \left(\hat{\beta}_{0,j}, \hat{\beta}_{1,j}'\right)' = \arg\min_{(b_{0},b_{1}) \in \mathbb{R}^{K_{1}+1}} \frac{1}{n} \sum_{j=1}^{n} \rho_{\tau}(y_{ij} - b_{0} - x_{1ij}'b_{1}) \quad (2)$$

where $\rho_{\tau}(x) = (\tau - 1\{x < 0\})x$ for $x \in \mathbb{R}$ is the check function.

2 Second Stage: Regress the fitted values from the first stage on all the variables using GMM with the moment condition $\mathbb{E}[g_j(\delta, \tau)] = 0$ where $g_j(\delta, \tau) = Z_j(\hat{Y}_j(\tau) - X_j\delta(\tau))$.

$$\hat{\delta}(\hat{W},\tau) = \left(X'Z\hat{W}(\tau)Z'X\right)^{-1}X'Z\hat{W}(\tau)Z'\hat{Y}(\tau)$$
(3)

 $\hat{W}(au)$ is a L imes L symmetric weighting matrix and $\delta = (eta', \gamma')'$.

Empirical Application

Conclusion

Traditional panel data estimators as MD estimators

Consider

$$y_{ij} = x_{1ij}\beta + x_{2j}\gamma + \alpha_j + \varepsilon_{ij}$$

and define $\bar{y}_j = n^{-1} \sum_{i=1}^n y_{ij}$, $\bar{x}_{1j} = n^{-1} \sum_{i=1}^n x_{1ij}$, $\dot{y}_{ij} = y_{ij} - \bar{y}_j$ and $\dot{x}_{1ij} = x_{1ij} - \bar{x}_{1j}$.

OLS fitted values of the group-level regressions: \hat{y}_{ij} .

We obtain numerically the traditional (average) estimators:

- FE: Regress \hat{y}_{ij} on x_{1ij} with instrument \dot{x}_{1ij} .
- BE: Regress \hat{y}_{ij} on x_{1ij} and x_{2j} with instruments \bar{x}_j and x_{2j} .
- Pooled: Regress \hat{y}_{ij} on x_{1ij} and x_{2j} with OLS.
- RE: Efficient GMM with instruments $(\dot{x}_{1ij}, \bar{x}_{1j}, x_{2j})$

In the paper we do the same with first-stage quantile regression.

Blaise Melly and Martina Pons

Introduction 00	Model and Estimator	Asymptotics •000000	Grouped 0000	Empirical Application	Conclusion O

Sampling error

_

$$\hat{\delta}(\hat{W},\tau) - \delta(\tau) = \left(S'_{ZX}\hat{W}(\tau)S_{ZX}\right)^{-1}S'_{ZX}\hat{W}(\tau)$$
$$\times \frac{1}{mn}\sum_{j=1}^{m}\sum_{i=1}^{n}z_{ij}\left(\tilde{x}'_{ij}(\hat{\beta}_{j}(\tau) - \beta_{j}(\tau)) + \alpha_{j}(\tau)\right)$$

where
$$S_{ZX} = \frac{1}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} z_{ij} x'_{ij}$$
 and $\tilde{x}_{ij} = (1, x'_{1ij})'$.
1 In yellow: first-stage error
2 In blue: second-stage error

Blaise Melly and Martina Pons

Minimum Distance

Sampling error (cont.)

$$\hat{\delta}(\hat{W},\tau) - \delta(\tau) = \left(S'_{ZX}\hat{W}(\tau)S_{ZX}\right)^{-1}S'_{ZX}\hat{W}(\tau)$$

$$\times \left(\underbrace{\frac{1}{mn}\sum_{j=1}^{m}\sum_{i=1}^{n}z_{ij}\tilde{x}'_{ij}(\hat{\beta}_{j}(\tau) - \beta_{j}(\tau))}_{\bar{g}_{mn}^{(1)}(\hat{\delta},\tau)} + \underbrace{\frac{1}{m}\sum_{j=1}^{m}\bar{z}_{j}\alpha_{j}(\tau)}_{\bar{g}_{mn}^{(2)}(\hat{\delta},\tau)}\right)$$

where $\bar{z}_j := n^{-1} \sum_{i=1}^n z_{ij}$

The first-stage quantile regression bias is of order $1/\sqrt{n} \implies$ the number of observations per group must diverge to infinity.

The standard deviation of the first sample mean converges at the $1/\sqrt{nm}$ rate while the second only at the $1/\sqrt{m}$ rate \implies the second component dominates except if it converges to zero quickly enough.

Introduction 00	Model and Estimator	Asymptotics 00●0000	Grouped 0000	Empirical Application	Conclusion O

Asymptotic distribution of the sample moments

Under Assumptions • more,

• If $\frac{m(\log n)^2}{n} \to 0$,

 $\sqrt{mn} \bar{g}_{mn}^{(1)}(\hat{\delta},\cdot) \rightsquigarrow Z_1(\cdot)$, in $I^{\infty}(\mathcal{T})$,

where $Z_1(\cdot)$ is a mean-zero Gaussian process with uniformly continuous sample paths and covariance function $\Omega_1(\tau, \tau')$.

• If
$$\frac{\sqrt{m(\log n)}}{n} \to 0$$

 $\sqrt{m}\bar{g}_{mn}^{(2)}(\hat{\delta}, \cdot) \rightsquigarrow Z_2(\cdot)$, in $I^{\infty}(\mathcal{T})$,

where $Z_2(\cdot)$ is a mean-zero Gaussian process with uniformly continuous sample paths and covariance function $\Omega_2(\tau, \tau')$ • If $\frac{m(\log n)^2}{n} \to 0$

$$\sup_{\tau,\tau'\in\mathcal{T}} \left\| \mathsf{Cov}\left(\bar{g}_{mn}^{(1)}(\hat{\delta},\tau), \bar{g}_{mn}^{(2)}(\hat{\delta},\tau') \right) \right\| = o_{p}\left(\frac{1}{\sqrt{mn}} \right)$$

Blaise Melly and Martina Pons

Introduction OCO Model and Estimator Asymptotics OCO Couped OCO CO

Two cases and two types of instruments

- Homogeneous groups: $Var(\alpha_j(\tau)) = 0$. In this case, $\Omega_2(\tau, \tau')$ is a matrix of zeros. All coefficients are estimated at the \sqrt{mn} rate.
- Peterogeneous groups: Var(α_j(τ)) > ε > 0. We can distinguish two sorts of instruments:
 - L_1 instruments in z_{1ij} satisfy $\bar{z}_{1j} = 0$ for all j,
 - L_2 instruments in z_{2ij} do not satisfy $\bar{z}_{2j} = 0$ for all j.
 - ⇒ Only the $L_2 \times L_2$ bottom-right elements of $\Omega_2(\tau)$ are different from zero.
 - $\implies \text{ The elements of } \delta(\tau) \text{ that are identified using only } z_{1ij} \text{ can be} \\ \text{estimated at the } 1/\sqrt{mn} \text{ rate. In contrast, the remaining elements can} \\ \text{only be estimated at the } 1/\sqrt{m} \text{ rate. We denote the first with } \delta_1(\tau) \\ \text{ and the second with } \delta_2(\tau).$
- The asymptotic distribution of the slow coefficients $\hat{\delta}_2(W, \tau)$ are discontinuous in $Var(\bar{z}_j \alpha_j(\tau))$ at $0 \implies$ adaptive inference.

Two examples (with heterogeneous groups)

Model and Estimator

1 Regressors: x_{1ij} , 1 and x_{2j} . Instruments: \dot{x}_{1ij} , 1, and x_{2j} . Then,

Asymptotics

0000000

$$\Sigma_{ZX} = \begin{pmatrix} \Sigma_{11} & 0 \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

The coefficient on x_{1ij} converges at the \sqrt{mn} rate while the other coefficients converge at the \sqrt{m} rate.

Regressors: x_{1ij}, 1 and x_{2j}. Instruments: x_{1ij}, x_{1j}, 1, and x_{2j}.
 With a full-rank weighting matrix (e.g. 2SLS), the slow moments will contaminate the fast coefficients. We avoid that with

$$W(\tau) = \begin{pmatrix} W_{11}(\tau) & a_n W_{12}(\tau) \\ a_n W_{21}(\tau) & a_n W_{22}(\tau) \end{pmatrix}$$

where $a_n(\tau)$ is a sequence that converges to zero.

Empirical Application

Conclusion

Efficient estimator and adaptive inference

• Following standard GMM arguments, the efficient weighting matrix is

$$\mathcal{W}(\tau)^* = (\Omega_1(\tau)/n + \Omega_2(\tau))^{-1}$$

- Both the efficient weighting matrix and the asymptotic variance-covariance matrix can be estimated with a cluster robust covariance matrix estimator (which neglects the fact that the dependent variable has been estimated).
- Inference is adaptive and does not require knowing the rate of convergence of the estimator. For instance, let η ∈ ℝ^K with ||η|| > ε > 0. Then, uniformly in Var(α_j(τ)),

$$\frac{\eta'\left(\hat{\delta}(\tau)-\delta(\tau)\right)\eta}{\left[\eta'\hat{V}_{\delta}(\tau)\eta\right]^{1/2}} \xrightarrow{d} \mathsf{N}(0,1).$$

More formally

Blaise Melly and Martina Pons

Introduction 00	Model and Estimator	Asymptotics 000000●	Grouped 0000	Empirical Application	Conclusion O

Related Literature

- (IV) Quantile regression: Koenker and Bassett (1978), Chernozhukov and Hansen (2005). We consider different parameters (conditionally on the group effects).
- Minimum distance QR: Chamberlain (1994). We generalize his results by allowing $m \to \infty$, individual-level regressors, and GMM.
- Grouped (IV) quantile regression: Chetverikov et al. (2016). We provide a better estimator, relax the growth rate condition, and also study individual-level variables. See next section.
- Fixed effects quantile regression: Koenker (2004), Galvao and Wang (2015), Galvao et al. (2020). Special case of our framework.
- Random effects quantile regression: Galvao and Poirier (2019) use pooled quantile regression and estimate unconditional parameters. We suggest a new random effects estimator and a new Hausman test.

Grouped IV Quantile Regression

Chetverikov et al. (2016) consider a grouped (IV) quantile regression model, which fits into our setup. They are only interested in $\gamma(\tau)$. They suggest a different two-stages estimator:

- For each group j and quantile τ , regress the y_{ij} on x_{1ij} using quantile regression.
- Regress the intercept from the first stage on the x_{2j} variables with OLS or 2SLS, using one observation per group.

This is the same as our estimator in the absence of individual-level covariates.

Comparison with our estimator

- It is not-invariant to linear reparametrization of x_{1ij}.
- It is vulnerable to misspecification (the intercept is the fitted value for $x_{1ij} = 0$, which may be outside of the support of x_{1ij}).
- It has a higher variance because (i) it does not impose equality of β_j(τ) across j and (ii) it does not exploit the exogeneity of the between variation of x_{1ij}.
- If in reality $\beta_j(\tau)$ is not constant across groups $j \implies$ the treatment effect is heterogeneous: $\gamma(\tau, x_{1ij})$. Chetverikov et al. (2016) estimator converges to $\gamma(\tau, x_{1ij} = 0)$.

▶ More]

Introduction 00	Model and Estimator	Asymptotics 0000000	Grouped 00●0	Empirical Application	Conclusion O
		· · · · · · · · · · · · · · · · · · ·			

Simulations

- Simulations for $\hat{\gamma}$
- Same DGP as Chetverikov et al. (2016) DGP
- 10'000 Monte Carlo Replications.
- $(m, n) = \{(200, 25), (200, 200)\}$

Introduction Model and Estimator Asymptotics Grouped COOL Empirical Application Conclusion

Simulation Results for $\gamma \bullet \mathsf{DGP} \bullet \mathsf{More\ results}$

Table: Bias, Standard Deviation and Relative MSE

Quantile	MD	CLP	Rel. MSE
	(m,n) = ((200, 25)	
0.1	0.024	0.004	0.063
	(0.067)	(0.285)	
0.5	-0.006	0.000	0.086
	(0.069)	(0.238)	
0.9	-0.017	-0.003	0.223
	(0.075)	(0.164)	
	(m,n) = (1)	200, 200)	
0.1	0.003	-0.003	0.062
	(0.025)	(0.101)	
0.5	-0.001	-0.001	0.222
	(0.044)	(0.093)	
0.9	-0.003	-0.001	0.762
	(0.071)	(0.082)	

Note:

Simulation performed using 10,000 simulations. Standard deviations in parenthesis.

Blaise	Melly	and	Martina	Pons
--------	-------	-----	---------	------

Minimum Distance

The effect of the food stamp program (FSP) on the distribution of birth weight

- We build on the work Almond et al. (2011) and estimate the distributional effects.
- 1964: Foot Stamp Act enabled counties to start their own (federally founded) FSP.
- 1973: amendment to the FSA required all counties to establish a FSP by 1975.
- We use Natality data from 1968 to 1977 augmented with information on FSP rollout and county control variables.
- Groups: county-trimester cells.
- We estimate the effect for black and white mothers separately (2.8 and 16 million individual observations, respectively).

Introduction 00	Model and Estimator	Asymptotics 0000000	Grouped 0000	Empirical Application	Conclusion O
Model					

We consider the following model for black and white mothers separately:

$$Q(\tau, bw_{ij}|fsp_j, x_{1ij}, x_{2j}, v_j) = fsp_j\gamma_1(\tau) + x_{1ij}\beta(\tau) + x_{2j}\gamma_2(\tau) + \alpha(\tau, v_j),$$

where

- *bw_{ij}* is the birth weight of individual *i* born in county–trimester *j*.
- *fsp_j* is a binary variable indicating that there is a FSP in place.
- x_{1ij} births-specific covariates (e.g., mother's age, marital status, gender).
- x_{2j} county-level controls (e.g., annual medial spending, per-capita income, 1960 county-level characteristics interacted with a linear time trend) and *county*, *trimester* and *state* × *year* fixed effects.

Model and Estimator

Asymptotics

Grouped

Empirical Application

Conclusion o

Results - Black Mothers ••••

Blaise Melly and Martina Pons

Minimum Distance

Summary and limitations

- Summary
 - We suggest a general framework for quantile panel data models.
 - New random effects quantile estimator, new Hausman test, new Hausman-Taylor quantile estimator, new grouped (IV) quantile regression estimator.
 - The estimators are straightforward to implement and computationally fast also in large data sets. We have implemented them in Stata and R.
- Limitations
 - Large *n* asymptotics (but simulations show good performance in finite *n*).
 - Cannot accommodate time fixed effects (but linear, quadratic, etc. trends).
 - Conditional quantile effects (but it is possible to integrate over the group effects, see Bargain, Etienne, and Melly (2018)).

Introduction 00	Model and Estimator	Asymptotics 0000000	Grouped 0000	Empirical Application	Conclusion •

References I

- AHN, S. C. AND S. LOW (1996): "A reformulation of the Hausman test for regression models with pooled cross-section-time-series data," *Journal of Econometrics*, 71, 309–319.
- ALMOND, D., H. W. HOYNES, AND D. W. SCHANZENBACH (2011): "Inside the war on poverty: The impact of food stamps on birth outcomes," *Review of Economics and Statistics*, 93, 387–403.
- BARGAIN, O., A. ETIENNE, AND B. MELLY (2018): "Public Sector Wage Gaps Over the Long-Run: Evidence from Panel Administrative Data," .
- CHAMBERLAIN, G. (1987): "Asymptotic efficiency in estimation with conditional moment restrictions," *Journal of Econometrics*, 34, 305–334.
- (1994): "Quantile Regression, Censoring, and the Structure of Wages," *Advances in econometrics*, 1, 171–209.
- CHERNOZHUKOV, V. AND C. HANSEN (2005): "An IV Model of Quantile Treatment Effects," *Econometrica*, 73, 245–261.
- CHETVERIKOV, D., B. LARSEN, AND C. PALMER (2016): "IV Quantile Regression for Group-Level Treatments, With an Application to the Distributional Effects of Trade," *Econometrica*, 84, 809–833.
- GALVAO, A. AND A. POIRIER (2019): "Quantile Regression Random Effects," Annals of Economics and Statistics, 109–148.

Introduction 00	Model and Estimator	Asymptotics 0000000	Grouped 0000	Empirical Application	Conclusion
Reference	es II				

- GALVAO, A. F., J. GU, AND S. VOLGUSHEV (2020): "On the unbiased asymptotic normality of quantile regression with fixed effects," *Journal of Econometrics*, 218, 178–215.
- GALVAO, A. F. AND L. WANG (2015): "Efficient Minimum Distance Estimator for Quantile Regression Fixed Effects Panel Data," *Journal of Multivariate Analysis*, 133, 1–26.

HAUSMAN, J. A. (1978): "Specification Tests in Econometrics," Econometrica, 46, 1251-1271.

- IM, K. S., S. C. AHN, P. SCHMIDT, AND J. M. WOOLDRIDGE (1999): "Efficient estimation of panel data models with strictly exogenous explanatory variables," *Journal of Econometrics*, 93, 177–201.
- KOENKER, R. (2004): "Quantile Regression for Longitudinal Data," *Journal of Multivariate Analysis*, 91, 74–89.

KOENKER, R. AND G. BASSETT (1978): "Regression Quantiles," Econometrica, 46, 33.

NEWEY, W. K. (1993): "Efficient estimation of models with conditional moment restrictions," in *Handbook of Statistics*, Elsevier, vol. 11, chap. 16, 419–454.

Related Literature

- (IV) Quantile regression: Koenker and Bassett (1978), Chernozhukov and Hansen (2005). We consider different parameters (conditionally on the group effects).
- Minimum distance QR: Chamberlain (1994). We generalize his results by allowing $m \to \infty$, individual-level regressors, and GMM.
- Grouped (IV) quantile regression: Chetverikov et al. (2016). We provide a better estimator, relax the growth rate condition and also consider individual-level variables.
- Fixed effects quantile regression: Koenker (2004), Galvao and Wang (2015), Galvao et al. (2020). Special case of our framework.
- Random effects quantile regression: Galvao and Poirier (2019) use pooled quantile regression and estimate unconditional parameters. We suggest a new random effects estimator and a new Hausman test.

Assumptions I

- **Sampling**. (i) The processes {(y_{ij}, x_{ij}, z_{ij}) : i ∈ Z} are independent across j.
 (ii) For each j, the observations (y_{ij}, x_{1ij}, z_{1ij})_{i=1,...,n} are i.i.d. across i.
- ② Covariates. (i) For all j = 1,..., m and all i = 1,..., n, ||x_{ij}|| ≤ C almost surely. (ii) The eigenvalues of E_{i|j}[x̃_{ij}x̃'_{ij}] are bounded away from zero and infinity uniformly across j.
- **3** Conditional distribution. The conditional distribution $F_{y_{ij}|x_{1ij}}(y|x)$ is twice differentiable w.r.t. y, with the corresponding derivatives $f_{y_{ij}|x_{1ij}}(y|x)$ and $f'_{y_{ij}|x_{1ij}}(y|x)$. Further, assume that

$$f_{max} := \sup_{j} \sup_{y \in \mathbb{R}, x \in \mathcal{X}} |f_{y_{ij}|x_{1ij}}(y|x)| < \infty$$

and

$$ar{f}':=\sup_{j}\sup_{y\in\mathbb{R},x\in\mathcal{X}}|f_{y_{ij}|x_{1ij}}'(y|x)|<\infty.$$

where \mathcal{X} is the support of x_{1ij}

Blaise Melly and Martina Pons

Minimum Distance

ESEM Barcelona, August 2023 21 / 21

Assumptions II

4 Bounded density. There exists a constant $f_{min} < f_{max}$ such that

$$0 < f_{min} \leq \inf_{j} \inf_{\tau \in \mathcal{T}} \inf_{x \in \mathcal{X}} f_{y_{ij}|x_{1ij}}(Q(\tau, y_{ij}|x)|x).$$

(b) Instruments. (i) For all j = 1, ..., m and all i = 1, ..., n, $||z_{ij}|| \le C$ a.s. (ii) For all j = 1, ..., m and all i = 1, ..., n, $\mathbb{E}[z_{ij}\alpha_j(\tau)] = 0$. (iii) For all j = 1, ..., m and all i = 1, ..., n, y_{ij} is independent of z_{ij} conditional on (x_{ij}, v_j) . (iv) As $m \to \infty$, $m^{-1} \sum_{j=1}^{m} \mathbb{E}_{i|j}[z_{ij}x'_{ij}] \to \Sigma_{ZX}$ where the singular values of Σ_{ZX} are bounded from below and from above.

6 group effects. (i) For all j = 1, ..., m, $\mathbb{E}\left[\sup_{\tau \in \mathcal{T}} |\alpha_j(\tau)|^{4+\varepsilon_c}\right] \leq C$ for $\varepsilon_C > 0$. (ii) For some (matrix-valued) function $\Omega_2 : \mathcal{T} \times \mathcal{T} \to \mathbb{R}^{L \times L}$, $m^{-1} \sum_{j=1}^m \mathbb{E}_{i|j} [\alpha_j(\tau_1) \alpha_j(\tau_2) z_{ij} z'_{ij}] \xrightarrow{p} \Omega_2(\tau_1, \tau_2)$ uniformly over $\tau_1, \tau_2 \in \mathcal{T}$. (iii) For all $\tau_1, \tau_2 \in \mathcal{T}$, $|\alpha_j(\tau_2) - \alpha_j(\tau_1)| \leq C |\tau_2 - \tau_1|$.

? Coefficients. For all
$$\tau_1, \tau_2 \in \mathcal{T}$$
 and $j = 1, \ldots, m$, $||\beta_j(\tau_2) - \beta_j(\tau_1)|| \le C|\tau_2 - \tau_1|$.

Assumptions III

8 Growth rates. (a)
$$\frac{\log m}{n} \to 0$$
, (b) $\frac{\sqrt{m}\log n}{n} \to 0$, (c) $\frac{m(\log n)^2}{n} \to 0$.

Blaise Melly and Martina Pons

Minimum Distance

ESEM Barcelona, August 2023 21/21

Adaptive estimation

Uniformly in $au \in \mathcal{T}$ and $k \in \{1, \dots, K\}$,

$$\hat{\delta}_k(\tau) - \delta_k(\tau) = \sum_{j=1}^m d_j(k,\tau) + o_p\left(\zeta(k,\tau)\right)$$

where

$$d_j(k,\tau) = G_k(\tau) \left(\frac{1}{mn} \sum_{ZXj} \left(\frac{1}{n} \sum_{i=1}^n \phi_{j,\tau}(\tilde{x}_{ij}, y_{ij}) \right) + \frac{1}{m} \bar{z}_j \alpha_j(\tau) \right)$$

where

$$\zeta(k,\tau) = \frac{1}{\sqrt{mn}} + \frac{1}{\sqrt{m}} \left\| G_k(\tau) \Omega_2(\tau) G_k(\tau)' \right\|^{1/2}$$

Back

Blaise Melly and Martina Pons

.

Estimation of the variance

Define the $n \times 1$ vector of residuals $\hat{u}_j(\tau) = \tilde{X}_j \hat{\beta}_j(\tau) - X_j \hat{\delta}(\tau)$. Then the covariance matrix of $\hat{\delta}(\tau)$ is estimated by

$$\widehat{V}_{\delta}(\tau) = \left(X'Z\widehat{W}Z'X\right)^{-1}X'Z\widehat{W}\left(\sum_{j=1}^{m}Z'_{j}\widehat{u}_{j}(\tau)\widehat{u}_{j}(\tau)'Z_{j}\right)\widehat{W}Z'X\left(X'Z\widehat{W}Z'X\right)^{-1}$$

▶ Back

Efficient Estimator

Note that

$$\sqrt{m}\bar{g}_{nm}(\hat{\delta},\cdot) \rightsquigarrow \frac{Z_1(\cdot)}{n} + Z_2(\cdot).$$
 (4)

Following standard GMM arguments, the efficient weighting matrix is given by

$$W(\tau)^* = (\Omega_1(\tau)/n + \Omega_2(\tau))^{-1}.$$
 (5)

Then under • Assumptions ,

$$\sqrt{m}(\hat{\delta}(\hat{\Omega}(\cdot)^{-1},\cdot)-\delta(\cdot)) \rightsquigarrow G(\cdot)\left(\frac{Z_1(\cdot)}{n}+Z_2(\cdot)\right), \text{ in } \ell^{\infty}(\mathcal{T}), \quad (6)$$

Proposition

Denote $\hat{\delta}_{GMM}^{MD}$ the coefficient vector of a linear GMM regression of \hat{Y} on X with instrument Z. Let $\hat{\delta}_{GMM}$ be the coefficient vector of the same GMM regression but with regressand Y. If $C(\tilde{X}_j) \subseteq C(Z_j)$, then $\hat{\delta}_{GMM}^{MD} = \hat{\delta}_{GMM}$.

Poof: Let
$$P = ilde{X}_j (ilde{X}_j' ilde{X}_j)^{-1} ilde{X}_j'$$
. Since $C(ilde{X}_j) \subseteq C(Z_j)$:
 $PZ_i = Z_i$

The MD estimator with a GMM second stage is:

$$\hat{\delta}_{GMM}^{MD} = \left(X' Z W Z' X \right)^{-1} X' Z W Z' \hat{Y}.$$

For $\hat{\delta}_{GMM}^{MD}$ to be equal to $\hat{\delta}_{GMM}$, it suffices that $Z'\hat{Y} = Z'Y$. Note that

$$Z'\hat{Y} = \sum_{i=1}^{n} Z_j \hat{Y}_j$$

= $\sum_{i=1}^{n} Z_j \tilde{X}_j \hat{\beta}_j$
= $\sum_{i=1}^{n} Z_j \tilde{X}_j (\tilde{X}'_j \tilde{X}_j)^{-1} \tilde{X}'_j y_j$
= $\sum_{i=1}^{n} (PZ_j)' y_j$
= $\sum_{i=1}^{n} Z'_j y_j = Z'Y$

▶ back

Blaise Melly and Martina Pons

RE - Optimal Instruments

• Suppose economic theory implies some conditional moment restriction

 $\mathbb{E}[g_j(\delta,\tau)|Z_j]=0$

- If the moment condition holds conditional on Z_j, an infinite set of valid moments exist.
- Optimal Instrument: $Z_j^* = \mathbb{E} \left[g_j(\delta, \tau) g_j(\delta, \tau)' | Z_j \right]^{-1} R_j(\delta)$ where $R_j(\delta) = \mathbb{E} \left[\frac{\partial}{\partial \delta} g_j(\delta, \tau) | Z_j \right]$ (Chamberlain, 1987, Newey, 1993)

RE - Optimal Instruments

• Suppose economic theory implies some conditional moment restriction

$$\mathbb{E}[g_j(\delta,\tau)|Z_j]=0$$

- If the moment condition holds conditional on Z_j, an infinite set of valid moments exist.
- Optimal Instrument: $Z_j^* = \mathbb{E} \left[g_j(\delta, \tau) g_j(\delta, \tau)' | Z_j \right]^{-1} R_j(\delta)$ where $R_j(\delta) = \mathbb{E} \left[\frac{\partial}{\partial \delta} g_j(\delta, \tau) | Z_j \right]$ (Chamberlain, 1987, Newey, 1993)
- Let $g_j(\delta, \tau) = \tilde{X}_j \hat{eta}(\tau) X_j \delta(\tau)$ and $Z_j = X_j$

$$\hat{Z}_j^* = \left(\tilde{X}_j \frac{\hat{V}_j}{T} \tilde{X}_j' + l_T' l_T \sigma_\alpha^2\right)^+ X_j$$

where $\hat{V}_j(\tau) = Avar(\hat{\beta}_j(\tau))$

Hausman and Taylor

- Assumptions imply instruments from within the model.
- Some variables in x_{ij} might be correlated with $\alpha_j(\tau)$
- We partition x_{ij} into four types of variables: x_{1ij}^x , x_{1ij}^n , x_{2j}^x , x_{2j}^n , where n = endogenous and x = exogenous.
 - $\mathbb{E}[x_{1ij}^{\times}\alpha_j(\tau)] = 0$
 - $\mathbb{E}[x_{2j}^{x}\alpha_{j}(\tau)] = 0$
- Identification requires dim(x^x_{1ij}) ≥ dim(xⁿ_{2it})
- Hausman-Taylor can be estimated by using the instrument $z_{ij} = (\dot{x}_{1ij}^x, \dot{x}_{1ij}^n, \bar{x}_{1i}^x, x_{2j}^x)$ in the second stage.

Hausman Test

- Consistency of the RE estimator requires stronger assumptions.
- Hausman (1978) suggests a test for RE against FE.
- Ahn and Low (1996) show equivalence between the Hausman Test and the Hansen GMM statistics in the 3SLS estimator.
- We suggest an overidentification test based on the efficient GMM.

Define
$$Z_j = (\bar{x}_j, \dot{x}_{1ij}), g_j(\delta, \tau) = Z'_j \left(\hat{Y}_j(\tau) - X_j \delta(\tau) \right)$$
 and $\bar{g}_n(\delta, \tau) = \frac{1}{N} \sum_{i=1}^n g_j(\delta, \tau)$. Under the H_0 :

$$J\left(\hat{\delta}^*,\tau\right) = N\bar{g}_N(\hat{\delta}^*,\tau)'\hat{W}^*\bar{g}_N(\hat{\delta}^*,\tau) \xrightarrow{d} \chi^2_{L-K}$$
(8)

▶ More

Blaise Melly and Martina Pons

Simulations

- Simulations for $\hat{\beta}$ **D**GP
- 10'000 Monte Carlo Replications.
- $(N, T) = \{(25, 25), (200, 25), (200, 10), (200, 200)\}$

Simulation Results for β \bigcirc

-					
Quantile	Pooled	BE	FE	RE opt. in.	RE GMM
		((22.22)		
		(N, I)	= (25, 25))	
0.1	0.003	0.000	0.015	0.016	0.008
	(0.175)	(0.222)	(0.141)	(0.120)	(0.124)
0.5	-0.003	-0.004	0.000	-0.002	-0.002
	(0.171)	(0.218)	(0.102)	(0.106)	(0.099)
0.9	-0.009	-0.007	-0.017	-0.018	-0.013
	(0.177)	(0.223)	(0.138)	(0.120)	(0.124)
		(N, T)	= (200, 25	5)	
0.1	0.006	0.004	0.015	0.017	0.011
	(0.061)	(0.075)	(0.049)	(0.042)	(0.041)
0.5	0.000	0.000	0.000	0.000	0.000
	(0.059)	(0.073)	(0.036)	(0.036)	(0.032)
0.9	-0.006	-0.004	-0.015	-0.017	-0.012
	(0.061)	(0.075)	(0.049)	(0.042)	(0.041)

Table: Bias and Standard Deviation

Note:

Simulation performed using 10000 simulations. Standard deviations in parentheses.

Blaise Melly and Martina Pons

Minimum Distance

ESEM Barcelona, August 2023 21/21

Simulation Results for β \bigcirc

Quantile	Pooled	BE	FE	RE opt. in.	RE GMM	
(N, T) = (200, 10)						
0.1	0.011	0.005	0.040	0.046	0.019	
	(0.068)	(0.080)	(0.092)	(0.067)	(0.061)	
0.5	0.001	0.001	0.001	0.001	0.001	
	(0.063)	(0.076)	(0.059)	(0.063)	(0.047)	
0.9	-0.010	-0.003	-0.040	-0.045	-0.018	
	(0.067)	(0.080)	(0.091)	(0.068)	(0.060)	
		(N, T)	= (200, 200	0)		
0.1	0.000	0.000	0.002	0.002	0.002	
	(0.058)	(0.073)	(0.017)	(0.016)	(0.017)	
0.5	0.000	0.000	0.000	0.000	0.000	
	(0.058)	(0.072)	(0.013)	(0.012)	(0.012)	
0.9	-0.001	-0.001	-0.002	-0.002	-0.002	
	(0.058)	(0.073)	(0.017)	(0.017)	(0.017)	

Table: Bias and Standard Deviation

Note:

Simulation performed using 10000 simulations. Standard deviation in parentheses.

Blaise Melly and Martina Pons

Minimum Distance

ESEM Barcelona, August 2023 21 / 21

DGP for panel data simulations

$$y_{ij} = \beta x_{1ij} + \alpha_j + (1 + 0.1x_{1ij})\nu_{ij}$$

where $\beta = 1$ and $\nu_{ij} \sim \mathcal{N}(0, 1)$.
 $x_{1ij} = h_j + 0.5u_{ij}$ where $u_{ij} \sim \mathcal{N}(0, 1)$ and
 $\begin{pmatrix} h_j \\ \alpha_j \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$.
 $\beta(\tau) = \beta + 0.1F^{-1}(\tau)$ where $\beta = 1$, and F is the standard

 $\beta(\tau) = \beta + 0.1F^{-1}(\tau)$ where $\beta = 1$, and F is the standard normal CDF. Back

Blaise Melly and Martina Pons

DGP of CLP

DGP with unobserved Heterogeneity:

$$y_{ij} = \beta_0(u_{ij}) + x_{1ij}\beta(u_{ij}) + x_{2j}\gamma(u_{ij}) + \alpha_j(u_{ij})$$
(9)

$$\alpha_j(u_{ij}) = u_{ij}\eta_j - \frac{u_{ij}}{2} \tag{10}$$

Where

- x_{1ij} and x_{2j} are distributed $\exp(0.25 \cdot N[0, 1])$
- η_j and u_{ij} are U[0,1] distributed.
- $\gamma(u_{ij}) = \beta(u_{ij}) = \sqrt{u_{ij}}$ and $\beta_0(u_{ij}) = \frac{u_{ij}}{2}$
- True parameters: $\gamma(\tau) = \beta(\tau) = \sqrt{\tau}$, $\alpha_1(\tau) = \frac{\tau}{2}$.

Back: Results

Blaise Melly and Martina Pons

Simulation Results for γ \bullet DGP \bullet Back

Table: Bias, Standard Deviation and Relative MSE

Quantile	MD	CLP	Rel. MSE
	(N, T) =	(25, 25)	
0.1	0.022	-0.010	0.052
	(0.195)	(0.860)	
0.5	-0.011	0.000	0.088
	(0.204)	(0.691)	
0.9	-0.020	-0.004	0.216
	(N T) _	(25 200)	
	(N, T) =	(25, 200)	
0.1	0.003	-0.001	0.066
	(0.074)	(0.291)	
0.5	-0.001	-0.001	0.233
	(0.134)	(0.278)	
0.9	-0.001	0.001	0.769
	(0.217)	(0.247)	

Note:

Simulation performed using 10000 simulations. Standard deviation in parenthesis.

Back: Results

Blaise Melly and Martina Pons

Minimum Distance

ESEM Barcelona, August 2023 21 / 21

Simulation Results for $\gamma ightarrow m DGP$ (More results

Table: Properties of the 95% Confidence Intervals

Quantile	Rel. length MD/CLP	Coverag MD	ge Rate CLP
	(N, T) = (20)	0, 25)	
0.1	0.233	0.932	0.948
0.5	0.296	0.945	0.946
0.9	0.475	0.941	0.945
	(N, T) = (200)), 200)	
0.1	0.254	0.947	0.945
0.5	0.483	0.952	0.948
0.9	0.872	0.950	0.950

Note:

Simulation performed using 10,000 simulations.

Random Effects

- RE can be estimated by overidentified 3SLS with instruments $z_{ij} = (x_{1ij} \bar{x}_{1i}, \bar{x}_{1i}, x_{2j})$. (Im et al., 1999)
- RE can be estimated using the theory on optimal instruments and a just identified 2SLS regression (Im et al., 1999)

Both estimators are special cases of GMM, thus, using \hat{y}_{ij} as a dependent variable does not affect the results.

Estimation of W^* and the covariance matrix

- Both the efficient weighting matrix and the asymptotic variance-covariance matrix can be easily estimated with a cluster robust covariance matrix estimator.
- The covariance matrix estimator, does not require estimation of the density of the first stage, and it is computationally easy to compute.
- Clustering takes implicitly the first stage estimation error into account.

▶ More

Estimation of W^* and the covariance matrix

• Efficient weighting matrix

$$\hat{W}^* = \hat{S}^{-1} = \frac{1}{N} \sum_{i=1}^n Z'_j \hat{u}_j(\tau) \hat{u}_j(\tau)' Z_j$$

where $\hat{u}_j(\tau)$ is a $T \times 1$ vector defined as $\hat{u}_j(\tau) = \hat{Y}_j(\tau) - X_j \hat{\delta}(\tau)$.

• Estimator of the asymptotic variance-covariance matrix:

$$\hat{V}_{\delta}(\tau) = \left(X'Z\hat{W}Z'X\right)^{-1}X'Z\hat{W}\hat{S}\hat{W}Z'X\left(X'Z\hat{W}Z'X\right)^{-1}$$

Back to the covariance matrix Back to Hausman

Blaise Melly and Martina Pons

Black Mothers with CLP Back to our results

CLP and normalized regressors • Back to our results

Extrapolation • Back

Blaise Melly and Martina Pons

Vulnerability to misspecification • Back

Blaise Melly and Martina Pons

- Simulations for $\hat{\gamma}$
- Same DGP as Chetverikov et al. (2016) DGP
- 10'000 Monte Carlo Replications.
- $(m, n) = \{(200, 25), (200, 200)\}$

Simulation Results for γ (DGP) (More results) (Back

Quantile	MD	CLP	Rel. MSE
	(m,n) = ((200, 25)	
0.1	0.024	0.004	0.063
	(0.067)	(0.285)	
0.5	-0.006	0.000	0.086
	(0.069)	(0.238)	
0.9	-0.017	-0.003	0.223
	(0.075)	(0.164)	
	(m,n) = (1)	200, 200)	
0.1	0.003	-0.003	0.062
	(0.025)	(0.101)	
0.5	-0.001	-0.001	0.222
	(0.044)	(0.093)	
0.9	-0.003	-0.001	0.762
	(0.071)	(0.082)	

Table: Bias,	Standard	Deviation	and	Relative	MSE
--------------	----------	-----------	-----	----------	-----

Note:

Simulation performed using 10,000 simulations. Standard deviations in parenthesis.

Blaise	Melly	and	Martina	Pons
--------	-------	-----	---------	------

Minimum Distance