Make-Up Strategies with Incomplete Markets and Bounded Rationality

Michael Dobrew¹ Rafael Gerke² Sebastian Giesen² Joost Röttger²

¹European Central Bank

²Deutsche Bundesbank

European Economic Association 2023

August 31, 2023

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily represent those of the Deutsche Bundesbank, the ECB or the Eurosystem.

Outline

1. Introduction

2. Model

3. Quantitative analysis

4. Summary

Motivation

Make-up strategies and the ELB

Make-up strategies

- · Way to address negative inflation bias arising from effective lower bound (ELB) on policy rate
 - ightarrow Adoption of average inflation targeting by the Fed in 2020

Mechanism

- Monetary policy commits to make up for past off-target inflation in the future
 - ightarrow Expansionary impulse already today when inflation is below target (even at ELB)
- But: mechanism relies on complete markets and rational expectations

How do market incompleteness and bounded rationality affect benefits of make-up strategies?

- Build HANK model with aggregate shocks, occasionally binding ELB and boundedly rational agents
 - \rightarrow Bounded rationality \equiv reflective expectations (*García-Schmidt and Woodford, 2019*)
- Compare outcomes under inflation targeting (IT) and average inflation targeting (AIT) via stochastic simulations

Preview

Main results

Benefits of make-up strategies

- Better macroeconomic stabilisation under AIT relative to IT
 - $\rightarrow~$ Smaller biases in inflation and output, lower macroeconomic volatility

Market incompleteness (MI)

Does not lead to qualitatively different results and also does not matter much quantitatively.

Bounded rationality (BR)

Benefits of AIT relative to IT increase with cognitive ability of agents ...
 ... and are guite small for empirically plausible cognitive ability levels.

Interaction between MI and BR

- Complementarity between MI and BR w.r.t. attenuation of forward guidance (Farhi and Werning, 2019)
- But no such complementarity in the context of make-up strategy benefits!

Related literature

Heterogeneous-agent New Keynesian models

- Bounded rationality Farhi and Werning (2019); Auclert et al. (2020); Pfäuti and Seyrich (2022)
- Make-up strategies Feiveson et al. (2020); Dobrew et al. (2021); Djeutem et al. (2022)
- ELB Schaab (2020); Fernández-Villaverde et al. (2021); Lee (2021); McKay and Wieland (2021)

Representative-agent New Keynesian models

- Bounded rationality Angeletos and Lian (2018); Woodford (2018); Farhi and Werning (2019); García-Schmidt and Woodford (2019); Gabaix (2020)
- Make-up strategies Budianto et al. (2020); Honkapohja and Mitra (2020); Mele et al. (2020); Erceg et al. (2021); Bodenstein et al. (2022); Dupraz et al. (2022)

Numerical methods

- Sequence-space approximation Boppart et al. (2018); Auclert et al. (2021)
- Enforce ELB with news shocks Bodenstein et al. (2013); Holden (2016)

Outline

1. Introduction

2. Model

3. Quantitative analysis

4. Summary

Model

Overview

Households

- Uninsurable idiosyncratic income risk
 - Save/borrow via nominal non-contingent bond
 - Ad-hoc debt limit
- Labour supply is demand determined

Labour market

- Labour packers
 - Combine tasks to final labour
- Unions
 - Combine household labour to specific tasks
 - Set nominal wages subject to Calvo friction

Goods market

- Final good producers
 - Combine intermediate input goods
- Intermediate-good producers
 - Set prices subject to Calvo friction

Monetary policy

• Central bank sets interest rate subject to ELB

Aggregate shocks

Demand and cost-push shocks

Model

Monetary policy

• Central bank sets the nominal interest rate subject to a lower bound:

$$R_t = \max\{\tilde{R}_t, R_{ELB}\}$$

• Interest rate rule for shadow rate \tilde{R}_t :

$$\frac{\tilde{R}_{t}}{R} = \left(\frac{\tilde{R}_{t-1}}{R}\right)^{\rho_{R}} \left(\left(\frac{Y_{t}}{Y}\right)^{\phi_{Y}} \left(\frac{\Pi_{t}^{(T)}}{\Pi}\right)^{\phi_{\Pi}}\right)^{1-\rho_{R}}$$

with

- average inflation over *T*-period horizon $\Pi_t^{(T)} \equiv \left(\prod_{k=1}^T \Pi_{t-k+1}\right)^{1/T}$
- output Y_t
- Interest rate rule nests two cases:
 - T = 1 \rightarrow inflation targeting (IT) regime
 - $\ensuremath{\mathcal{T}}\xspace>1$ $\ensuremath{\rightarrow}\xspace$ average inflation targeting (AIT) regime

Model

Beliefs and equilibrium

Temporary equilibrium Details

- Households, firms and unions solve their individual problems in period *t*, ...
 - ... given observable exogenous aggregate variables $S_t \equiv \{S_{t+j}\}$
 - ... given beliefs about endogenous aggregate variables $\Omega_t^e \equiv \{\Omega_{t+i}^e\}$
- Individual decision rules + market clearing + monetary policy \Rightarrow equilibrium $\Omega_t \equiv \{\Omega_{t+j}\}$

Level-k thinking Details

- Agents observe aggregate shock but need to figure out macroeconomic implications (GE effect)
- Iterative expectation formation:
 - Level-1 agent does not adjust beliefs, $\Omega_t^{e,1} = \Omega_{ss} \Rightarrow \Omega_t^1$
 - Level-2 agent thinks everyone else behaves like a level-1 agent $\Omega_t^{e,2}=\Omega_t^1\Rightarrow\Omega_t^2$
 - Level-k agent thinks everyone else behaves like a level-(k-1) agent $\Omega_t^{e,k} = \Omega_t^{k-1} \Rightarrow \Omega_t^k$

Reflective expectations

• Belief formation in economy with continuous cognitive ability level n > 0:

$$\frac{d\Omega_t^{e,n}}{dn} = \Omega_t^n - \Omega_t^{e,n} \quad \rightarrow \quad \Omega_t^{e,n} = dn \times \Omega_t^{n-dn} + (1 - dn) \times \Omega_t^{e,n-dn}$$

Outline

1. Introduction

2. Model

3. Quantitative analysis

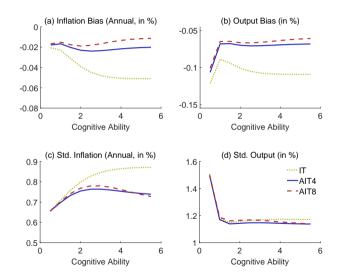
4. Summary

Calibration and solution

Calibration

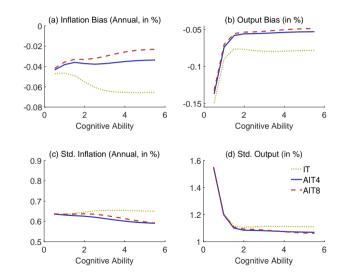
- Set most parameters to standard values from the literature
- · Calibrate shock volatility parameters to match statistics for average MPC, inflation and output

Solution


- Linearise model around the steady state à la Boppart et al. (2018)
 - Compute economy's response to small transitory MIT shock(s), taking into account belief recursion
 - Use IRFs as linear model approximation in the sequence space
- Enforce ELB constraint during Monte Carlo simulations for linearised model
 - Use anticipated monetary policy shocks (Holden, 2016)

RANK case

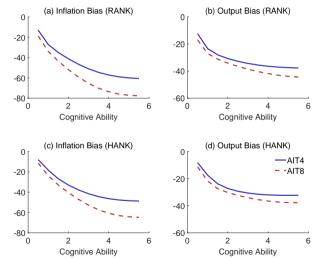
Bounded rationality attenuates relative benefits of make-up


- Inflation bias and volatility grow with cognitive ability under IT but do not change much under AIT.
- Relative to IT, output bias under AIT declines with cognitive ability
- Output volatility hardly changes with cognitive ability for all policy rules
- Make-up has 'decreasing returns'

HANK case

Relative benefits of make-up are as in RANK case

- Make-up is not attenuated more by bounded rationality in HANK than in RANK.
- Compared to RANK
 - inflation bias is higher
 - output bias is (mostly) lower
 - macro volatility is (mostly) lower



No complementarity

No complementarity between incomplete markets and bounded rationality

- Impact of bounded rationality on relative benefits of AIT is hardly different in RANK and HANK
- In contrast to findings for forward guidance (Farhi and Werning, 2019)

Details

Sensitivity

Results are robust with respect to various model assumptions

- 1. Debt denomination
 - Real bonds \rightarrow no direct redistribution via inflation
- 2. Backward-looking price and wage indexation
 - Partial indexation to lagged inflation
- 3. Cyclicality of income risk
 - Variance of idiosyncratic productivity changes with output (Auclert and Rognlie, 2020)
- 4. Heterogeneous cognitive ability
 - Only one type of forward-looking agent exhibits level-k thinking
- 5. Interest rate smoothing
 - No history dependence in policy rate via lagged shadow rate

Outline

1. Introduction

2. Model

3. Quantitative analysis

4. Summary

Summary

Role of incomplete markets and bounded rationality for make-up strategies

- Stochastic simulation of HANK model with
 - occasionally binding ELB
 - reflective expectations

Main findings

- 1. AIT outperforms IT in terms of macroeconomic stabilisation
- 2. Market incompleteness (MI) does not matter for relative performance of AIT
- 3. Benefits of AIT relative to IT are small for plausible degree of bounded rationality (BR)
- 4. MI and BR do not complement each other in attenuating benefits of AIT

Appendix

Optimal individual behaviour: households

• Given beliefs, optimal individual period-t consumption in the RANK case is

$$c_{i,t} = \frac{b_{i,t-1} \frac{R_{t-1}}{\Pi_t} + w_t N_t + d_t + \sum_{s=1}^{\infty} \left(\prod_{u=1}^{s} \left(\frac{R_{t+u-1}^s}{\Pi_{t+u}^s} \right)^{-1} \right) \left(w_{t+s}^e N_{t+s}^e + d_{t+s}^e \right)}{1 + \sum_{s=1}^{\infty} \prod_{u=1}^{s} \beta_{t+u-1}^{1/\sigma} \left(\frac{R_{t+u-1}^e}{\Pi_{t+u}^e} \right)^{1/\sigma - 1}}$$

and savings are

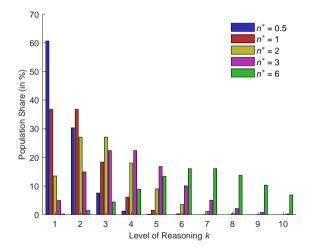
$$b_{i,t} = b_{i,t-1}R_{t-1}\Pi_t^{-1} + w_tN_t + d_t - c_{i,t}$$

- Relevant beliefs: nominal rate R_{t+s-1}^e , inflation \prod_{t+u}^e , labour income $w_{t+s}^e N_{t+s}^e$, dividend income d_{t+s}^e
- Discount factor β_{t+s-1} is perfectly observable

Appendix

Back

Distribution of level-k agents for different n^*


 Assuming a Poisson distribution with mean n^{*}, the population share of level-k agents is:

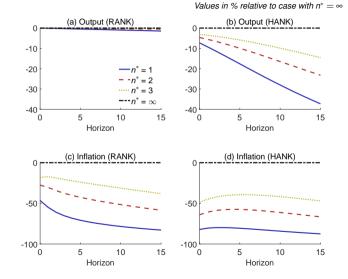
$$\omega_k(n^*) = \frac{(n^*)^{k-1} \exp(-n^*)}{(k-1)!}$$

• Average beliefs in the economy:

$$\Omega^{e,n^*}_{t+s} = \sum_{k=1}^{\infty} \omega_k(n^*) \Omega^{e,k}_{t+s}$$

with $\Omega_{t+s}^{e,n^*} = \Omega_{t+s}^{k-1}$ (*García-Schmidt and Woodford, 2019*)

Appendix Model parameters


	Description	Value		Description	Value
β	Discount factor	0.995 (RANK: 0.998)	ρ_R	Interest rate smoothing	0.75
$\theta_{ ho}$	Price elasticity	6	$ ho_eta$	Persist. discount factor	0.85
θ_w	Wage elasticity	6	ρ_{μ}	Persist. mark-up	0
σ	IIES	2	$ ho_e$	Persist. idios. productivity	0.966
χ	Weight labour disutility	1.023 (RANK: 1)	$\sigma_{\!eta}$	Std. discount factor shock	0.006
η	Inverse Frisch elasticity	2	$\sigma_{\!\mu}$	Std. mark-up shock	0.118
Φ	Fixed cost of production	0.167	σ_{e}	Std. idios. prod. shock	0.052
ξp ζw	Calvo price-setting	0.85	<u>b</u>	Household debt limit	-1.667
ξw	Calvo wage-setting	0.85	r *	SS real rate (annual)	1.010
Π_{W}	SS nom. wage inflation	1.005	Π*	Inflation target (annual)	1.020
ϕ_{\Box}	Inflation response MP rule	1.5	R_{ELB}^4	ELB (annual)	1.001
ϕ_Y	Output response MP rule	1			

◀ Back

Appendix Real rate forward guidance

A Back

- One-time real rate cut for period t + τ announced today
- Bounded rationality attenuates response in HANK more than in RANK
 - → Complementarity between incomplete markets and bounded rationality
 - \rightarrow Consistent with results in Farhi and Werning (2019)

