Moral Hazard Induced Unraveling

Cameron M. Ellis¹, **Meghan I. Esson**¹, and Eli Liebman²

¹University of Iowa

²University of Georgia

Motivation:

- Many of the recent insurance expansions in US have relied on "managed competition."
 - Private insurers.
 - Limit price discrimination.
 - Community rating.
 - Increase affordability.
 - Means-tested subsidies for premiums and out-of-pocket (OOP) payments.
 - Medicare Part D, Medicare Advantage, and the Affordable Care Act Health Insurance Exchanges all have these features.

Motivation:

- Governments offer OOP subsidies in a tradeoff of affordability and the inefficiencies from moral hazard.
- It is very common for governments to intervene in markets with adverse selection.
 - ▶ However, it is usually thought the government has less of a role to play in "correcting" moral hazard.
 - This is because there typically isn't an externality for moral hazard.
 - Community rating changes that though!

Research Questions:

- Can means-tested, OOP subsidies unravel insurance markets with community rating?
- Is this happening on the ACA Exchanges?
- How bad is the welfare loss?

Research Questions:

- Can means-tested OOP subsidies unravel insurance markets with community rating?
 - Yes. The combination of subsidies and community rating mimics adverse selection.
 - Shown graphically.
- Is this happening on the ACA Exchanges?
 - Yes. Reimbursing the MH component of OOP subsidies would lower premiums by around \$1000 and increase unsubsidized enrollment.
 - Medicaid Expansion Difference-in-Differences.

Research Questions:

- How bad is the welfare loss?
 - ► About \$50 per potential market participant.
 - ▶ 25% of the cost of adverse selection.
 - Structural Model.

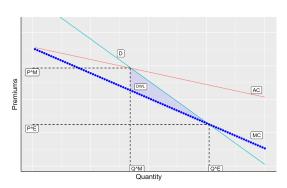
Intro Theory Welfare Estimation Conclude

Brief Background:

- Our empirics focus on the ACA, so I'll use that language.
 - Shown graphically, have a general theory in the paper.
- ACA subsidies on two margins: OOP and Premiums.
 - Premium Subsidies:
 - Premiums are capped at 2% of income for everyone under 400% of the FPL.
 - In practice, this is binding for most people.
 - OOP Subsidies:
 - People under 250% of the FPL have their cost-sharing subsidized.
 - People 100% 150% FPL pay just \$0.06 on the dollar for healthcare.

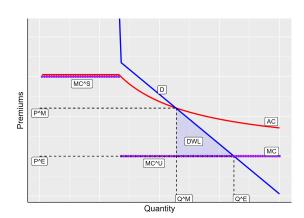
Example: Means-Tested OOP Subsidies

	Standard Silver – No CSR	CSR Plan for 201-250% FPL	CSR Plan for 151-200% FPL	CSR Plan for up to 150% FPL
Actuarial Value	70% AV	73% AV	87% AV	94% AV
Deductible (Individual)	\$7,150	\$4,500	\$800	\$250
Maximum OOP Limit (Individual)	\$7,350	\$5,700	\$1,700	\$550
Inpatient hospital	30% (after deductible)	30% (after deductible)	10% (after deductible)	10% (after deductible)
Physician visit	\$70	\$30	\$10	\$5

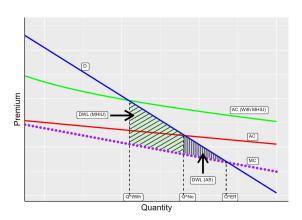


Theory:

- (1) Moral Hazard means OOP subsidies induce higher costs.
- (2) Community rating spreads this increased cost to unsubsidized enrollees.
- (3) Premium subsidies ensure that *only* the unsubsidized feel the cost increase.
 - We can show how this works in the graphical framework of Einav and Finkelstein (2011).


Theory: Unraveling

- Brief reminder of Einav and Finkelstein Model.
- Adverse selection means MC curve is downward sloping.
 - Higher cost = higher demand
- Downward sloping MC curve means AC > MC.
- Inefficiency comes from under-insurance.


Theory: Unraveling

- Same base MC (no selection).
- OOP subsidies increase MC for some consumers.
- Premium subsidies move them to the "left".
- Makes AC curve slope down, mimicking adverse selection.

Theory: Unraveling

- What if we add adverse selection?
- The problem gets worse!
- This is because the people who are kicked out have a higher risk premium.

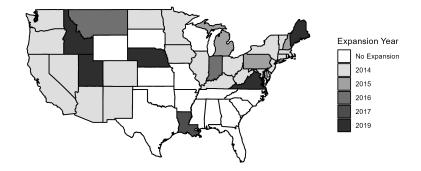
Welfare Estimation

Assume linear demand and cost functions (Einav, Finkelstein, and Cullen (2010)):

$$D(P) = \alpha + \beta * P$$

$$AC(P) = \gamma + \delta * P + \sigma * \mu$$

- δ and γ are the adverse selection parameters.
- $-\mu$ is the additional moral hazard cost.
- $-\sigma$ is the share of enrollees that get subsidies.
- Equilibrium \Longrightarrow D(P) = AC(P).
 - We also allow for markups later.


Welfare Estimation

- $-\delta$ and μ we take from the literature.
 - δ = .155 (Einav, Finkelstein, and Cullen (2010))
 - $\mu = 721
 - Determined by the elasticity from the RAND Health Insurance Experiment.
 - ▶ Use these to back out γ .
- σ we observe in the data.
- α and eta we need to estimate.

Estimating α and β

- We need something that changes the share of subsidized enrollees, which changes premiums, but doesn't otherwise impact demand by the unsubsidized.
- The ACA's Medicaid Expansion fits this perfectly.
 - ▶ If you are eligible for Medicaid, you don't get exchange subsidies.
 - So Medicaid Expansion mechanically reduces the percentage of subsidized enrollees by about 40%.

Affordable Care Act: Medicaid Expansion

ntro Theory **Welfare Estimation** Conclude

Model: Difference-in-Differences

Borusyak et al. (2021) imputed diff-in-diff approach.

For (1) share HIX enroll 150% FPL, (2) premiums, (3) HIX enroll 400+% FPL, and (4) uninsured 400+% FPL, we estimate,

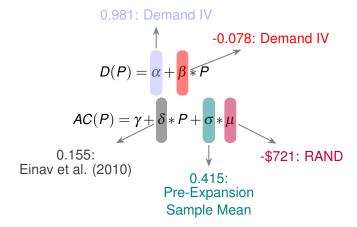
$$y_{st}^{0} = x_{st}^{'} \alpha + \theta_{s} + \tau_{t} + \varepsilon_{st}$$
 (1)

$$y_{st}^{1} - \widehat{y_{st}^{0}} = \beta_{1} \operatorname{Expand}_{st} + \gamma_{st}$$
 (2)

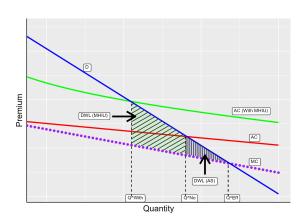
- (1) uses non-treated units and (2) uses all units.
- $x_{st} \rightarrow \text{controls}$
- θ_s and τ_t are state (or rating-area) and year fixed effects.
- Combine estimates on HIX premiums and HIX enrollment as an IV to causally estimate demand.

Data:

- HIX Compare: 2014-2017
 - Premiums for 27 years olds at the rating area, plan, carrier, and metal level.
 - ► Sample: 275 rating areas with 59,013 plans.
 - Utilize 2015-2017 expanders.
 - Avg. annual premium: \$3,400.
- HIX Open Enrollment Period (OEP) Data: 2015-2017
 - Number enrollees in a given rating area based on income.
 - ▶ 40% enrolled on HIX \rightarrow 100-150% FPL.
- American Community Survey (ACS): 2012-2017
 - Health insurance takeup data:
 - Uninsured Rate and Exchange Purchase.
 - Probability 400+% FPL uninsured \rightarrow 3.6%


Results: Demand Estimation

	(1)	(2)	(3)	(4)	(5)
	Log Share of HIX 100-150% FPL	Premiums (000s):	P(HIX Purchase):	Unsubsidized Uninsured Rate (% point):	Demand IV ((3)/(2))
Estimated ATT 90% Confidence Interval	-0.471*** [-0.511, -0.412]	-0.374*** [-0.511, -0.213]	0.029***	-0.126* [-0.281, -0.02]	-0.078*** [-0.125, -0.05]
Implied Intercept 90% Confidence Interval	-	-	-	-	0.981*** [0.887, 1.14]
Person Controls?	No	No	Yes	Yes	-
Plan Controls?	No	Yes	No	No	-
Year Fixed Effects?	Yes	Yes	Yes	Yes	-
Rating-Area Fixed Effects?	Yes	Yes	No	No	-
State Fixed Effects?	No	No	Yes	Yes	-
Pre-Expansion Sample Mean	0.415	3.09	0.74	3.6	-
Implied Post-Expansion Mean	0.259	2.71	0.769	3.5	-
Implied No-MHIU Mean	0	2.09	0.818	3.3	-
Observations	747	59,013	213,208	3,595,818	-


Welfare: Setup

Theory Reminder:

We are estimating:

- Size of MHIU DWL
- Size of AS DWL
- Enrollment change for AS
- Enrollment change for MHIU

		(1)	(2)	(3)	(4)	(5)	(6)
		Enrollment loss due to MHIU	Enrollment loss due to MHIU and AS	Welfare loss (Δ_{MFE})	$\begin{array}{c} \text{Loss due} \\ \text{to AS} \\ (\Delta_{\textit{AGE}}) \end{array}$	Loss due to MHIU (Δ_{MFGA})	Share of Welfare Loss due to MHIU
1	RAND Elasticity (Base Case)	0.028	0.2	177	132	46	0.257

- Base Case: \$50 DWL from MHIU
 - Compared to \$130 from AS.
- Enrollment loss from AS is much bigger.
 - ▶ But welfare losses are still comparable.

		(1)	(2)	(3)	(4)	(5)	(6)
		Enrollment loss due to MHIU	Enrollment loss due to MHIU and AS	Welfare loss (Δ_{MFE})	Loss due to AS (Δ_{AGE})	Loss due to MHIU (Δ_{MFGA})	Share of Welfare Loss due to MHIU
1	RAND Elasticity (Base Case)	0.028	0.2	177	132	46	0.257
2	Lavetti et al Elasticity	0.018	0.188	157	128	28	0.182
3	Ellis et al Elasticity	0.061	0.241	256	143	113	0.441
4	Brot-Goldberg et al Elasticity	0.079	0.241	280	132	148	0.529

- Changing the elasticity (μ) assumption has a big effect.
 - ▶ Lavetti et al is a lower bound and drops the DWL to \$28.

		(1)	(2)	(3)	(4)	(5)	(6)
		Enrollment loss due to MHIU	Enrollment loss due to MHIU and AS	Welfare loss (Δ_{MFE})	Loss due to AS (Δ_{AGE})	Loss due to MHIU (Δ_{MFGA})	Share of Welfare Loss due to MHIU
1	RAND Elasticity (Base Case)	0.028	0.2	177	132	46	0.257
5	No Adverse Selection	0.023	0.023	3	0	3	1
6	1/2 as Much Adverse Selection	0.025	0.095	49	27	23	0.46
7	2x More Adverse Selection	0.034	0.241	390	319	72	0.184

- Changing the level of AS has a huge effect.
- No adverse selection reduces the DWL to basically 0.
- Increasing adverse selection also increases the loss from MHIU.

		(1)	(2)	(3)	(4)	(5)	(6)
		Enrollment loss due to MHIU	Enrollment loss due to MHIU and AS	Welfare loss (Δ_{MFE})	Loss due to AS (Δ_{AGE})	Loss due to MHIU (Δ_{MFGA})	Share of Welfare Loss due to MHIU
1	RAND Elasticity (Base Case)	0.028	0.2	177	132	46	0.257
8	If markups are 15%	0.034	0.241	269	201	68	0.254
9	Health/Wealth Gradient	0.028	0.241	263	207	56	0.214

- Allowing for 15% markups also increases the welfare loss.
- Adding a \$1000 health/wealth gradient does as well.
 - Since subsidies are means-tested, it basically just mimics MHIU

Conclusion:

- We show how community rating with means-tested OOP subsidies can unravel a market through moral hazard.
- Use the ACA HIXs and Medicaid expansion to test this empirically.
- Economically meaningful:
 - Accounts for 12% higher premiums.
 - Total welfare loss of \$177 per person about a quarter due to MHIU.

Thank you! Questions?

Contact: meghan-esson@uiowa.edu

Results: Placebo Check

	150-400% FPL:	400+% FPL:		
	(1)	(2)		
	P(HIX Purchase):	Employer-Sponsored Insurance Rate:		
Estimated ATT 90% Confidence Interval	-0.001 [-0.014, 0.013]	0.001 [-0.001, 0.004]		
Pre-Expansion Sample Mean Observations	0.435 499,980	0.962 3,595,818		

Return

