Masks, cameras and social pressure

Itzhak Rasooly<sup>1</sup> Roberto Rozzi<sup>2</sup>

<sup>1</sup>Sciences Po, Paris School of Economics

<sup>2</sup>University of Padova

EEA ESEM meeting, Barcelona - August 30th 2023



# Introduction I

"Descriptive norms involve perceptions of which behaviors are typically performed. They normally refer to the perception of others' behavior. These norms are based on observations of those around you."

Cialdini, 2003

Large literature demonstrating the power of descriptive norms (together with peer effects):

- ► Tax evasion (Bott et al., 2020)
- Charitable giving (Agerström et al., 2016)
- Voting choices (Gerber and Rogers, 2009)
- etc. etc.



# Introduction II

Despite the importance of descriptive norms, there is little quantitative evidence on the exact relationship between the share of people who adopt an behavior and our own inclination to adopt that behavior. Typical example:

- Frey and Meier, 2004 tell students either that 64% or 46% of their peers donate to a charity.
- Findings suggest that higher beliefs lead to higher actions.
- However, this doesn't tell us what the relationship looks like over the full feasible range.



Why should we care about exactly how actions depend on prevalence?

- Policy motivation: the shape of this relationship reveals the returns to altering perceptions about prevalence (e.g. by disclosing information).
- Testing theories: certain economic models, e.g. those in evolutionary game theory, make distinctive predictions about the observed functional form.
- Dynamics: the shape of this relationship pins down long run equilibria in dynamic models.



# Our work

We provide evidence on the shape of this relationship across two contexts:

- Experiment 1: a randomised experiment on the social determinants of face mask wearing.
- Experiment 2: a randomised experiment on the social determinant of camera use in Zoom meetings.

We deliver theoretical implications of our findings, and what models can give rise to them.

We find that

- The share of individuals taking the relevant action is monotone increasing in the share of others who take this action.
- There are some evidence of non-linearity.
- When embedded in dynamic models, our estimates predict heterogeneous behavior despite individuals' copying-like behaviour.



# Theoretical Framework

- Consider a simple dynamic setting where s<sub>t</sub> is the share at time t of people adopting one behavior (e.g. wearing the mask).
- ▶  $s_t = f(s_{t-1}) \rightarrow$  the share of people adopting that behavior at time t depends on the share of people adopting that behavior at t 1.
- ► f(s<sub>t-1</sub>) depends on how people respond to the different share in the population adopting the behavior.
- E.g.,  $f(s_{t-1})$  depends on the tipping point distribution of the population.
- Tipping point of *i* is  $t_i$  s.t. if  $s_t \ge t_i$ , *i* adopt the behavior.

Based on the shape of this function, the long-run prediction changes.



# Theoretical framework: homogeneous tipping points





Theoretical framework: heterogeneous tipping points





Background:

- ▶ The first experiment took place in Oxford from 25 February to 4 March 2022.
- At this time, masks were not required by either law or university rules however, they were also not unusual.
- ▶ We conducted 14 three hour sessions in 12 different colleges.
- ▶ In total, we recruited 646 experimental subjects.
- ▶ Pre-registration: AEARCTR-0009013.



# Masks: experimental design II

The details:

- Experimental subjects entered the room one by one (two minute staggered time slots).
- Before each subject entered, the number of the 4 experimenters in the room wearing a mask (and the allocation of masks to experimenters) was randomised.
- Once a subject entered, they were asked to sat at a table with a box of masks, a hand sanitizer and a box of checkers.
- All four experimenters introduced themselves by stating their name and subject of study.
- The subject was then asked some simple demographic questions, and given a decision problem involving lotteries.
- An experimenter recorded whether the subject was wearing the mask while entering or whether they chose to wear it during the experiment.



# Masks: results I





# Masks: results II

- The frequency of mask wearing is increasing in the share of experimenters who wear a mask → consistent with a model in which higher rates of mask wearing lead to greater social pressure to wear a mask. Mono
- 2. Many individuals defy social pressure: Switches

• 
$$f(0) = 0.20 \neq 0 \ (p = 0.000)$$

- $f(1) = 0.49 \neq 1 \ (p = 0.000).$
- 3. Our estimated F function appears to be non linear:
  - Estimating a model with a quadratic term suggests some convexity (p = 0.04).
  - $\blacktriangleright$  Large jump between the 3 and 4 treatments  $\rightarrow$  potential 'everybody effect'.
- 4. Our estimates predict convergence to a mixed equilibrium around  $23.3\% \rightarrow In$  these equilibria, around 86% of mask wearers wear the mask because they always wear one; with the remainder wearing a mask due in part to copying behaviour.



The general idea resembles the masks experiment except that instead of masks, the treatments and the outcome variable were the camera usage during a Zoom meeting.

Background

- ▶ This experiment took place online in late July and early August of 2022.
- ▶ We conducted 16 two hour sessions over the course of 8 days.
- ▶ In total, we recruited 1,115 participants (from Prolific).
- Pre-registration: https://www.socialscienceregistry.org/trials/9829.



# Cameras: experimental design II

The details:

- Experimental subjects joined the Zoom call one by one (two minute staggered time slots).
- Before each subject entered, the number of the 4 experimenters in the room with their camera on (and which experimenters had their camera on) was randomised.
- Once a subject joined the call, all four experimenters introduced themselves by stating their name.
- The subject was asked for their age, and then whether they would hypothetically want to donate half of a bonus payment to the next subject on the call.
- If the subject did not turn their camera on, they were asked whether there were any issues with their camera.
- ► The process then repeated... Descriptive Regressions



# Cameras: results I





# Cameras: results II

- We find evidence that the frequency of camera use is increasing in the share of experimenters who use a camera → again this is consistent with a model in which higher rates of camera using lead to greater social pressure to use the camera.
- 2. Again many individuals defy social pressure: Switches

▶ 
$$f(0) = 0.209 \neq 0 \ (p = 0.000).$$

• 
$$f(1) = 0.587 \neq 1 \ (p = 0.000).$$

- 3. Our estimated F function appears to be roughly linear. Quad However, the jump between the 0 and 1 treatments is larger than the other 3 jumps.
- 4. Our estimates once again predict convergence to a mixed equilibrium around 37.0%
  → around 56% of camera users turn the camera on because they always turn it on;
  with the remainder turning the camera on due in part to copying behaviour.



# Conclusions

In this paper, we conduct multi-treatment social norms experiments to get a quantitative understanding of how individuals' behaviour varies with the share doing an action in their immediate environment.

- Despite some differences between the estimates across our contexts (which we rationalise using a simple theory), we obtain many commonalities across the two experiments: high levels of non-compliance, monotone F functions, interior fixed points.
- Perhaps most importantly, when embedded in a dynamic model, our estimates can explain how copying can plausibly lead to heterogenous behaviour (not conformity!).





roberto.rozzi@unive.it roberto.rozzi@unipd.it



# References I

- Agerström, J., Carlsson, R., Nicklasson, L., & Guntell, L. (2016). Using descriptive social norms to increase charitable giving: The power of local norms. *Journal of Economic Psychology*, 52, 147–153.
- Bott, K. M., Cappelen, A. W., Sørensen, E. Ø., & Tungodden, B. (2020). You've got mail: A randomized field experiment on tax evasion. *Management Science*, *66*(7), 2801–2819.
- Gialdini, R. B. (2003). Crafting normative messages to protect the environment. *Current directions in psychological science*, *12*(4), 105–109.
- Frey, B. S., & Meier, S. (2004). Social comparisons and pro-social behavior: Testing" conditional cooperation" in a field experiment. *American economic review*, 94(5), 1717–1722.
- Gerber, A. S., & Rogers, T. (2009). Descriptive social norms and motivation to vote: Everybody's voting and so should you. *The Journal of Politics*, *71*(1), 178–191.



# APPENDIX



# MASKS



# Masks: descriptive stats

| Variable         | Mean | Std. Dev. |
|------------------|------|-----------|
| Age              | 20.8 | 3.90      |
| Male             | .497 | .500      |
| Humanities       | .283 | .451      |
| MPLS             | .240 | .427      |
| Medical Sciences | .127 | .333      |
| Social Sciences  | .333 | .471      |
| Wearing mask     | .201 | .401      |
| n                | 646  |           |



# Masks: treatments

| Treatment | Frequency | Percentage |
|-----------|-----------|------------|
| 0         | 127       | 19.7       |
| 1         | 134       | 20.7       |
| 2         | 128       | 19.8       |
| 3         | 124       | 19.2       |
| 4         | 133       | 20.6       |
| Total     | 646       | 100.0      |



# Masks: balance table

| Variable   | Mean   | Mean   | Mean   | Mean   | Mean   | <i>p</i> -value |
|------------|--------|--------|--------|--------|--------|-----------------|
| Age        | 21.0   | 21.3   | 20.1   | 20.6   | 20.8   | .143            |
|            | [.361] | [.539] | [.165] | [.219] | [.268] |                 |
| Pre        | .142   | .157   | .266   | .242   | .203   | .060            |
|            | [.031] | [.032] | [.039] | [.039] | [.035] |                 |
| Male       | .535   | .522   | .461   | .548   | .421   | .189            |
|            | [.044] | [.043] | [.044] | [.045] | [.043] |                 |
| Humanities | .323   | .246   | .250   | .347   | .256   | .237            |
|            | [.042] | [.037] | [.038] | [.043] | [.038] |                 |
| Social     | .268   | .403   | .336   | .298   | .353   | .177            |
|            | [.039] | [.043] | [.042] | [.041] | [.042] |                 |
| MPLS       | .213   | .209   | .305   | .242   | .233   | .380            |
|            | [.036] | [.035] | [.041] | [.039] | [.037] |                 |
| Medical    | .181   | .104   | .102   | .105   | .143   | .235            |
|            | [.034] | [.027] | [.027] | [.028] | [.030] |                 |
| Femexp     | 1.85   | 1.81   | 1.90   | 1.95   | 1.83   | .719            |
|            | [.077] | [.071] | [.075] | [.084] | [.075] |                 |



# Masks: raw data

|           | Post-wearing? |     |       |
|-----------|---------------|-----|-------|
| Treatment | No            | Yes | Total |
| 0         | 107           | 20  | 127   |
| 1         | 107           | 27  | 134   |
| 2         | 86            | 42  | 128   |
| 3         | 75            | 49  | 124   |
| 4         | 68            | 65  | 133   |
| Total     | 443           | 203 | 646   |

▲ back



Masks: results

Our regressions take the form

$$y_i = \beta_0 + \sum_{i=1}^4 \beta_i T_i + \gamma x_i + u_i$$

where  $y_i$  denotes whether an individual chooses to wear a mask,  $T_i$  denotes the treatment they were placed in, and  $x_i$  is a vector of covariates (including whether they entered a room wearing a mask)



# Masks: regressions

|              | (1)         | (2)                   | (3)               |
|--------------|-------------|-----------------------|-------------------|
| VARIABLES    | No controls | Main Specification    | All Controls      |
|              |             |                       |                   |
| 1.treatment  | .044        | .032                  | .020              |
|              | (.048)      | (.029)                | (.033)            |
| 2.treatment  | .171***     | .078**                | .075**            |
|              | (.053)      | (.032)                | (.035)            |
| 3.treatment  | .238***     | .163***               | .156***           |
|              | (.055)      | (.039)                | (.041)            |
| 4.treatment  | .331***     | .284***               | .289***           |
|              | (.054)      | (.043)                | (.046)            |
| pre          | , , ,       | .757** <sup>*</sup> * | .741***           |
|              |             | (.029)                | (.035)            |
| age          |             | .002                  | .001              |
| -            |             | (.005)                | (.005)            |
| male         |             | 007                   | 007               |
|              |             | (.026)                | (.028)            |
| Constant     | .157***     | .014                  | .130 <sup>´</sup> |
|              | (.032)      | (.107)                | (.144)            |
| Observations | 646         | 646                   | 646               |
| R-squared    | 0.070       | 0.494                 | 0.517             |



# Masks: logits

|              | (1)         | (2)                | (3)          |
|--------------|-------------|--------------------|--------------|
| VARIABLES    | No controls | Main Specification | All Controls |
|              |             |                    |              |
| 1.treatment  | .044        | .033               | .029         |
|              | (.047)      | (.030)             | (.034)       |
| 2.treatment  | .171***     | .073**             | .079**       |
|              | (.053)      | (.032)             | (.035)       |
| 3.treatment  | .238***     | .162***            | .168***      |
|              | (.055)      | (.040)             | (.043)       |
| 4.treatment  | .331***     | .283***            | .304***      |
|              | (.054)      | (.042)             | (.046)       |
| pre          |             | .504***            | .498***      |
|              |             | (.030)             | (.031)       |
| age          |             | .003               | .002         |
|              |             | (.005)             | (.004)       |
| male         |             | 006                | 002          |
|              |             | (.026)             | (.028)       |
| Observations | 646         | 646                | 620          |



# Masks: probits

#### ▲ back

|              | (1)         | (2)                | (3)          |
|--------------|-------------|--------------------|--------------|
| VARIABLES    | No controls | Main Specification | All Controls |
|              |             |                    |              |
| 1.treatment  | .044        | .036               | .029         |
|              | (.047)      | (.031)             | (.034)       |
| 2.treatment  | .171***     | .078**             | .078**       |
|              | (.053)      | (.033)             | (.035)       |
| 3.treatment  | .238***     | .163***            | .162***      |
|              | (.055)      | (.040)             | (.043)       |
| 4.treatment  | .331***     | .284***            | .298***      |
|              | (.054)      | (.043)             | (.046)       |
| pre          |             | .518***            | .512***      |
|              |             | (.024)             | (.027)       |
| age          |             | .002               | .001         |
|              |             | (.004)             | (.004)       |
| male         |             | 007                | 004          |
|              |             | (.026)             | (.028)       |
| Observations | 646         | 646                | 620          |



Masks: monotonicity (from regressions)

### ▲ back

| Comparison | No controls | Main specification | All controls |
|------------|-------------|--------------------|--------------|
| T0 vs T1   | .355        | .278               | .536         |
| T1 vs T2   | .019        | .205               | .163         |
| T2 vs T3   | .269        | .051               | .068         |
| T3 vs T4   | .131        | .019               | .017         |
| T0 vs T2   | .001        | .014               | .032         |
| T1 vs T3   | .001        | .002               | .002         |
| T2 vs T4   | .008        | .000               | .000         |



## Masks: switches

▲ back

### Table: Changes (treatment 0)

|             | Post-wearing |      |
|-------------|--------------|------|
| Pre-wearing | No           | Yes  |
| No          | .972         | .028 |
| Yes         | .056         | .944 |

## Table: Changes (treatment 4)

|             | Post-wearing |      |
|-------------|--------------|------|
| Pre-wearing | No           | Yes  |
| No          | .632         | .368 |
| Yes         | .037         | .963 |



# Masks: switches (2)



|                 | Т0   | T1   | T2   | Т3   | T4   |
|-----------------|------|------|------|------|------|
| Putting mask on | .028 | .080 | .106 | .223 | .368 |
| Taking mask off | .056 | .143 | .059 | .067 | .037 |



# Masks: test for quadratic form

▲ back

| Variable   | Linear  | Quadratic | Cubic   |
|------------|---------|-----------|---------|
| Masks      | .070*** | 0.008     | 0.024   |
|            | [010]   | [028]     | [062]   |
| Masks^2    |         | .016**    | .004    |
|            |         | [008]     | [045]   |
| Masks^3    |         |           | .002    |
|            |         |           | [008]   |
| Pre        | .752*** | .757***   | .757*** |
|            | [029]   | [029]     | [029]   |
| Age        | .002    | .002      | .002    |
|            | [005]   | [005]     | [005]   |
| Male       | 008     | 007       | 007     |
|            | [026]   | [026]     | [026]   |
| Constant   | 022     | .016      | .014    |
|            | [102]   | [107]     | [107]   |
| Joint test | .000    | .000      | .000    |
| $R^2$      | .491    | .494      | .494    |



# SURVEY



We also conducted an online survey which (re-assuringly) generates similar results. Importantly, it also suggests that

- 1. Individual preferences have a tipping point representation.
- 2. Effects are driven by some social learning and social pressure mechanisms (and not mechanisms that appeal to material payoffs!).



# Masks: survey explanations

### Table: Explanations

| Explanation                            | Frequency |
|----------------------------------------|-----------|
| Trying to avoid judgement              | .202      |
| Trying to cater to others' preferences | .351      |
| Trying to follow rules                 | .106      |
| Learning about COVID-risks             | .011      |
| Diminishing returns                    | .000      |
| Other/not answering question           | .330      |



# Descriptive from Questionnaire I

| Switch | Frequency | Percentage |
|--------|-----------|------------|
| 0      | 55        | .170       |
| 1      | 98        | .302       |
| 2      | 57        | .176       |
| 3      | 45        | .139       |
| 4      | 42        | .130       |
| 5      | 27        | .833       |
| n      |           | 324        |

Table: Frequency of tipping points (i.e. switches)



# Descriptive from Questionnaire II

| Treatment | 0    | 1     |
|-----------|------|-------|
| 0         | .828 | .172  |
| 1         | .528 | .472  |
| 2         | .353 | .647  |
| 3         | .215 | .785  |
| 4         | .083 | .917  |
| п         |      | 1,630 |

Table: Subjects wearing a mask under different treatments.



# Regression from Questionnaire

| VARIABLES    | (1)     |
|--------------|---------|
|              |         |
| 1.Treatment  | .301*** |
|              | (.035)  |
| 2. Treatment | .475*** |
|              | (.034)  |
| 3.Treatment  | .613*** |
|              | (.031)  |
| 4. Treatment | .745*** |
|              | (.026)  |
| Constant     | .172*** |
|              | (.021)  |
|              | . ,     |
| Observations | 1,630   |
| R-squared    | .280    |



# CAMERAS



### ▲ back

| Treatment | Frequency | Percentage |
|-----------|-----------|------------|
| 0         | 232       | 20.8       |
| 1         | 204       | 18.3       |
| 2         | 224       | 20.1       |
| 3         | 242       | 21.7       |
| 4         | 213       | 19.1       |
| Total     | 1115      | 100.0      |



# Cameras: balance table

| Variable | Mean   | Mean   | Mean   | Mean   | Mean   | <i>p</i> -value |
|----------|--------|--------|--------|--------|--------|-----------------|
| age      | 42.2   | 43.4   | 42.3   | 41.3   | 42.7   | .615            |
|          | [.940] | [.931] | [.903] | [.906] | [.990] |                 |
| pre      | .116   | .039   | .058   | .074   | .070   | .039            |
|          | [.021] | [.014] | [.016] | [.017] | [.018] |                 |
| male     | .472   | .441   | .439   | .455   | .516   | .486            |
|          | [.033] | [.035] | [.033] | [.032] | [.034] |                 |

▲ back



# Cameras: regressions

|              | (1)         | (2)                | (3)          |
|--------------|-------------|--------------------|--------------|
| VARIABLES    | No controls | Main Specification | All Controls |
|              |             |                    |              |
| 1.cameras    | .077*       | .118***            | .125***      |
|              | (.043)      | (.040)             | (.041)       |
| 2.cameras    | .176***     | .209***            | .214***      |
|              | (.043)      | (.039)             | (.044)       |
| 3.cameras    | .281***     | .308***            | .320***      |
|              | (.043)      | (.039)             | (.049)       |
| 4.cameras    | .355***     | .380***            | .386***      |
|              | (.044)      | (.041)             | (.057)       |
| pre          | . ,         | .579***            | .581***      |
|              |             | (.033)             | (.034)       |
| age          |             | .000               | .000         |
|              |             | (.001)             | (.001)       |
| male         |             | .024               | .023         |
|              |             | (.027)             | (.027)       |
| Constant     | 0.241***    | 0.155***           | 0.0936       |
|              | (0.0282)    | (0.0466)           | (0.0609)     |
| Observations | 1,113       | 1,111              | 1,109        |
| R-squared    | 0.069       | 0.161              | 0.183        |



# Cameras: logits

|                                                                              | (1)               | (2)                | (3)                        |  |  |
|------------------------------------------------------------------------------|-------------------|--------------------|----------------------------|--|--|
| VARIABLES                                                                    | Logit No controls | Main Specification | Controlling for Everything |  |  |
|                                                                              |                   |                    |                            |  |  |
| 1.cameras                                                                    | .0772*            | .127***            | .133***                    |  |  |
|                                                                              | (.043)            | (.039)             | (.039)                     |  |  |
| 2.cameras                                                                    | .176***           | .215***            | .218***                    |  |  |
|                                                                              | (.043)            | (.039)             | (.040)                     |  |  |
| 3.cameras                                                                    | .281***           | .314***            | .323***                    |  |  |
|                                                                              | (.043)            | (.039)             | (.045)                     |  |  |
| 4.cameras                                                                    | .355***           | .385***            | .389***                    |  |  |
|                                                                              | (.044)            | (.041)             | (.051)                     |  |  |
| pre                                                                          |                   | .741***            | .743***                    |  |  |
|                                                                              |                   | (.092)             | (.092)                     |  |  |
| age                                                                          |                   | .000               | .000                       |  |  |
|                                                                              |                   | (.001)             | (.001)                     |  |  |
| male                                                                         |                   | .023               | .023                       |  |  |
|                                                                              |                   | (.027)             | (.027)                     |  |  |
| Observations                                                                 | 1,113             | 1,111              | 1,109                      |  |  |
| tes: Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). |                   |                    |                            |  |  |



# Cameras: probits

#### ▲ back

|              | (1)         | (2)                | (3)          |
|--------------|-------------|--------------------|--------------|
| VARIABLES    | No controls | Main Specification | All Controls |
| _            | t           | a e e dabab        |              |
| 1.cameras    | .077*       | .125***            | .130***      |
|              | (.043)      | (.039)             | (.039)       |
| 2.cameras    | .176***     | .216***            | .218***      |
|              | (.043)      | (.039)             | (.040)       |
| 3.cameras    | .281***     | .312***            | .321***      |
|              | (.043)      | (.039)             | (.046)       |
| 4.cameras    | .355***     | .385***            | .389***      |
|              | (.044)      | (.040)             | (.052)       |
| pre          |             |                    | .699***      |
|              |             |                    | (.076)       |
| age          |             | .000               | .000         |
|              |             | (.001)             | (.001)       |
| male         |             | .024               | .025         |
|              |             | (.027)             | (.027)       |
| Observations | 1,113       | 1,111              | 1,109        |



Cameras: monotonicity from regressions

### ▲ back

| Comparison | No controls | Main Specification | All Controls |
|------------|-------------|--------------------|--------------|
| T0 vs T1   | .074        | .003               | .002         |
| T1 vs T2   | .035        | .043               | .051         |
| T2 vs T3   | .022        | .028               | .020         |
| T3 vs T4   | .116        | .116               | .152         |
| T0 vs T2   | .000        | .000               | .000         |
| T1 vs T3   | .000        | .000               | .000         |
| T2 vs T4   | .000        | .000               | .001         |



# Cameras: switches



|                    | Т0    | T1    | T2    | Т3    | T4    |
|--------------------|-------|-------|-------|-------|-------|
| Turning camera on  | 0.156 | 0.296 | 0.381 | 0.491 | 0.566 |
| Turning camera off | 0.111 | 0.125 | 0.000 | 0.059 | 0.000 |



# Cameras: test for quadratic form

▲ back

| Variable   | Linear  | Quadratic | Cubic   |
|------------|---------|-----------|---------|
| Cameras    | .095*** | .119***   | .119    |
|            | 009     | 032       | 074     |
| Cameras^2  |         | 006       | 006     |
|            |         | 008       | 049     |
| Cameras^3  |         |           | .000    |
|            |         |           | 008     |
| Pre        | .576*** | .578***   | .578*** |
|            | 033     | 033       | 033     |
| Age        | .000    | .000      | .000    |
|            | 001     | 001       | 001     |
| Male       | .023    | .024      | .024    |
|            | 027     | 027       | 027     |
| Constant   | .169*** | .156***   | .156*** |
|            | 046     | 047       | 047     |
| Joint test | .000    | .000      | .000    |
| $R^2$      | .161    | .161      | .161    |

