Market Power and Macroeconomic Fluctuations

Matthias Gnewuch

European Stability Mechanism¹

EEA-ESEM Barcelona 2023 August 30, 2023

 $^{^{1}}$ The views expressed here are those of the author and do not necessarily reflect those of the European Stability Mechanism.

Motivation

- Crises do not affect all firms equally
 - Examples: natural disasters, financial crises
- Supply disruptions that affect firms <u>unequally</u> within <u>many industries</u> are jointly referred to as asymmetric supply shocks
- This paper investigates the aggregate effects of asymmetric supply shocks
 - Stylized model: analyze transmission & aggregate effects qualitatively
 - Data: document & measure asymmetric supply shocks in firm-level data
 - Quantitative model: quantify aggregate fluctuations due to asymmetric supply shocks

Figure 1: Structure of the Supply Side of the Economy

 \rightarrow Aggregate (Supply) Shock

 \rightarrow Industry-Specific (Supply) Shock

 \rightarrow Firm-Level (Supply) Shock

 \rightarrow Asymmetric Supply Shock

Results Preview

- In a stylized model with imperfect competition and heterogeneous firms, I show that a shock to the productivity of a subset of firms in many industries ...
 - ... affects the decisions of all firms due to strategic competition within industries
 - ... causes fluctuations not only in aggregate productivity but also in the aggregate markup
- In firm-level sales data from Compustat, I show ...
 - ... substantial firm-level volatility in excess of aggregate and industry-specific fluctuations
 - ... this firm-level volatility is still correlated across firms in different industries
 - $\rightarrow\,$ In line with the presence of asymmetric supply shocks
- In a calibrated model, asymmetric supply shocks account for close to 30% of fluctuations in aggregate output and around 70% of fluctuations in the labor share
 - A higher intensity of competition reduces the average markup and increases average productivity but also makes the economy more volatile

Literature

- Sources of aggregate fluctuations
 - Aggregate shocks: Kydland & Prescott (1982), Cochrane (1994), Caballero, Engel & Haltiwanger (1997)
 - Sectoral shocks: Long & Plosser (1983), Horvath (1998)
 - Firm-level shocks: Gabaix (2011), Burstein, Carvalho & Grassi (2020)

Macroeconomic implications of imperfect competition among firms

- Empirical evidence: De Loecker, Eeckhout & Unger (2020), Covarrubias, Gutiérrez & Philippon (2019), Autor, Dorn, Katz, Patterson & Van Reenen (2020), Burstein, Carvalho & Grassi (2020)
- Long-run implications: De Loecker, Eeckhout & Mongey (2021), Eggertsson & Mehrotra (2022)
- Implications for macro fluctuations: Mongey (2021), Wang & Werning (2020), Ferrari & Queirós (2022), Jaimovich & Floetotto (2008), Corhay, Kung & Schmid (2020)
- Competition policy: Bilbiie, Ghironi & Melitz (2012, 2019), Edmond, Midrigan, Xu (2022), Boar & Midrigan (2022)
- Aggregate implications of firm heterogeneity
 - Khan & Thomas (2008), Bachmann, Caballero & Engel (2013), Khan, Senga & Thomas (2016), Ottonello & Winberry (2020), Koby & Wolf (2020), Winberry (2021)

Model

Model Overview

Three-layer production structure (Atkeson & Burstein, 2008)

- Representative producer of the final consumption good
- Large number of industries
- In each industry a small number of firms which produce intermediate goods
- \rightarrow Firms have market power and compete strategically (Cournot)
- There are four types of supply disruptions: aggregate (A), industry-specific (I), firm-specific (F), and asymmetric (X)
- Representative household which consumes, supplies labor, and owns all firms

Intermediate Good Production

Intermediate good firms operate a constant-returns-to-scale production technology

- Aggregate productivity Z_t^A , industry-specific productivity Z_{jt}^I , and firm-specific productivity z_{it}^F follow AR(1) processes in logs
- ► z_{ijt}^{χ} is the "asymmetric productivity component", where $\log z_{ijt}^{\chi} = \alpha_{ij} \times \log z_t^{\chi}$
 - $\rightarrow z_t^{\chi}$ is the underlying asymmetric productivity (follows AR(1) in logs)
 - $ightarrow lpha_{ij}$ is the firm-specific *exposure* to asymmetric supply shocks

Microfoundation: Financial Frictions Microfoundation: Regional Shocks

Final output, Y_t , is a nested CES aggregate of industry and intermediate output

Firm Behavior

- Due to the finite number of competitors within each industry, firms face a downward-sloping demand curve and have "market power"
 - Firms hire labor (which determines their output and price) in order to maximize profits
 - Take into account productivity & optimal behavior of their competitors
- ▶ Within each industry, the distribution of productivity determines ...
 - ... the distribution of firm-level output and prices (markups)
 - ... hence, industry-level productivity, output, and price level (markup)
- Asymmetric supply shocks are special, because ...
 - ... unlike aggregate & industry-specific shocks, they do affect within-industry distributions, hence not only industry productivity but also industry markups
 - ... unlike firm-specific shocks, they affect more than one firm in one industry, hence "average out" to a much smaller degree

Profit Maximization

Industry Aggregates

- Simple example:
 - Negative asymmetric supply shock: $\epsilon_t^{\chi} = -10\%$
 - In each industry, there are two exposed ($\alpha_{ij} = 1$), two unexposed ($\alpha_{ij} = 0$) firms

Figure 2: Aggregate Effects of Asymmetric Supply Shocks

- Simple example:
 - Negative asymmetric supply shock: $\epsilon_t^{\chi} = -10\%$
 - In each industry, there are two exposed ($\alpha_{ij} = 1$), two unexposed ($\alpha_{ij} = 0$) firms

Figure 2: Aggregate Effects of Asymmetric Supply Shocks

- Simple example:
 - Negative asymmetric supply shock: $\epsilon_t^{\chi} = -10\%$
 - In each industry, there are two exposed ($\alpha_{ij} = 1$), two unexposed ($\alpha_{ij} = 0$) firms

Figure 2: Aggregate Effects of Asymmetric Supply Shocks

- Simple example:
 - Negative asymmetric supply shock: $\epsilon_t^{\chi} = -10\%$
 - In each industry, there are two exposed ($\alpha_{ij} = 1$), two unexposed ($\alpha_{ij} = 0$) firms

Figure 2: Aggregate Effects of Asymmetric Supply Shocks

- Simple example:
 - Negative asymmetric supply shock: $\epsilon_t^{\chi} = -10\%$
 - In each industry, there are two exposed $(\alpha_{ij} = 1)$, two unexposed $(\alpha_{ij} = 0)$ firms

Figure 2: Aggregate Effects of Asymmetric Supply Shocks

Data

Asymmetric Supply Shocks in the Data

Data: Compustat North America, 1990-2019, annual data

Variable of interest: firm-level sales (in logs)

- \rightarrow Fit AR(1): log(sales_{ijt}) = $\rho \times log(sales_{ijt-1}) + \epsilon_{ijt}$
- \rightarrow Control for firm fixed-effects and industry-by-time fixed-effects (Z_t^A, Z_{jt}^I)
- \rightarrow Lots of unexplained volatility in the firm-level residual $\hat{\epsilon}_{ijt}$ (i.e, residualized sales)
- Firm-level volatility $(\hat{\epsilon}_{ijt})$ can be explained by
 - firm-level shocks (z_{ijt}^F)
 - asymmetric supply shocks (z_{ijt}^{χ})

Measuring Asymmetric Supply Shocks

- Exploit that asymmetric supply shocks induce a correlation of firm-level residuals (\(\hat{\eta}_{ijt})\) across industries (unlike idiosyncratic shocks)
- Use principal component analysis to find out how much variation in firm-level residuals can be explained by common components

$$\begin{bmatrix} \widehat{\epsilon}_{i=1,t=1} & \dots & \widehat{\epsilon}_{i=962,t=1} \\ \vdots & \ddots & \\ \widehat{\epsilon}_{i=1,t=29} & & \widehat{\epsilon}_{i=962,t=29} \end{bmatrix} = F \times \Lambda + \nu$$

- \rightarrow If all firm-level volatility is caused by firm-level shocks, the first principal component (F_1) should explain barely any variation (in a large enough sample)
- $\rightarrow\,$ If firm-level volatility also reflects asymmetric supply shocks, the first principal component will explain a relevant share

Results - Principal Component Analysis

Figure 3: Share of Firm-Level Volatility Explained by Principal Components

Notes: Dataset is a balanced sample from 1990 - 2019 (T=29) with N=962 unique firms in J=179 industries. The model is as described above and as calibrated below with only firm-level shocks.

Results - Principal Component Analysis

Figure 2: Share of Firm-Level Volatility Explained by Principal Components

Notes: Dataset is a balanced sample from 1990 - 2019 (T=29) with N=962 unique firms in J=179 industries. The model is as described above and as calibrated below with only firm-level shocks.

Results - Principal Component Analysis

Figure 2: Share of Firm-Level Volatility Explained by Principal Components

Notes: Dataset is a balanced sample from 1990 - 2019 (T=29) with N=962 unique firms in J=179 industries. The model is as described above and as calibrated below with only firm-level shocks.

Quantitative Model Analysis

Calibration – Fixed Parameters

Param.	Description	Value	Target / Source
Househo	ld		
ψ	Labor disutility	1.8	L pprox 1/3
σ	Curvature of util. w.r.t. C	2	IES = 0.5
χ	Curvature of util. w.r.t. L	3	Frisch elasticity $= 2/3$
Firms			
NJ	Number of industries	179	Compustat data (balanced panel)
N_j	Number of firms per industry	5	Compustat data (balanced panel)
ρ	Elast. of subst. within ind.	10	Atkeson and Burstein (2008)
η	Elast. of subst. across ind.	1.4	Avg. markup $pprox 1.3$ (Mongey, 2021)
σ^{lpha}	Std. dev. of exposure coeff.	1	Normalization
Exogeno	us Processes		
N_X	Number of asymmetric supply shocks	3	PCA evidence (Compustat)
ρ^{X}	Persistence of asymmetric supply shocks	0.9	PCA evidence (Compustat)

Table 1: Calibration – Fixed Parameters

Calibration – Fitted Parameters

Param.	Description	Value	Target	Data	Model
Exogeno	us Processes				
σ^{X}	Std. dev. of asym. sup. shocks	0.0331	Share of firm volatility explained	38.6%	38.6%
σ'	Std. dev. of idio. shocks	0.0900	Std. dev. of firm residuals	0.46	0.46
ρ'	Persistence of idio. shocks	0.5624	Autocorr. of firm residuals	0.72	0.72

Table 2: Calibration – Fitted Parameters

Aggregate Fluctuations

	$\sigma(Y)$	$\sigma(L)$	σ (LaborShare)	$\sigma(z_{ijt})$
Data	1.41%	1.65%	0.85%	
Model	0.56%	0.47%	0.65%	16.8%
$ ightarrow \sigma^X = 0$	0.16%	0.07%	0.07%	10.8%

Table 3: Aggregate Fluctuations

Notes: Data moments are computed from annual data from 1947-2019. All moments are computed after HP-filtering ($\lambda=6.25$) the data in logs.

 \to asymmetric supply shocks account for close to 30% of fluctuations in output and around 70% of fluctuations in the labor share

The Intensity of Competition & Competition Policy

Implications of a Higher Intensity of Competition

A higher intensity of competition (more firms per industry) ...

- ... reduces steady-state markups
- ... increases steady-state productivity
- A higher intensity of competition also matters for the implications of macroeconomic fluctuations
 - Markup volatility falls
 - Average productivity increases
 - Volatility of (aggregate) productivity increases

Intensity of Competition & Asymmetric Supply Shocks

- Consider an asymmetric supply shock: $\epsilon_t^{\chi} \in (-0.3, 0.3)$
- ▶ Half of firms within each industry are exposed ($\alpha_{ij} = 1$), half unexposed ($\alpha_{ij} = 0$)
- Compare economies with low and high number of firms ($N_j = 4$ vs. $N_j = 20$)

Intensity of Competition & Asymmetric Supply Shocks

- Consider an asymmetric supply shock: $\epsilon_t^{\chi} \in (-0.3, 0.3)$
- ▶ Half of firms within each industry are exposed $(\alpha_{ij} = 1)$, half unexposed $(\alpha_{ij} = 0)$
- Compare economies with low and high number of firms ($N_j = 4$ vs. $N_j = 20$)

Figure 3: Intensity of Competition & Asymmetric Supply Shocks

 \rightarrow Strong competition protects against negative shocks and allows to take advantage of positive shocks

Intensity of Competition & Asymmetric Supply Shocks

• Consider an asymmetric supply shock: $\epsilon_t^{\chi} \in (-0.3, 0.3)$

- ▶ Half of firms within each industry are exposed $(\alpha_{ij} = 1)$, half unexposed $(\alpha_{ij} = 0)$
- Compare economies with low and high number of firms ($N_j = 4$ vs. $N_j = 20$)

Figure 3: Intensity of Competition & Asymmetric Supply Shocks

 \rightarrow Strong competition protects against negative shocks and allows to take advantage of positive shocks

Conclusion

Conclusion

- Asymmetric supply shocks shocks that affect firms unequally within many industries cause meaningful fluctuations in aggregate productivity, output & markups
- Quantitatively, they can account for close to 30% of fluctuations in output and around 70% of fluctuations in the labor share
- A higher intensity of competition increases macroeconomic volatility and may yet improve consumer welfare
 - → Provides an additional reason why the secular increases in market power, markups, and concentration are concerning (De Loecker, Eeckhout & Unger (2020), Covarrubias, Gutiérrez & Philippon (2020))

Thank You!

Appendix

Household

▶ Representative household chooses consumption C_t and labor L_t to maximize

$$W_t = u(C_t, L_t) + \beta \left(\mathbb{E}_t W_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

Period utility function

$$u(C_t, L_t) = \frac{C_t^{1-\sigma}}{1-\sigma} + \psi \frac{(1-L_t)^{1-\chi}}{1-\chi}$$

Flow budget constraint

$$C_t = w_t L_t + D_t$$

1

Microfoundation for Asymmetric Supply Shocks: Financial Frictions

> Production requires capital k_{ijt} , which is purchased one period in advance

$$y_{ijt} = Z_t^A Z_{jt}^S z_{ijt}^I \underbrace{k_{ijt}^{\theta}}_{:=z_{ijt}^X} I_{ijt}$$

Assume two groups of firms in each industry:

- ightarrow Financially unconstrained firms can afford optimal level of capital k_{ijt}^*
- ightarrow Financially constrained firms cannot afford optimal level, so $k_{ijt} \leq \gamma_t k_{ijt}^*$ with $\gamma_t \in (0,1]$
- ightarrow Financial conditions (γ_t , i.e. "tightness of borrowing constraint") fluctuate over time
- Normalize $k_{ijt}^*{}^{\theta} = 1$
 - ightarrow Unconstrained firms: $z_{ijt}^X = 1 \quad \forall t$
 - ightarrow Constrained firms: $z_{ijt}^X = \gamma_t^{ heta}$

Microfoundation for Asymmetric Supply Shocks: Regional Shocks

- Economy consists of R regions, in each of which production is interrupted occasionally (due to adverse weather events, strikes, lockdowns, ...)
- ▶ Hence, "regional productivity" z_{rt} in region $r \in R$ is usually 1, but drops below 1 occasionally
- Each firm is only (or primarily) exposed to the region in which it is located, e.g. $z_{ijt}^{X} = 1 \times z_{rt}^{r=k} + 0 \times z_{rt}^{r\neq k}$ (if firm *ij* located in region *k*
- Production function

$$y_{ijt} = Z_t^A Z_{jt}^S z_{ijt}^I z_{ijt}^X I_{ijt}$$

Aggregation of Intermediate Goods

Industry output, Y_{jt}, is a CES aggregate of the intermediate goods y_{ijt} produced by N_j firms in industry j

$$Y_{jt} = \left[\sum_{i=1}^{N_j} y_{ijt}^{rac{
ho-1}{
ho}}
ight]^{rac{
ho}{
ho-1}} \hspace{0.5cm} ext{with} \hspace{0.5cm}
ho>1$$

Aggregate output, Y_t , is a CES aggregate of the industry output, Y_{jt} , of the N_J industries

$$Y_t = \left[\sum_{j=1}^{N_J} Y_{jt}^{rac{\eta-1}{\eta}}
ight]^{rac{\eta}{\eta-1}} \hspace{0.5cm} ext{with} \hspace{0.5cm} \eta > 1$$

Profit Maximization

The profit-maximizing markup is

$$\mu(\pmb{s_{ij}}) = rac{\epsilon(\pmb{s_{ij}})}{\epsilon(\pmb{s_{ij}})-1}$$

where $\epsilon(s_{ij})$ is the elasticity of demand faced by firm ij

$$\epsilon(\pmb{s}_{ij}) = \left[rac{1}{\eta}\pmb{s}_{ij} + rac{1}{
ho}\left(1-\pmb{s}_{ij}
ight)
ight]^{-1}$$

and where s_{ij} is the firm's sales share within industry j

$$s_{ij} = rac{p_{ij}y_{ij}}{\sum_{i=1}^{N_j}p_{ij}y_{ij}}$$

Industry Productivity and Markup

Industry productivity is defined by

$$Z_{jt} = \frac{Y_{jt}}{L_{jt}} = \frac{\left[\sum_{i=1}^{\widetilde{N_{jt}}} \mu_{ijt}^{1-\rho}\right]^{\frac{\rho}{\rho-1}}}{\sum_{i=1}^{\widetilde{N_{jt}}} \mu_{ijt}^{-\rho}}$$

The industry markup, defined by $\mu_{jt} = \frac{(P_{jt}/P_t^c)Y_{jt}}{w_t L_{jt}}$, can be rewritten, as a function of the Herfindahl–Hirschman index (*HHI*), a measure of industry concentration

$$\mu_{jt} = \frac{\rho}{\rho - 1} \left[1 - \frac{\frac{\rho}{\eta} - 1}{\rho - 1} H H I_{jt} \right]^{-1}$$

where the *HHI* is calculated as the sum of squared market shares, $HHI_{jt} = \sum_{i=1}^{\widetilde{N_{jt}}} s_{ijt}^2$.

Competition among Firms & Markup Volatility

- Asymmetric supply shocks redistribute market shares (between exposed and unexposed firms)
- Firm markups depend on market shares nonlinearly
- ► More competition → lower market shares → lower markup volatility (due to same shocks)

Limit Case: Monopolistic Competition

Irrelevance Result

When the number of firms in each industry becomes infinitely large, asymmetric supply shocks have no effects on markups (firm-level, industry-level, aggregate) anymore:

$$\lim_{N_j \to \infty} \quad \frac{\mathsf{dlog}(\mu_{ijt})}{\mathsf{dlog}(z_t^X)} = 0$$

- ▶ in the limit case of monopolistic competition $(N_j \rightarrow \infty)$, asymmetric supply shocks are irrelevant for markups
- this result connects to the literature on firm heterogeneity, which has shown that firm heterogeneity becomes less important for aggregate outcomes when profit functions become linear
 - Koby & Wolf (2020), Winberry (2021)

- Atkeson, A. and A. Burstein (2008). Pricing-to-market, trade costs, and international relative prices. *American Economic Review 98*(5), 1998–2031.
- Mongey, S. (2021). Market structure and monetary non-neutrality. *NBER Working Paper No.* 29233, National Bureau of Economic Research.