# Putting a price tag on air pollution: the social healthcare costs of air pollution in France

# Julia Mink

Institute for Applied Microeconomics University of Bonn

> EEA Barcelona August 30, 2023

# Overview of my research interests

#### Axis 1: Estimating the cost of pollution

- Putting a price tag on air pollution: the social healthcare costs of air pollution in France
- The Societal Cost of Air Pollution from Energy Production: A Study of the 1970s French Energy Transition with Marion Leroutier, Hélène Ollivier and Aurélien Saussay
- Health Outcomes of Residential Agricultural Pesticide Exposure (HORAPEST) with with Olivier Allais, Philippe Caillou and Michèle Sébag

# Axis 2: Avoidance and adaptation behaviour to environmental conditions

- Air pollution and choice of place of residence with with Olivier Allais and Antoine Nebout
- Effect of drought on child nutrition: health systems as mitigating factor with Christoph Strupat

# Air pollution is the greatest external threat to human health on the planet

#### Air pollution shortens lives more than any other external cause

Results



Figure: Years of life lost, global average per person in 2021. Source: AQLI annual update, Lee and Greenstone

Introduction

# Air pollution has well-documented adverse health effects, but costs are rarely quantified

Results

# Exposure to air pollution has well-documented adverse health effects

- Increased the risk for cardiovascular and respiratory disease, cancer, and generally all organs.
- 48,000 premature deaths in France per year vs. 73,000 for smoking and for 41,000 alcohol.

Introduction

Data

# Air pollution has well-documented adverse health effects, but costs are rarely quantified

Results

# Exposure to air pollution has well-documented adverse health effects

- Increased the risk for cardiovascular and respiratory disease, cancer, and generally all organs.
- 48,000 premature deaths in France per year vs. 73,000 for smoking and for 41,000 alcohol.

#### Yet, there is an ongoing debate about the costs of air pollution

- It is often argued that air quality standards are set arbitrarily.
- Most studies are incomplete, assessing healthcare costs only partially.
- Information about costs matters for environmental policy.



First quasi-experimental study to *comprehensively quantify the healthcare costs* caused by acute exposure to moderate levels of air pollution in a *nationwide representative sample*.



First quasi-experimental study to *comprehensively quantify the healthcare costs* caused by acute exposure to moderate levels of air pollution in a *nationwide representative sample*.

#### Accurately estimate healthcare expenditure

- Location fixed effect model to account for residential sorting.
- IV approach exploiting shocks to pollution from changes in altitude atmospheric conditions.



First quasi-experimental study to *comprehensively quantify the healthcare costs* caused by acute exposure to moderate levels of air pollution in a *nationwide representative sample*.

# Accurately estimate healthcare expenditure

- Location fixed effect model to account for residential sorting.
- IV approach exploiting shocks to pollution from changes in altitude atmospheric conditions.

# Estimate effect heterogeneity

- By medical specialty: sanity test including placebo specialties
- By patient characteristics: age, chronic health status, enrollment in state subventioned insurance.
- By location characteristics: average income, unemployment rate, city size.

# The quasi-experimental literature on the health effects of air pollution

• Limited geographic area, events limited in time, specific part of the population, limited selection of health conditions or mortality. (Ex: Moretti et al., 2011; Anderson, 2015; Schlenker and Walker, 2015; Bauernschuster et

al.,2017; Deryugina et al., 2019; Godzinski and Suarez Castillo, 2019; 2021)

# The quasi-experimental literature on the health effects of air pollution

- Limited geographic area, events limited in time, specific part of the population, limited selection of health conditions or mortality.
   (Ex: Moretti et al., 2011; Anderson, 2015; Schlenker and Walker, 2015; Bauernschuster et al., 2017; Dervugina et al., 2019; Godzinski and Suarez Castillo, 2019; 2021)
- $\Rightarrow$  This study: representative sample, all types of health care and exact costs.

# The quasi-experimental literature on the health effects of air pollution

 Limited geographic area, events limited in time, specific part of the population, limited selection of health conditions or mortality.
 (Ex: Maretti et al., 2011; Anderson, 2015; Schlenker and Walker, 2015; Bauernschutter et

(Ex: Moretti et al., 2011; Anderson, 2015; Schlenker and Walker, 2015; Bauernschuster et al., 2017; Deryugina et al., 2019; Godzinski and Suarez Castillo, 2019; 2021)

- $\Rightarrow\,$  This study: representative sample, all types of health care and exact costs.
- $\Rightarrow\,$  This study: heterogeneity analyses by patient and location characteristics.

#### **Cost-benefit analyses**

- Costs are evaluated indirectly through simulations using mortality/morbidity rates, concentration-response parameters.
- Consider only a selection of outcomes. (Fontaine et al., 2007; Rafenberg, 2015)

#### **Cost-benefit analyses**

- Costs are evaluated indirectly through simulations using mortality/morbidity rates, concentration-response parameters.
- Consider only a selection of outcomes. (Fontaine et al., 2007; Rafenberg, 2015)
- $\Rightarrow\,$  This study: allows to put into perspective by how much healthcare costs have been underestimated.

# Significant healthcare costs caused by exposure to moderate pollution levels

- $\in$  0.5 billion additional spending per year for a 1  $\mu g/m^3$  (7%) increase in NO2.
- Order(s) of magnitude larger than previous estimates.

# Significant healthcare costs caused by exposure to moderate pollution levels

- €0.5 billion additional spending per year for a 1  $\mu g/m^3$  (7%) increase in NO2.
- Order(s) of magnitude larger than previous estimates.
- $\Rightarrow$  Healthcare costs have been severely underestimated.

# Significant healthcare costs caused by exposure to moderate pollution levels

- $\in 0.5$  billion additional spending per year for a 1  $\mu q/m^3$  (7%) increase in NO2.
- Order(s) of magnitude larger than previous estimates.
- $\Rightarrow$  Healthcare costs have been severely underestimated.

# **Evidence of effect heterogeneity**

- Populations living in the cities are most affected.
- Effects exist across all age groups.

# Preview of the results

# Significant healthcare costs caused by exposure to moderate pollution levels

- $\in 0.5$  billion additional spending per year for a 1  $\mu g/m^3$  (7%) increase in NO2.
- Order(s) of magnitude larger than previous estimates.
- $\Rightarrow$  Healthcare costs have been severely underestimated.

# **Evidence of effect heterogeneity**

- Populations living in the cities are most affected.
- Effects exist across all age groups.
- Air pollution reduction policies have the potential to reduce health inequalities.
- The young and the elderly are not the only groups vulnerable to air pollution.  $\Rightarrow$

| My resea | arch   | Introduction | Background    | Data | Method | Results | Effect heterogeneity | Extensions, sensitivity analyses | Concluding remarks |
|----------|--------|--------------|---------------|------|--------|---------|----------------------|----------------------------------|--------------------|
| Out      | line   |              |               |      |        |         |                      |                                  |                    |
|          |        |              |               |      |        |         |                      |                                  |                    |
|          | My re  | search       |               |      |        |         |                      |                                  |                    |
|          | Introd | luction      |               |      |        |         |                      |                                  |                    |
|          | Backg  | round        |               |      |        |         |                      |                                  |                    |
|          | Data   |              |               |      |        |         |                      |                                  |                    |
|          | Metho  | bd           |               |      |        |         |                      |                                  |                    |
|          | Result | s            |               |      |        |         |                      |                                  |                    |
|          | Effect | heteroge     | neity         |      |        |         |                      |                                  |                    |
|          | Exten  | sions, sens  | sitivity anal | yses |        |         |                      |                                  |                    |
|          | Concl  | uding rem    | arks          |      |        |         |                      |                                  |                    |

| My resear | ch Introduction  | Background    | Data | Method | Results | Effect heterogeneity | Extensions, sensitivity analyses | Concluding remarks |
|-----------|------------------|---------------|------|--------|---------|----------------------|----------------------------------|--------------------|
| Outl      | ine              |               |      |        |         |                      |                                  |                    |
|           |                  |               |      |        |         |                      |                                  |                    |
| ľ         | My research      |               |      |        |         |                      |                                  |                    |
| I         | ntroduction      |               |      |        |         |                      |                                  |                    |
| E         | Background       |               |      |        |         |                      |                                  |                    |
| 0         | Data             |               |      |        |         |                      |                                  |                    |
| ľ         | Vlethod          |               |      |        |         |                      |                                  |                    |
| F         | Results          |               |      |        |         |                      |                                  |                    |
| E         | Effect heteroge  | neity         |      |        |         |                      |                                  |                    |
| E         | Extensions, sens | sitivity anal | yses |        |         |                      |                                  |                    |

**Concluding remarks** 



# Pollutants of greatest concern

- Nitrogen dioxide (NO2)
- Ground-level ozone (O3)
- Particulate matter (PM) 10 and 2.5



#### Pollutants of greatest concern

- Nitrogen dioxide (NO2)
- Ground-level ozone (O3)
- Particulate matter (PM) 10 and 2.5

# Evidence of independent short- and long-term effects on health for each pollutant

- Effects on mortality, respiratory and cardio-vascular disease, cognition, fertility, etc.
- Largest effects relate to chronic exposure, but ample evidence of short term effects (ex: same day hospitalisations for asthma, heart attacks, mortality)

|           |        | Background | Method | Results | Effect heterogeneity | Extensions, sensitivity analyses | Concluding remarks |
|-----------|--------|------------|--------|---------|----------------------|----------------------------------|--------------------|
| Air pollu | itants |            |        |         |                      |                                  |                    |

| Pollutants of greatest concern                         |           | NO2         | O3     | PM10  | PM2.5 |
|--------------------------------------------------------|-----------|-------------|--------|-------|-------|
| Nitrogen dioxide (NO2)                                 | NO2<br>O3 | 1<br>-0.556 | 1      |       |       |
| <ul> <li>Ground-level ozone (O3)</li> </ul>            | PM10      | 0.595       | -0.252 | 1     |       |
| <ul> <li>Particulate matter (PM) 10 and 2.5</li> </ul> | PM2.5     | 0.616       | -0.377 | 0.907 | 1     |

#### Evidence of independent short- and long-term effects on health for each pollutant

- Effects on mortality, respiratory and cardio-vascular disease, cognition, fertility, etc.
- Largest effects relate to chronic exposure, but ample evidence of short term effects (ex: same day hospitalisations for asthma, heart attacks, mortality)

# Air quality in France



Distribution of postcode-day concentrations shows that **pollutant concentrations are mostly below current limit values**. Results

# Atmospheric conditions and local pollutant concentrations

# Atmospheric conditions

- Thermal inversions
  - Pollutants are trapped and cannot escape
- Planetary boundary layer
  - Pollutants have less space to diffuse
- Altitude wind
  - Wind leads to mixing of the atmospheric layers, diffusion of pollutants away from their sources



Source: CC BY-NC-ND 2.0

Results

# Atmospheric conditions and local pollutant concentrations

Data

# Atmospheric conditions

- Thermal inversions
  - Pollutants are trapped and cannot escape
- Planetary boundary layer
  - Pollutants have less space to diffuse
- Altitude wind
  - Wind leads to mixing of the atmospheric layers, diffusion of pollutants away from their sources



Source: CC BY-NC-ND 2.0

# Different effects by pollutant

- Usually opposite effects for NO2 and PM on the one hand and O3 on the other hand
  - Complex, often inverse relationship with NO2
  - Different behavior due to vertical mixing where O3 from the upper layers is brought to the ground

# Example: Altitude (ca 1.5km) wind speed and ground level NO2 concentrations

Results

- Wind carries NO2 (and PM) away from their sources, causing dispersion.
- $\Rightarrow\,$  More wind, lower NO2 and PM.
- Wind carries O3 down from higher layers; NO2 interacts with O3.
- $\Rightarrow$  More wind, higher O3.



| My research | Introduction | Background | Data | Method | Results | Effect heterogeneity | Extensions, sensitivity analyses | Concluding remarks |
|-------------|--------------|------------|------|--------|---------|----------------------|----------------------------------|--------------------|
| Outlin      | е            |            |      |        |         |                      |                                  |                    |
|             |              |            |      |        |         |                      |                                  |                    |
| M           | y research   |            |      |        |         |                      |                                  |                    |
| In          | troduction   |            |      |        |         |                      |                                  |                    |
| Ba          | ackground    |            |      |        |         |                      |                                  |                    |
| Da          | ata          |            |      |        |         |                      |                                  |                    |
| M           | ethod        |            |      |        |         |                      |                                  |                    |
| Re          | esults       |            |      |        |         |                      |                                  |                    |
|             |              |            |      |        |         |                      |                                  |                    |

Effect heterogeneity

Extensions, sensitivity analyses

**Concluding remarks** 



# Health care use and costs (2015-2018)

- Système National des Données de Santé (SNDS): administrative data on healthcare costs and reimbursements including 98.8% of the French population, all types of insurance.
- Echantillon Généraliste de Bénéficiaires (EGB): 1/97th random permanent representative sample.

Summary stats



# Health care use and costs (2015-2018)

- Système National des Données de Santé (SNDS): administrative data on healthcare costs and reimbursements including 98.8% of the French population, all types of insurance.
- Echantillon Généraliste de Bénéficiaires (EGB): 1/97th random permanent representative sample.

#### Pollution concentrations and meteorological conditions (reanalysis data)

- NO2, O3, PM 10, and PM 2.5 concentrations from by INERIS.
- Wind speed, wind direction, temperature and precipitation by pressure levels from ECMWF.





# Health care use and costs (2015-2018)

- Système National des Données de Santé (SNDS): administrative data on healthcare costs and reimbursements including 98.8% of the French population, all types of insurance.
- Echantillon Généraliste de Bénéficiaires (EGB): 1/97th random permanent representative sample.

#### Pollution concentrations and meteorological conditions (reanalysis data)

- NO2, O3, PM 10, and PM 2.5 concentrations from by INERIS.
- Wind speed, wind direction, temperature and precipitation by pressure levels from ECMWF.

# Other

- Postcode-level average household income, unemployment rate from INSEE.
- Data on holidays from https://www.data.gouv.fr

Summary stats

| My research | Introduction   | Background    | Data | Method | Results | Effect heterogeneity | Extensions, sensitivity analyses | Concluding remarks |
|-------------|----------------|---------------|------|--------|---------|----------------------|----------------------------------|--------------------|
| Outlin      | ie             |               |      |        |         |                      |                                  |                    |
|             |                |               |      |        |         |                      |                                  |                    |
| M           | y research     |               |      |        |         |                      |                                  |                    |
| In          | troduction     |               |      |        |         |                      |                                  |                    |
| Ba          | nckground      |               |      |        |         |                      |                                  |                    |
| Da          | ata            |               |      |        |         |                      |                                  |                    |
| M           | ethod          |               |      |        |         |                      |                                  |                    |
| Re          | esults         |               |      |        |         |                      |                                  |                    |
| Ef          | fect heteroger | neity         |      |        |         |                      |                                  |                    |
| Ex          | tensions, sens | sitivity anal | yses |        |         |                      |                                  |                    |

**Concluding remarks** 



#### Location and time fixed effects model

- Pollution exposure is not random.
- $\Rightarrow$  Inclusion of location fixed effects to account for residential sorting.

$$H_{wpc} = \sum_{x} \beta_{x} P_{wpx} + \alpha_{p} + \alpha_{m/mdep} + \alpha_{y/my} + \gamma X_{wp} + \epsilon_{wpc},$$

 $H_{wpc}$  - healthcare use or cost in week day w, postcode area p, for medical specialty c $P_{wpx}$  - pollution concentrations of pollutant x $\alpha_n$  - postcode FE



#### Location and time fixed effects model

- Pollution exposure is not random.
- $\Rightarrow\,$  Inclusion of location fixed effects to account for residential sorting.

$$H_{wpc} = \sum_{x} \beta_{x} P_{wpx} + \alpha_{p} + \alpha_{m/mdep} + \alpha_{y/my} + \gamma X_{wp} + \epsilon_{wpc},$$

 $H_{wpc}$  - healthcare use or cost in week day w, postcode area p, for medical specialty c $P_{wpx}$  - pollution concentrations of pollutant x

 $lpha_p$  - postcode FE

 $\alpha_{m/mdep}$  - month or month-by-department FE

 $lpha_{y/my}$  - year or month-by-year FE

 $X_{wp}$  - additional time-varying covariates (holidays and weather conditions)

Also include a lag to allow for some serial correlation/lagged effects. Also estimate the model at daily frequency with additional inclusion of day-of-the-week FE.

# Altitude atmospheric conditions as instruments for ground-level air pollution

Results

#### Potential remaining endogeneity problem

• Air pollution levels and healthcare use correlate with economic activity.

#### Altitude atmospheric conditions are good instruments

An IV needs to

• be sufficiently correlated with the endogenous variable: Altitude atmospheric conditions are correlated with pollution levels.

Data

# Altitude atmospheric conditions as instruments for ground-level air pollution

Results

# Potential remaining endogeneity problem

- Air pollution levels and healthcare use correlate with economic activity.
- $\Rightarrow\,$  Use altitude atmospheric conditions as instruments for air pollution levels.

# Altitude atmospheric conditions are good instruments

An IV needs to

- be sufficiently correlated with the endogenous variable: Altitude atmospheric conditions are correlated with pollution levels.
- not have a direct effect on the outcome variable: conditional on ground-level atmospheric conditions and additional weather covariates, altitude atmospheric conditions should not affect health other than through its effect on pollution levels.

# Wind speed as instrument for air pollution - first stage specification

First stage specification

$$P_{wpx} = \sum_{k} \beta_k I V_{wpk} + \alpha_p + \alpha_{mdep} + \alpha_{y/my} + \delta X_{wp} + \epsilon_{wpx}$$

 $IV_{wpk}$  is a vector of atmospheric conditions in week w and location p

- Thermal inversions
  - Sum of hours of inversions, sum of hours during night/day/different moments of the day
- Planetary boundary layer height
  - Height in m, height at different moments during the day
- Altitude wind speed
  - Average wind speed at different altitude levels
| My research | Introduction  | Background   | Data | Method | Results | Effect heterogeneity | Extensions, sensitivity analyses | Concluding remarks |
|-------------|---------------|--------------|------|--------|---------|----------------------|----------------------------------|--------------------|
| Outlin      | е             |              |      |        |         |                      |                                  |                    |
|             |               |              |      |        |         |                      |                                  |                    |
| My          | research      |              |      |        |         |                      |                                  |                    |
| Int         | roduction     |              |      |        |         |                      |                                  |                    |
| Ba          | ckground      |              |      |        |         |                      |                                  |                    |
| Da          | ta            |              |      |        |         |                      |                                  |                    |
| Me          | thod          |              |      |        |         |                      |                                  |                    |
| Res         | sults         |              |      |        |         |                      |                                  |                    |
| Eff         | ect heteroger | neity        |      |        |         |                      |                                  |                    |
| Ext         | ensions, sens | itivity anal | yses |        |         |                      |                                  |                    |

**Concluding remarks** 

## OLS and IV estimates of NO2, O3 and PM pollution on healthcare expenditure

|                      | 0                                | LS                   | ľ                   | V                   | IV lasso                        |                                  |
|----------------------|----------------------------------|----------------------|---------------------|---------------------|---------------------------------|----------------------------------|
|                      |                                  | Sum                  | n of weekly he      | althcare spend      | ding                            |                                  |
| Weekly mean NO2      | 44.33***<br>(2.692)              | 43.23***<br>(2.418)  | 18.42***<br>(3.820) | 17.23***<br>(3.719) | 20.40 <sup>***</sup><br>(3.881) | 20.18 <sup>* **</sup><br>(3.750) |
| Weekly mean O3       | 4.189***<br>(0.383)              | 4.912***<br>(0.390)  | 6.282***<br>(0.773) | 3.275***<br>(0.662) | 6.177***<br>(0.783)             | 3.296***<br>(0.666)              |
| Weekly mean PM10     | -12.06 <sup>***</sup><br>(0.981) | -13.21***<br>(0.993) | 12.37***<br>(2.815) | 3.540<br>(2.843)    | 10.75***<br>(2.839)             | 1.519<br>(2.842)                 |
| Lag weekly mean NO2  |                                  | 9.461***<br>(2.106)  |                     | -3.423<br>(4.062)   |                                 | -6.877<br>(4.134)                |
| Lag weekly mean O3   |                                  | -0.181<br>(0.364)    |                     | 6.497***<br>(0.795) |                                 | 7.033***<br>(0.814)              |
| Lag weekly mean PM10 |                                  | -1.424<br>(0.872)    |                     | 18.14***<br>(2.616) |                                 | 23.10***<br>(2.724)              |
| Observations         | 1,209,572                        | 1,186,311            | 1,209,572           | 1,186,311           | 1,209,572                       | 1,186,311                        |

 $^{***}p < 0.001, \,^{**}p < 0.01, \,^*p < 0.05.$  Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

First stage results 📜 First stage Lasso result



Conservative estimate of €0.5 billion additional healthcare spending per year for a 1  $\mu g/m^3$  increase in NO2.

- $\in$ 17.23 per week per postcode for 6,048 postcodes in a sample of 1/97 of the French population:
- $\Rightarrow$  €17.23 · 97 · 52 · 6,048 = €525,620,310 additional healthcare spending per year.

Up to €1.3 billion additional healthcare spending per year for a 1  $\mu g/m^3$  increase in all pollutants.

•  $\in$  (17.23 + 3.28 + 6.5 + 18.14) per week per postcode for 6,048 postcodes in a sample of 1/97 of the French population

⇒ = €1,377,350,957

Does not include costs from mortality, lost productivity...

## Results with only one pollutant

|                      | Effect of only NO2 on sum of weekly healthcare spending |                                 |                     |                                 |                     |                                 |  |  |  |
|----------------------|---------------------------------------------------------|---------------------------------|---------------------|---------------------------------|---------------------|---------------------------------|--|--|--|
|                      | 0                                                       | LS                              | ľ                   | V                               | ١v                  | ' lasso                         |  |  |  |
| Weekly mean NO2      | 30.33***<br>(1.927)                                     | 27.37***<br>(1.689)             | 22.71***<br>(1.952) | 15.87***<br>(1.805)             | 24.98***<br>(2.137) | 16.09***<br>(1.840)             |  |  |  |
| Lag weekly mean NO2  |                                                         | 8.699***<br>(1.506)             |                     | 8.286 <sup>***</sup><br>(1.873) |                     | 9.055 <sup>***</sup><br>(1.917) |  |  |  |
|                      |                                                         | Effect of a                     | only O3 on sur      | n of weekly he                  | ealthcare spending  |                                 |  |  |  |
|                      | OLS                                                     |                                 | ľ                   | IV                              |                     | ' lasso                         |  |  |  |
| Weekly mean O3       | 0.362<br>(0.353)                                        | 1.025 <sup>**</sup><br>(0.341)  | 0.957<br>(0.680)    | -0.618<br>(0.557)               | 1.106<br>(0.696)    | -0.918<br>(0.565)               |  |  |  |
| Lag weekly mean O3   |                                                         | -0.963 <sup>**</sup><br>(0.352) |                     | 4.699***<br>(0.688)             |                     | 5.009 <sup>***</sup><br>(0.702) |  |  |  |
|                      |                                                         | Effect of on                    | <i>ly PM10</i> on s | um of weekly l                  | nealthcare spend    | ing                             |  |  |  |
|                      | 0                                                       | LS                              | ľ                   | V                               | ١v                  | ' lasso                         |  |  |  |
| Weekly mean PM10     | 4.053***<br>(0.570)                                     | 2.770***<br>(0.597)             | 16.87***<br>(1.375) | 11.59***<br>(1.335)             | 16.14***<br>(1.364) | 10.98***<br>(1.317)             |  |  |  |
| Lag weekly mean PM10 |                                                         | 2.590 <sup>***</sup><br>(0.562) |                     | 8.493 <sup>***</sup><br>(1.242) |                     | 10.21 <sup>***</sup><br>(1.269) |  |  |  |
| Observations         | 1209572                                                 | 1186311                         | 1209572             | 1186311                         | 1209572             | 1186311                         |  |  |  |

 $^{***}p < 0.001, \,^{**}p < 0.01, \,^{*}p < 0.05.$  Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

#### **Results by medical specialty - sanity check**

#### Separate regressions for 15 different categories of medical specialties

- Potentially affected: family practice, otorhinolaryngology, ophthalmology, stomatology, dentistry, cardiology and vascular medicine, pulmonology, neurology, gynaecology, ambulance services.
- Placebo: gastro-hepatology, rhumatology, nephrology and plastic surgery.

# Results by medical specialty - sanity check

|                                    | General med.                    | O.R.L.            | Ophtalmo.           | Stoma.              | Chir. den.                      | Cardio-vasc.       | Pneumology        |                    |
|------------------------------------|---------------------------------|-------------------|---------------------|---------------------|---------------------------------|--------------------|-------------------|--------------------|
| Weekly mean NO2                    | 7.773 <sup>***</sup><br>(1.691) | 0.0110<br>(0.082) | 0.992***<br>(0.223) | 0.0497<br>(0.080)   | 0.426<br>(0.802)                | 0.339<br>(0.228)   | 0.0338<br>(0.159) |                    |
| Weekly mean O3                     | 1.572***<br>(0.228)             | 0.0249<br>(0.016) | 0.163***<br>(0.041) | -0.00662<br>(0.015) | 0.342*<br>(0.164)               | 0.102*<br>(0.042)  | 0.0363<br>(0.032) |                    |
| Weekly mean PM10                   | 0.0715<br>(1.245)               | 0.0811<br>(0.058) | -0.0659<br>(0.162)  | -0.0501<br>(0.057)  | 2.118 <sup>***</sup><br>(0.590) | 0.181<br>(0.167)   | 0.207<br>(0.116)  |                    |
|                                    | Neurology                       | Gyneco.           | Ambulance           | Gastro. hep.        | Rhuma.                          | Nephrology         | Chir. trauma      | Chir. plas.        |
| Weekly mean NO2                    | 0.0969<br>(0.159)               | 0.0931<br>(0.139) | 0.0381<br>(0.274)   | -0.596<br>(0.370)   | 0.416*<br>(0.179)               | 0.0905<br>(0.078)  | 0.252<br>(0.214)  | -0.0863<br>(0.101) |
| Weekly mean O3                     | 0.00444<br>(0.026)              | 0.0170<br>(0.027) | 0.00854<br>(0.054)  | 0.0850<br>(0.077)   | 0.0333<br>(0.027)               | 0.0135<br>(0.016)  | 0.0606<br>(0.038) | 0.0272<br>(0.020)  |
| Weekly mean PM10                   | 0.0525<br>(0.116)               | 0.215*<br>(0.104) | 0.611**<br>(0.209)  | 0.485<br>(0.311)    | -0.124<br>(0.145)               | -0.0282<br>(0.055) | 0.0481<br>(0.151) | 0.163*<br>(0.075)  |
| Observations<br>First-stage F-stat | 1209572<br>2648.7               | 1209572<br>2648.7 | 1209572<br>2648.7   | 1209572<br>2648.7   | 1209572<br>2648.7               | 1209572<br>2648.7  | 1209572<br>2648.7 | 1209572<br>2648.7  |

 $^{***}p < 0.001, ^{**}p < 0.01, ^{*}p < 0.05$ . Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

# Results by medical specialty - sanity check continued

|                      | General med.         | O.R.L.   | Ophtalmo.            | Stoma.   | Chir. den.           | Cardio-vasc.         | Pneumology |
|----------------------|----------------------|----------|----------------------|----------|----------------------|----------------------|------------|
| Weekly mean NO2      | 4.956 <sup>***</sup> | 0.0236   | 1.108 <sup>***</sup> | 0.0104   | 0.120                | 0.466*               | 0.0177     |
|                      | (1.492)              | (0.084)  | (0.228)              | (0.086)  | (0.820)              | (0.223)              | (0.179)    |
| Weekly mean O3       | 0.927***             | 0.00108  | 0.107*               | -0.00156 | -0.142               | 0.0401               | 0.0127     |
|                      | (0.235)              | (0.017)  | (0.042)              | (0.017)  | (0.161)              | (0.040)              | (0.035)    |
| Weekly mean PM10     | -1.180               | -0.0468  | -0.336*              | -0.0453  | 0.614                | -0.0541              | 0.180      |
|                      | (1.143)              | (0.062)  | (0.170)              | (0.059)  | (0.609)              | (0.159)              | (0.139)    |
| Lag weekly mean NO2  | 2.513                | 0.0897   | 0.192                | 0.0268   | 0.244                | -0.00495             | -0.300     |
|                      | (1.297)              | (0.084)  | (0.240)              | (0.078)  | (0.873)              | (0.225)              | (0.202)    |
| Lag weekly mean O3   | 1.217***             | 0.0476** | 0.206 <sup>***</sup> | 0.0102   | 1.119 <sup>***</sup> | 0.178 <sup>***</sup> | 0.0273     |
|                      | (0.264)              | (0.017)  | (0.044)              | (0.017)  | (0.164)              | (0.041)              | (0.031)    |
| Lag weekly mean PM10 | 3.329***             | 0.140**  | 0.318*               | 0.0258   | 2.151***             | 0.239                | 0.260*     |
|                      | (0.835)              | (0.052)  | (0.149)              | (0.053)  | (0.557)              | (0.142)              | (0.126)    |
| Observations         | 1186311              | 1186311  | 1186311              | 1186311  | 1186311              | 1186311              | 1186311    |
| First-stage F-stat   | 2063.7               | 2063.7   | 2063.7               | 2063.7   | 2063.7               | 2063.7               | 2063.7     |

Results

 $p^{***} p < 0.001$ ,  $p^{**} > 0.01$ , p < 0.01. Robust standard errors clustered at the postcode level in parenthesis.

All models include weather dummies, month, year and postcode fixed effects.

Results

# Results by medical specialty - sanity check continued

|                      | Neurology | Gyneco. | Ambulance            | Gastro. hep. | Rhuma.  | Nephrology | Chir. trauma | Chir. plas. |
|----------------------|-----------|---------|----------------------|--------------|---------|------------|--------------|-------------|
| Weekly mean NO2      | 0.101     | 0.102   | -0.342               | -0.513       | 0.485*  | 0.0517     | -0.107       | -0.0235     |
|                      | (0.180)   | (0.147) | (0.275)              | (0.345)      | (0.192) | (0.082)    | (0.218)      | (0.108)     |
| Weekly mean O3       | -0.0252   | 0.00422 | 0.0122               | 0.0480       | 0.0161  | 0.0130     | 0.0276       | 0.0306      |
|                      | (0.031)   | (0.029) | (0.056)              | (0.084)      | (0.033) | (0.017)    | (0.040)      | (0.021)     |
| Weekly mean PM10     | -0.0357   | 0.170   | 0.916 <sup>***</sup> | 0.370        | -0.231  | -0.0335    | 0.172        | 0.129       |
|                      | (0.134)   | (0.111) | (0.227)              | (0.278)      | (0.167) | (0.060)    | (0.159)      | (0.080)     |
| Lag weekly mean No2  | 0.150     | 0.0581  | -0.829**             | -0.285       | 0.0129  | 0.0115     | 0.327        | -0.111      |
|                      | (0.162)   | (0.160) | (0.291)              | (0.410)      | (0.171) | (0.091)    | (0.222)      | (0.106)     |
| Lag weekly mean O3   | 0.0672*   | 0.0644* | 0.251 <sup>***</sup> | 0.0281       | 0.0417  | 0.0138     | 0.0756       | -0.0109     |
|                      | (0.030)   | (0.031) | (0.056)              | (0.074)      | (0.032) | (0.017)    | (0.041)      | (0.022)     |
| Lag weekly mean PM10 | 0.0281    | 0.0318  | 0.784 <sup>***</sup> | 0.206        | 0.134   | 0.0418     | -0.0926      | 0.0409      |
|                      | (0.091)   | (0.094) | (0.185)              | (0.286)      | (0.114) | (0.056)    | (0.139)      | (0.068)     |
| Observations         | 1186311   | 1186311 | 1186311              | 1186311      | 1186311 | 1186311    | 1186311      | 1186311     |
| First-stage F-stat   | 2063.7    | 2063.7  | 2063.7               | 2063.7       | 2063.7  | 2063.7     | 2063.7       | 2063.7      |

 $^{***}p < 0.001, \,^{**}p < 0.01, \,^{*}p < 0.05.$  Robust standard errors clustered at the postcode level in parenthesis.

All models include weather dummies, month, year and postcode fixed effects.

OLS results

| My research | Introduction   | Background    | Data | Method | Results | Effect heterogeneity | Extensions, sensitivity analyses | Concluding remarks |
|-------------|----------------|---------------|------|--------|---------|----------------------|----------------------------------|--------------------|
| Outlin      | e              |               |      |        |         |                      |                                  |                    |
|             |                |               |      |        |         |                      |                                  |                    |
| My          | research       |               |      |        |         |                      |                                  |                    |
| Int         | roduction      |               |      |        |         |                      |                                  |                    |
| Ba          | ckground       |               |      |        |         |                      |                                  |                    |
| Da          | ta             |               |      |        |         |                      |                                  |                    |
| Me          | ethod          |               |      |        |         |                      |                                  |                    |
| Re          | sults          |               |      |        |         |                      |                                  |                    |
| Eff         | ect heteroger  | neity         |      |        |         |                      |                                  |                    |
| Ext         | tensions, sens | itivity analy | yses |        |         |                      |                                  |                    |

**Concluding remarks** 

# Results by individual characteristics - age

|                    | Ages 0-20 | Ages 21-40 | Ages 41-60           | Ages 61-80 | Ages over 80 |
|--------------------|-----------|------------|----------------------|------------|--------------|
| Weekly mean NO2    | 2.974**   | 2.844**    | 7.062***             | 2.559      | 1.508        |
|                    | (0.962)   | (1.057)    | (1.867)              | (1.651)    | (1.173)      |
| Weekly mean O3     | 0.876***  | 0.650**    | 2.177***             | 2.722***   | 0.557*       |
|                    | (0.176)   | (0.198)    | (0.403)              | (0.359)    | (0.219)      |
| Weekly mean PM10   | 1.313     | 0.431      | 4.705 <sup>***</sup> | -1.002     | 1.506        |
|                    | (0.696)   | (0.817)    | (1.371)              | (1.191)    | (0.819)      |
| Observations       | 1209572   | 1209572    | 1209572              | 1209572    | 1209572      |
| First-stage F-stat | 2648.7    | 2648.7     | 2648.7               | 2648.7     | 2648.7       |

 $^{***}p<0.001,\,^{**}p<0.01,\,^*p<0.05.$  Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

# **Results by location characteristics**

| Panel A: Heterogeneity by average postcode income quartile                                     |                                                                                                                                       |                                                                                                                                          |                                                                                                              |                                                                                                             |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                | Per capita spent<br>- 1st quartile                                                                                                    | Per capita spent<br>- 2nd quartile                                                                                                       | Per capita spent<br>- 3rd quartile                                                                           | Per capita spent<br>- 4th quartile                                                                          |  |  |  |  |  |  |  |
| Weekly mean NO2                                                                                | 0.123                                                                                                                                 | -0.0431                                                                                                                                  | 0.0179                                                                                                       | 0.127**                                                                                                     |  |  |  |  |  |  |  |
|                                                                                                | (0.101)                                                                                                                               | (0.093)                                                                                                                                  | (0.068)                                                                                                      | (0.045)                                                                                                     |  |  |  |  |  |  |  |
| Weekly mean O3                                                                                 | 0.0328                                                                                                                                | 0.0505**                                                                                                                                 | 0.0292*                                                                                                      | 0.0712***                                                                                                   |  |  |  |  |  |  |  |
|                                                                                                | (0.018)                                                                                                                               | (0.016)                                                                                                                                  | (0.012)                                                                                                      | (0.012)                                                                                                     |  |  |  |  |  |  |  |
| Weekly mean PM10                                                                               | 0.0463                                                                                                                                | 0.212**                                                                                                                                  | 0.173***                                                                                                     | 0.0959**                                                                                                    |  |  |  |  |  |  |  |
|                                                                                                | (0.071)                                                                                                                               | (0.068)                                                                                                                                  | (0.049)                                                                                                      | (0.034)                                                                                                     |  |  |  |  |  |  |  |
| Observations                                                                                   | 306592                                                                                                                                | 301080                                                                                                                                   | 299416                                                                                                       | 296660                                                                                                      |  |  |  |  |  |  |  |
| First-stage F-stat                                                                             | 985.5                                                                                                                                 | 987.1                                                                                                                                    | 860.9                                                                                                        | 671.4                                                                                                       |  |  |  |  |  |  |  |
| Panel B: Heterogeneity by postcode unemployment rate quartile                                  |                                                                                                                                       |                                                                                                                                          |                                                                                                              |                                                                                                             |  |  |  |  |  |  |  |
| Panel B: Heterogeneit                                                                          | y by postcode unem                                                                                                                    | ployment rate quartile                                                                                                                   | 2                                                                                                            |                                                                                                             |  |  |  |  |  |  |  |
| Panel B: Heterogeneit                                                                          | y by postcode unem<br>Per capita spent                                                                                                | <i>ployment rate quartile</i><br>Per capita spent                                                                                        | e<br>Per capita spent                                                                                        | Per capita spent                                                                                            |  |  |  |  |  |  |  |
| Panel B: Heterogeneit                                                                          | y by postcode unemp<br>Per capita spent<br>- 1st quartile                                                                             | ployment rate quartile<br>Per capita spent<br>- 2nd quartile                                                                             | e<br>Per capita spent<br>- 3rd quartile                                                                      | Per capita spent<br>- 4th quartile                                                                          |  |  |  |  |  |  |  |
| Panel B: Heterogeneit                                                                          | y by postcode unemp<br>Per capita spent<br>- 1st quartile<br>0.104                                                                    | ployment rate quartile<br>Per capita spent<br>- 2nd quartile<br>0.0703                                                                   | Per capita spent<br>- 3rd quartile<br>0.0860                                                                 | Per capita spent<br>- 4th quartile<br>0.0558                                                                |  |  |  |  |  |  |  |
| Panel B: Heterogenein Weekly mean NO2                                                          | y by postcode unemp<br>Per capita spent<br>- 1st quartile<br>0.104<br>(0.054)                                                         | ployment rate quartile<br>Per capita spent<br>- 2nd quartile<br>0.0703<br>(0.080)                                                        | Per capita spent<br>- 3rd quartile<br>0.0860<br>(0.058)                                                      | Per capita spent<br>- 4th quartile<br>0.0558<br>(0.073)                                                     |  |  |  |  |  |  |  |
| Panel B: Heterogeneit<br>Weekly mean NO2<br>Weekly mean O3                                     | y by postcode unemp<br>Per capita spent<br>- 1st quartile<br>0.104<br>(0.054)<br>0.0591***                                            | ployment rate quartile<br>Per capita spent<br>- 2nd quartile<br>0.0703<br>(0.080)<br>0.0432***                                           | Per capita spent<br>- 3rd quartile<br>0.0860<br>(0.058)<br>0.0293*                                           | Per capita spent<br>- 4th quartile<br>0.0558<br>(0.073)<br>0.0196                                           |  |  |  |  |  |  |  |
| Panel B: Heterogeneit<br>Weekly mean NO2<br>Weekly mean O3                                     | y by postcode unemp<br>Per capita spent<br>- 1st quartile<br>0.104<br>(0.054)<br>0.0591***<br>(0.012)                                 | ployment rate quartile<br>Per capita spent<br>- 2nd quartile<br>0.0703<br>(0.080)<br>0.0432***<br>(0.013)                                | Per capita spent<br>- 3rd quartile<br>0.0860<br>(0.058)<br>0.0293*<br>(0.012)                                | Per capita spent<br>- 4th quartile<br>0.0558<br>(0.073)<br>0.0196<br>(0.018)                                |  |  |  |  |  |  |  |
| Panel B: Heterogeneit<br>Weekly mean NO2<br>Weekly mean O3<br>Weekly mean PM10                 | y by postcode unemp<br>Per capita spent<br>- 1st quartile<br>0.104<br>(0.054)<br>0.0591***<br>(0.012)<br>0.116**                      | Per capita spent<br>- 2nd quartile<br>0.0703<br>(0.080)<br>0.0432***<br>(0.013)<br>0.121*                                                | Per capita spent<br>- 3rd quartile<br>0.0860<br>(0.058)<br>0.0293*<br>(0.012)<br>0.0610                      | Per capita spent<br>- 4th quartile<br>0.0558<br>(0.073)<br>0.0196<br>(0.018)<br>0.0456                      |  |  |  |  |  |  |  |
| Panel B: Heterogeneit<br>Weekly mean NO2<br>Weekly mean O3<br>Weekly mean PM10                 | y by postcode unemp<br>Per capita spent<br>- 1st quartile<br>0.104<br>(0.054)<br>0.0591***<br>(0.012)<br>0.116**<br>(0.041)           | bloyment rate quartile<br>Per capita spent<br>- 2nd quartile<br>0.0703<br>(0.080)<br>0.0432***<br>(0.013)<br>0.121*<br>(0.051)           | Per capita spent<br>- 3rd quartile<br>0.0860<br>(0.058)<br>0.0293*<br>(0.012)<br>0.0610<br>(0.044)           | Per capita spent<br>- 4th quartile<br>0.0558<br>(0.073)<br>0.0196<br>(0.018)<br>0.0456<br>(0.050)           |  |  |  |  |  |  |  |
| Panel B: Heterogeneit<br>Weekly mean NO2<br>Weekly mean O3<br>Weekly mean PM10<br>Observations | y by postcode unemp<br>Per capita spent<br>- 1st quartile<br>0.104<br>(0.054)<br>0.0591***<br>(0.012)<br>0.116**<br>(0.041)<br>232180 | bloyment rate quartile<br>Per capita spent<br>- 2nd quartile<br>0.0703<br>(0.080)<br>0.0432***<br>(0.013)<br>0.121*<br>(0.051)<br>193388 | Per capita spent<br>- 3rd quartile<br>0.0860<br>(0.058)<br>0.0293*<br>(0.012)<br>0.0610<br>(0.044)<br>176852 | Per capita spent<br>- 4th quartile<br>0.0558<br>(0.073)<br>0.0196<br>(0.018)<br>0.0456<br>(0.050)<br>176748 |  |  |  |  |  |  |  |

# Results by location characteristics continued

| Panel C: Heterogeneity by postcode average NO2 quartile               |                                                                                                                                    |                                                                                                                                        |                                                                                                                 |                                                                                                                   |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                       | Per capita spent<br>- 1st quartile                                                                                                 | Per capita spent<br>- 2nd quartile                                                                                                     | Per capita spent<br>- 3rd quartile                                                                              | Per capita spent<br>- 4th quartile                                                                                |  |  |  |  |  |  |  |
| Weekly mean NO2                                                       | 0.0384                                                                                                                             | 0.121                                                                                                                                  | 0.109                                                                                                           | 0.0729*                                                                                                           |  |  |  |  |  |  |  |
|                                                                       | (0.149)                                                                                                                            | (0.091)                                                                                                                                | (0.065)                                                                                                         | (0.032)                                                                                                           |  |  |  |  |  |  |  |
| Weekly mean O3                                                        | 0.0223                                                                                                                             | 0.0484**                                                                                                                               | 0.0502***                                                                                                       | 0.0480***                                                                                                         |  |  |  |  |  |  |  |
|                                                                       | (0.032)                                                                                                                            | (0.015)                                                                                                                                | (0.013)                                                                                                         | (0.012)                                                                                                           |  |  |  |  |  |  |  |
| Weekly mean PM10                                                      | 0.142                                                                                                                              | 0.107                                                                                                                                  | 0.0878                                                                                                          | 0.0876***                                                                                                         |  |  |  |  |  |  |  |
|                                                                       | (0.108)                                                                                                                            | (0.062)                                                                                                                                | (0.046)                                                                                                         | (0.024)                                                                                                           |  |  |  |  |  |  |  |
| Observations                                                          | 293384                                                                                                                             | 305708                                                                                                                                 | 308256                                                                                                          | 302224                                                                                                            |  |  |  |  |  |  |  |
| First-stage F-stat                                                    | 2388.1                                                                                                                             | 1757.7                                                                                                                                 | 1521.1                                                                                                          | 985.2                                                                                                             |  |  |  |  |  |  |  |
| Panel D: Heterogeneity by postcode population size quartile           |                                                                                                                                    |                                                                                                                                        |                                                                                                                 |                                                                                                                   |  |  |  |  |  |  |  |
| Panel D: Heterogener                                                  | ty by postcode popul                                                                                                               | ation size quartile                                                                                                                    |                                                                                                                 |                                                                                                                   |  |  |  |  |  |  |  |
| Panel D: Heterogener                                                  | <i>ty by postcode popul</i><br>Per capita spent                                                                                    | <i>ation size quartile</i><br>Per capita spent                                                                                         | Per capita spent                                                                                                | Per capita spent                                                                                                  |  |  |  |  |  |  |  |
| Panel D: Heterogener                                                  | <i>ty by postcode popul</i><br>Per capita spent<br>- 1st quartile                                                                  | <i>ation size quartile</i><br>Per capita spent<br>- 2nd quartile                                                                       | Per capita spent<br>- 3rd quartile                                                                              | Per capita spent<br>- 4th quartile                                                                                |  |  |  |  |  |  |  |
| Veekly mean NO2                                                       | ty by postcode popul<br>Per capita spent<br>- 1st quartile<br>0.0851                                                               | ation size quartile<br>Per capita spent<br>- 2nd quartile<br>0.0688                                                                    | Per capita spent<br>- 3rd quartile<br>0.0372                                                                    | Per capita spent<br>- 4th quartile<br>0.0893**                                                                    |  |  |  |  |  |  |  |
| Weekly mean NO2                                                       | ty by postcode popul<br>Per capita spent<br>- 1st quartile<br>0.0851<br>(0.141)                                                    | ation size quartile<br>Per capita spent<br>- 2nd quartile<br>0.0688<br>(0.081)                                                         | Per capita spent<br>- 3rd quartile<br>0.0372<br>(0.049)                                                         | Per capita spent<br>- 4th quartile<br>0.0893**<br>(0.033)                                                         |  |  |  |  |  |  |  |
| Weekly mean NO2                                                       | ty by postcode popul<br>Per capita spent<br>- 1st quartile<br>0.0851<br>(0.141)<br>0.0616                                          | ation size quartile<br>Per capita spent<br>- 2nd quartile<br>0.0688<br>(0.081)<br>0.0548***                                            | Per capita spent<br>- 3rd quartile<br>0.0372<br>(0.049)<br>0.0346***                                            | Per capita spent<br>- 4th quartile<br>0.0893**<br>(0.033)<br>0.0268***                                            |  |  |  |  |  |  |  |
| Weekly mean NO2<br>Weekly mean O3                                     | ty by postcode popul<br>Per capita spent<br>- 1st quartile<br>0.0851<br>(0.141)<br>0.0616<br>(0.034)                               | ation size quartile<br>Per capita spent<br>- 2nd quartile<br>0.0688<br>(0.081)<br>0.0548***<br>(0.015)                                 | Per capita spent<br>- 3rd quartile<br>0.0372<br>(0.049)<br>0.0346***<br>(0.009)                                 | Per capita spent<br>- 4th quartile<br>0.0893**<br>(0.033)<br>0.0268***<br>(0.006)                                 |  |  |  |  |  |  |  |
| Weekly mean NO2<br>Weekly mean O3<br>Weekly mean PM10                 | ty by postcode popul<br>Per capita spent<br>- 1st quartile<br>0.0851<br>(0.141)<br>0.0616<br>(0.034)<br>0.140                      | ation size quartile<br>Per capita spent<br>- 2nd quartile<br>0.0688<br>(0.081)<br>0.0548***<br>(0.015)<br>0.178**                      | Per capita spent<br>- 3rd quartile<br>0.0372<br>(0.049)<br>0.0346***<br>(0.009)<br>0.115**                      | Per capita spent<br>- 4th quartile<br>0.0893**<br>(0.033)<br>0.0268***<br>(0.006)<br>0.0577*                      |  |  |  |  |  |  |  |
| Weekly mean NO2<br>Weekly mean O3<br>Weekly mean PM10                 | ty by postcode popul<br>Per capita spent<br>- 1st quartile<br>0.0851<br>(0.141)<br>0.0616<br>(0.034)<br>0.140<br>(0.101)           | ation size quartile<br>Per capita spent<br>- 2nd quartile<br>0.0688<br>(0.081)<br>0.0548***<br>(0.015)<br>0.178**<br>(0.059)           | Per capita spent<br>- 3rd quartile<br>0.0372<br>(0.049)<br>0.0346***<br>(0.009)<br>0.115**<br>(0.036)           | Per capita spent<br>- 4th quartile<br>0.0893**<br>(0.033)<br>0.0268***<br>(0.006)<br>0.0577*<br>(0.025)           |  |  |  |  |  |  |  |
| Weekly mean NO2<br>Weekly mean O3<br>Weekly mean PM10<br>Observations | ty by postcode popul<br>Per capita spent<br>- 1st quartile<br>0.0851<br>(0.141)<br>0.0616<br>(0.034)<br>0.140<br>(0.101)<br>299052 | ation size quartile<br>Per capita spent<br>- 2nd quartile<br>0.0688<br>(0.081)<br>0.0548***<br>(0.015)<br>0.178**<br>(0.059)<br>302484 | Per capita spent<br>- 3rd quartile<br>0.0372<br>(0.049)<br>0.0346***<br>(0.009)<br>0.115**<br>(0.036)<br>304408 | Per capita spent<br>- 4th quartile<br>0.0893**<br>(0.033)<br>0.0268***<br>(0.006)<br>0.0577*<br>(0.025)<br>303628 |  |  |  |  |  |  |  |

| My research | Introduction  | Background    | Data | Method | Results | Effect heterogeneity | Extensions, sensitivity analyses | Concluding remarks |
|-------------|---------------|---------------|------|--------|---------|----------------------|----------------------------------|--------------------|
| Outline     | :             |               |      |        |         |                      |                                  |                    |
|             |               |               |      |        |         |                      |                                  |                    |
| My          | research      |               |      |        |         |                      |                                  |                    |
| Intr        | oduction      |               |      |        |         |                      |                                  |                    |
| Bac         | kground       |               |      |        |         |                      |                                  |                    |
| Dat         | а             |               |      |        |         |                      |                                  |                    |
| Me          | hod           |               |      |        |         |                      |                                  |                    |
| Res         | ults          |               |      |        |         |                      |                                  |                    |
| Effe        | ct heteroger  | neity         |      |        |         |                      |                                  |                    |
| Ext         | ensions, sens | sitivity anal | yses |        |         |                      |                                  |                    |
| Cor         | cluding rem   | arks          |      |        |         |                      |                                  |                    |

## **Effects on mortality**

|                      | OL                          | _S                      | I                     | V                     | IV                   | lasso                 |
|----------------------|-----------------------------|-------------------------|-----------------------|-----------------------|----------------------|-----------------------|
|                      |                             |                         | Sum of death          | ns in a week          |                      |                       |
| Weekly mean NO2      | 0.0000202<br>(0.000)        | 0.0000400<br>(0.000)    | -0.0000132<br>(0.000) | -0.000114<br>(0.000)  | 0.0000157<br>(0.000) | -0.000111<br>(0.000)  |
| Weekly mean O3       | 0.0000185<br>(0.000)        | 0.0000157<br>(0.000)    | 0.0000330<br>(0.000)  | 0.0000340<br>(0.000)  | 0.0000356<br>(0.000) | 0.0000373<br>(0.000)  |
| Weekly mean PM10     | $0.000131^{***}$<br>(0.000) | $0.000116^{**}$ (0.000) | 0.000106<br>(0.000)   | 0.000259*<br>(0.000)  | 0.0000977<br>(0.000) | 0.000264*<br>(0.000)  |
| Lag weekly mean NO2  |                             | -0.0000476<br>(0.000)   |                       | 0.00000354<br>(0.000) |                      | -0.0000262<br>(0.000) |
| Lag weekly mean O3   |                             | -0.0000106<br>(0.000)   |                       | 0.00000594<br>(0.000) |                      | 0.00000467<br>(0.000) |
| Lag weekly mean PM10 |                             | 0.00000994<br>(0.000)   |                       | -0.000106<br>(0.000)  |                      | -0.0000835<br>(0.000) |
| Observations         | 1209572                     | 1186311                 | 1209572               | 1186311               | 1209572              | 1186311               |

\*\*\*p < 0.001, \*\*p < 0.01, \*p < 0.05. Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

## Effects on sick leave payments

|                      | 0                                 | LS                                 | I                   | V                    | IV                  | lasso                |
|----------------------|-----------------------------------|------------------------------------|---------------------|----------------------|---------------------|----------------------|
|                      |                                   | Sum                                | of sick leave       | pay in a week        |                     |                      |
| Weekly mean NO2      | 0.00402<br>(0.002)                | 0.0109***<br>(0.002)               | 0.00896<br>(0.006)  | 0.0129*<br>(0.006)   | 0.00877<br>(0.006)  | 0.0142*<br>(0.006)   |
| Weekly mean O3       | 0.00238 <sup>***</sup><br>(0.001) | 0.00309***<br>(0.001)              | 0.00221*<br>(0.001) | 0.00179<br>(0.001)   | 0.00213<br>(0.001)  | 0.00177<br>(0.001)   |
| Weekly mean PM10     | -0.00355***<br>(0.001)            | -0.00578 <sup>***</sup><br>(0.001) | -0.00324<br>(0.004) | -0.00307<br>(0.004)  | -0.00303<br>(0.004) | -0.00402<br>(0.004)  |
| Lag weekly mean NO2  |                                   | -0.00446*<br>(0.002)               |                     | -0.0166**<br>(0.006) |                     | -0.0184**<br>(0.006) |
| Lag weekly mean O3   |                                   | 0.000474<br>(0.001)                |                     | 0.00244*<br>(0.001)  |                     | 0.00262*<br>(0.001)  |
| Lag weekly mean PM10 |                                   | 0.00236<br>(0.001)                 |                     | 0.0121**<br>(0.004)  |                     | 0.0141***<br>(0.004) |
| Observations         | 1209572                           | 1186311                            | 1209572             | 1186311              | 1209572             | 1186311              |

\*\*\*p < 0.001, \*\*p < 0.01, \*p < 0.05. Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

Method

Results

# Analysis at the level of the employment zone

# Effects robust to conducting the analysis at a more aggregate level



Figure: Division of France into 306 employment zones.

|                  | Sum of hea | lthcare spendi | ng a week |
|------------------|------------|----------------|-----------|
|                  | OLS        | IV             | IV lasso  |
| Weekly mean NO2  | 793.7***   | 520.9*         | 646.6*    |
|                  | (191.567)  | (240.411)      | (279.980) |
| Weekly mean O3   | 71.61***   | 45.08          | 48.47     |
|                  | (8.365)    | (39.424)       | (37.935)  |
| Weekly mean PM10 | -250.6**   | -115.9         | -149.3    |
|                  | (75.636)   | (206.098)      | (207.499) |
| Observations     | 59696      | 59696          | 59696     |

 $^{***}p < 0.001, \,^{**}p < 0.01, \,^*p < 0.05.$  Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

Method

Results

Effect heterogeneity

# Policy recommendation: Revision of limit values?



# WHO updated guidelines for NO2 from $40\mu g/m^3$ to $10\mu g/m^3$ . Average concentration in 2018 was 12.7. $\Rightarrow$ Compliance saves €1.35 billion per

year.

# Robustness to different fixed effect structures and weather controls

#### Robust to alternative specifications with different time FE structures and weather controls

- Robust to using simpler time FEs: month and year FE rather than month-by-department and month-by-year FE.
- Robust to excluding the vector of temperature and precipitation bins.
- Importance of including day-of-the-week FE: Exclusion leads to 3 times larger estimates.

# Robustness to different fixed effect structures and weather controls

#### Robust to alternative specifications with different time FE structures and weather controls

- Robust to using simpler time FEs: month and year FE rather than month-by-department and month-by-year FE.
- Robust to excluding the vector of temperature and precipitation bins.
- Importance of including day-of-the-week FE: Exclusion leads to 3 times larger estimates.

#### Robust to alternative first stage specifications

• Qualitatively similar results using different instruments.

| My research | Introduction | Background    | Data | Method | Results | Effect heterogeneity | Extensions, sensitivity analyses | Concluding remarks |
|-------------|--------------|---------------|------|--------|---------|----------------------|----------------------------------|--------------------|
| Outline     |              |               |      |        |         |                      |                                  |                    |
|             |              |               |      |        |         |                      |                                  |                    |
| Мут         | research     |               |      |        |         |                      |                                  |                    |
| Intro       | duction      |               |      |        |         |                      |                                  |                    |
| Back        | ground       |               |      |        |         |                      |                                  |                    |
| Data        | 1            |               |      |        |         |                      |                                  |                    |
| Met         | hod          |               |      |        |         |                      |                                  |                    |
| Resu        | Ilts         |               |      |        |         |                      |                                  |                    |
| Effec       | ct heteroge  | neity         |      |        |         |                      |                                  |                    |
| Exte        | nsions, sens | sitivity anal | yses |        |         |                      |                                  |                    |
| Cond        | cluding rem  | arks          |      |        |         |                      |                                  |                    |

## Discussion about the effect size

#### The estimate of the healthcare costs is large...

- Additional healthcare costs of  $\in 0.5$  billion per year for a 1  $\mu g/m^3$  (7%) increase in NO2.
- Large compared to previous studies: £98.5 ( $\in$ 117.25) million additional NHS spending per year for a 1  $\mu g/m^3$  increase in PM2.5 and NO2. (Pimpin et al., 2018)
- Large compared to costs of pollution reduction: Compliance with the NEC Directive costs €9.9 billion per year (Amann et al., 2017) but could save more than €5.2 billion of healthcare spending.

## Discussion about the effect size

#### The estimate of the healthcare costs is large...

- Additional healthcare costs of  $\in$ 0.5 billion per year for a 1  $\mu g/m^3$  (7%) increase in NO2.
- Large compared to previous studies: £98.5 ( $\in$ 117.25) million additional NHS spending per year for a 1  $\mu g/m^3$  increase in PM2.5 and NO2. (Pimpin et al., 2018)
- Large compared to costs of pollution reduction: Compliance with the NEC Directive costs €9.9 billion per year (Amann et al., 2017) but could save more than €5.2 billion of healthcare spending.

#### ...while still remaining conservative

- Assumption that the effects scale linearly but effects from chronic exposure are likely larger.
- No information on avoiding behaviours which could lead to underestimation.



#### Sizeable healthcare costs caused by acute exposure to moderate levels of air pollution

- Sizeable effects on healthcare costs caused by levels of air pollution at or below WHO standards.
- $\Rightarrow\,$  The healthcare costs caused by air pollution have been significantly underestimated.



#### Sizeable healthcare costs caused by acute exposure to moderate levels of air pollution

- Sizeable effects on healthcare costs caused by levels of air pollution at or below WHO standards.
- $\Rightarrow\,$  The healthcare costs caused by air pollution have been significantly underestimated.

#### Heterogeneity of effects reveals who is most vulnerable

- Chronically sick and populations living in big cities are most affected.
- Effects across all age categories.
- $\Rightarrow$  Air pollution reduction can reduce health inequalities.
- $\Rightarrow$  Populations thought to be less vulnerable are still affected.

# Correlations between NO2 and O3

#### Complex relationship between NO2 and O3

- For high VOC/NOx ratios (low NOx), the regime is NOx-limited (typically countryside): more NOx will result in more O3
- For low VOC/NOx ratios (high NOx), the regime is NOx-saturated or VOC-limited (typically urban areas): more NOx reduces O3. (Kroll et al., 2020; Brancher, 2021)
- Reduction in NO2 will translate to reduction in O3 in the longer term after transition from NOx-saturated to NOx-limited regime. (Lee et al., 2021)

Back to Background

# Summary statistics (1)

| Variable                         | Mean   | Std. Dev. | Min. | Max.      | Ν       |
|----------------------------------|--------|-----------|------|-----------|---------|
| Health care spending             |        |           |      |           |         |
| Total spent                      | 513.76 | 1415.4    | 0    | 351206.91 | 8835995 |
| Family GP                        | 172.56 | 508.53    | 0    | 71455.65  | 8836033 |
| Cardiology and vascular medicine | 7.25   | 50.75     | 0    | 37072.16  | 8836120 |
| Otorhinolaryngology              | 2.75   | 23.37     | 0    | 10190     | 8836122 |
| Pneumology                       | 3.24   | 50.18     | 0    | 15664.6   | 8836126 |
| Ophtalmology                     | 11.73  | 64.19     | 0    | 6871.2    | 8836120 |
| Neurology                        | 2.8    | 46.1      | 0    | 10373.22  | 8836127 |
| Trauma surgery                   | 5.13   | 55.31     | 0    | 14687.84  | 8836114 |
| Ambulance services               | 10.9   | 84.32     | 0    | 9434.66   | 8836112 |
| Gynecology                       | 6.15   | 41.46     | 0    | 6838.82   | 8836121 |
| Gastroenterology and hepatology  | 4.61   | 111.49    | 0    | 26010.53  | 8836126 |
| Rheumatology                     | 4.07   | 48.72     | 0    | 11414.56  | 8836127 |
| Stomatology                      | 0.83   | 23.83     | 0    | 23800     | 8836126 |
| Dental surgery                   | 39.44  | 233.53    | 0    | 33874.4   | 8836111 |
| Nephrology                       | 1.63   | 24.86     | 0    | 11234.26  | 8836127 |
| Plastic surgery                  | 0.74   | 27.69     | 0    | 6321.91   | 8836128 |

 Table: Summary statistics - pooled postcode-day observations, entire sample

Back to data

# Summary statistics (2)

| Variable                                   | Mean     | Std. Dev. | Min.  | Max.   | N       |
|--------------------------------------------|----------|-----------|-------|--------|---------|
| Pollution measures                         |          |           |       |        |         |
| NO2 emission (daily mean, $\mu g/m^3$ )    | 13.8     | 8.44      | 0.09  | 138.44 | 8761974 |
| PM 10 emission (daily mean, $\mu g/m^3)$   | 16.61    | 8.47      | 1.12  | 123.7  | 8761974 |
| PM 2.5 emission (daily mean, $\mu g/m^3$ ) | 10.58    | 7.44      | 0.32  | 104.97 | 8755985 |
| O3 emission (daily mean, $\mu g/m^3$ )     | 55.64    | 20.32     | 0     | 155.64 | 8761974 |
| Meteorological conditions                  |          |           |       |        |         |
| Temperature (daily mean, $^{\circ}$ C)     | 12.5     | 6.73      | -19.4 | 34.6   | 8836128 |
| Precipitation (daily sum, mm)              | 2.01     | 4.60      | 0     | 150.6  | 8836128 |
| Wind speed (daily mean at 10m, $m/s$ )     | 3.11     | 1.7       | 0     | 29.6   | 8836128 |
| Strike measures                            |          |           |       |        |         |
| Strike at postcode area level $= 1$        | 0        | 0.02      | 0     | 1      | 8836128 |
| Strike at department level $= 1$           | 0.04     | 0.19      | 0     | 1      | 8836128 |
| Strike at national level $= 1$             | 0.25     | 0.44      | 0     | 1      | 8836128 |
| Strike at any geographical level $= 1$     | 0.29     | 0.45      | 0     | 1      | 8836128 |
| Postcode characteristics                   |          |           |       |        |         |
| Income                                     | 22096.28 | 4050.53   | 7910  | 52670  | 8790837 |
| Unemployment rate                          | 2.88     | 0.73      | 1     | 7.5    | 5744652 |

Back to data

# Cyclicalities by weekday and month



# Cyclicalities by day-of-week and month-of-year



# Evolution of healthcare spending and average pollution concentrations over the years



# First stage

|                                     | Weekly mean NO2       | Weekly mean O3        | Weekly mean PM10      |
|-------------------------------------|-----------------------|-----------------------|-----------------------|
| Thermal inversion (nb. h per week)  | 0.176***              | 0.0126                | 0.347***              |
| · · · /                             | (0.009)               | (0.021)               | (0.012)               |
| TI 0-4 h (nb. h per week)           | 0.0953***             | 0.0124***             | 0.189***              |
|                                     | (0.002)               | (0.004)               | (0.004)               |
| TI 4-8 h (nb. h per week)           | -0.0416***            | 0.119***              | -0.0567***            |
|                                     | (0.002)               | (0.005)               | (0.004)               |
| TI 8-12 h (nb. h per week)          | -0.0759***            | -0.425***             | -0.0397***            |
|                                     | (0.005)               | (0.010)               | (0.006)               |
| TI 12-16 h (nb. h per week)         | 0.201***              | -0.663***             | 0.319***              |
|                                     | (0.007)               | (0.019)               | (0.009)               |
| TI 16-20 h (nb. h per week)         | 0.0764***             | -0.282***             | 0.155***              |
|                                     | (0.006)               | (0.014)               | (0.008)               |
| TI 20-24 h (nb. h per week)         | 0.0630***             | 0.163***              | 0.0142***             |
|                                     | (0.002)               | (0.006)               | (0.004)               |
| TI strength 0-4 h (diff degree C)   | 1.445***              | -0.225**              | 0.0965*               |
| ,                                   | (0.034)               | (0.072)               | (0.047)               |
| TI strength 4-8 h (diff degree C)   | -0.842* <sup>**</sup> | -1.500***             | 0.641***              |
| ,                                   | (0.032)               | (0.066)               | (0.036)               |
| TI strength 8-12 h (diff degree C)  | -1.222***             | 1.657***              | -1.571***             |
|                                     | (0.045)               | (0.104)               | (0.043)               |
| TI strength 12-16 h (diff degree C) | 1.905***              | -6.413***             | 3.612***              |
|                                     | (0.050)               | (0.133)               | (0.069)               |
| TI strength 16-20 h (diff degree C) | -0.138 <sup>*</sup>   | -1.503* <sup>**</sup> | -0.776* <sup>**</sup> |
|                                     | (0.061)               | (0.153)               | (0.080)               |
| TI strength 20-24 h (diff degree C) | 0.765***              | 0.455***              | 1.084***              |
|                                     | (0.034)               | (0.073)               | (0.046)               |

# First stage continued

|                                        | Weekly mean NO2         | Weekly mean O3          | Weekly mean PM10        |
|----------------------------------------|-------------------------|-------------------------|-------------------------|
| PBLH 0-4 h (m)                         | 0.0000389               | 0.0114***               | -0.00636***             |
|                                        | (0.000)                 | (0.000)                 | (0.000)                 |
| PBLH 4-8 h (m)                         | -0.00327 <sup>***</sup> | -0.00595 <sup>***</sup> | 0.00115***              |
|                                        | (0.000)                 | (0.000)                 | (0.000)                 |
| PBLH 8-12 h (m)                        | -0.00284 <sup>***</sup> | 0.00266*´**             | -0.00370 <sup>***</sup> |
|                                        | (0.000)                 | (0.000)                 | (0.000)                 |
| PBLH 12-16 h (m)                       | 0.00108***              | 0.0192***               | -0.000876***            |
|                                        | (0.000)                 | (0.000)                 | (0.000)                 |
| PBLH 16-20 h (m)                       | -0.00254***             | -0.00219 <sup>***</sup> | 0.000179**              |
|                                        | (0.000)                 | (0.000)                 | (0.000)                 |
| PBLH 20-24 h (m)                       | -0.00420 <sup>***</sup> | 0.00310*´**             | 0.00263****             |
|                                        | (0.000)                 | (0.000)                 | (0.000)                 |
| Wind speed at 350 hPa (m/s)            | 0.0608***               | -0.638***               | -0.212***               |
| ······ • • • • • • • • • • • • • • • • | (0.005)                 | (0.013)                 | (0.008)                 |
| Wind speed at 400 hPa (m/s)            | -0.254***               | 0.997***                | -0.0726***              |
|                                        | (0.012)                 | (0.031)                 | (0.019)                 |
| Wind speed at 450 hPa (m/s)            | 0.182****               | -1.117* <sup>**</sup> * | 0.217***                |
|                                        | (0.016)                 | (0.041)                 | (0.027)                 |
| Wind speed at 500 hPa (m/s)            | 0.0279                  | 1.713***                | 0.0238                  |
|                                        | (0.018)                 | (0.055)                 | (0.027)                 |

Back to main results

## First stage continued

|                             | Weekly mean NO2         | Weekly mean O3         | Weekly mean PM10      |
|-----------------------------|-------------------------|------------------------|-----------------------|
| Wind speed at 550 hPa (m/s) | 0.122***                | -1.852***              | 0.150***              |
|                             | (0.019)                 | (0.061)                | (0.032)               |
| Wind speed at 600 hPa (m/s) | -0.00984                | 1.520***               | 0.0843*               |
|                             | (0.023)                 | (0.061)                | (0.039)               |
| Wind speed at 650 hPa (m/s) | -0.738***               | -0.526***              | -1.193***             |
|                             | (0.025)                 | (0.068)                | (0.045)               |
| Wind speed at 700 hPa (m/s) | 0.774***                | Ò.168*́                | 1.244***              |
|                             | (0.025)                 | (0.071)                | (0.045)               |
| Wind speed at 750 hPa (m/s) | -0.166* <sup>**</sup> * | -1.422****             | -0.651* <sup>**</sup> |
|                             | (0.028)                 | (0.076)                | (0.050)               |
| Wind speed at 800 hPa (m/s) | -0.965***               | 2.390***               | -0.0596               |
|                             | (0.054)                 | (0.149)                | (0.114)               |
| Wind speed at 825 hPa (m/s) | 1.285***                | -3.477***              | 0.288*                |
|                             | (0.063)                 | (0.180)                | (0.142)               |
| Wind speed at 850 hPa (m/s) | -0.309***               | 2.437***               | -0.0563               |
|                             | (0.028)                 | (0.079)                | (0.064)               |
| Constant                    | 13.79***                | 65.18** <sup>*</sup> * | 18.48* * *            |
|                             | (0.127)                 | (0.305)                | (0.169)               |
| Observations                | 1209572                 | 1209572                | 1209572               |

 $^{***}p<0.001,\,^{**}p<0.01,\,^*p<0.05.$  Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

Back to main results

# First stage lasso selected instruments

|                                        | Weekly mean NO2 | Weekly mean O3 | Weekly mean PM10 |
|----------------------------------------|-----------------|----------------|------------------|
| Thermal inversion (nb. h per week)     | 0.294***        |                | 0.339***         |
| • • •                                  | (0.009)         |                | (0.012)          |
| TI 0-4 h (nb. h per week)              | 0.0809***       | 0.00256        | 0.186***         |
|                                        | (0.002)         | (0.004)        | (0.003)          |
| TI 4-8 h (nb. h per week)              | 0.00956***      | 0.160***       | -0.0548***       |
|                                        | (0.002)         | (0.005)        | (0.003)          |
| TI 8-12 h (nb. h per week)             | -0.0309***      | -0.607***      | -0.0488***       |
| ,                                      | (0.005)         | (0.010)        | (0.006)          |
| TI 12-16 h (nb. h per week)            |                 | -0.658***      | 0.278***         |
|                                        |                 | (0.020)        | (0.009)          |
| TI 16-20 h (nb. h per week)            |                 | -0.190***      | 0.208****        |
|                                        |                 | (0.014)        | (0.006)          |
| TI 20-24 h (nb. h per week)            | 0.0227***       | 0.157***       |                  |
|                                        | (0.002)         | (0.005)        |                  |
| TI strength 0-4 h (diff degree C)      | 1.019***        | -0.419***      |                  |
|                                        | (0.021)         | (0.068)        |                  |
| TI strength 4-8 h (diff degree C)      |                 | -0.894***      | 0.767***         |
|                                        |                 | (0.058)        | (0.026)          |
| TI strength 8-12 h (diff degree C)     | -1.078***       | ()             | -1.756***        |
| (*****)                                | (0.048)         |                | (0.043)          |
| TI strength 12-16 h (diff degree C)    | 0.882***        | -6.229***      | 3.266***         |
|                                        | (0.026)         | (0.114)        | (0.060)          |
| TI strength 20-24 h (diff degree C)    | ()              | ( )            | 0.793***         |
| ······································ |                 |                | (0.021)          |

Back to main results

## First stage lasso selected instruments continued

|                             | Weekly mean NO2 | Weekly mean O3 | Weekly mean PM10 |
|-----------------------------|-----------------|----------------|------------------|
| PBLH 0-4 h (m)              |                 | 0.0120***      | -0.00535***      |
|                             |                 | (0.000)        | (0.000)          |
| PBLH 4-8 h (m)              | -0.00369***     | -0.00626***    |                  |
|                             | (0.000)         | (0.000)        | 0.00017***       |
| PBLH 8-12 h (m)             | -0.00196***     | 0.00249***     | -0.00317***      |
|                             | (0.000)         | (0.000)        | (0.000)          |
| PBLH 12-16 h (m)            |                 | 0.0182***      | -0.000915****    |
|                             | 0.00156***      | (0.000)        | (0.000)          |
| PBLH 16-20 h (m)            | -0.00156        |                |                  |
| BBI U 20 24 h (m)           | (0.000)         | 0.00160***     | 0.00065***       |
| PBLH 20-24 h (m)            | -0.00433        | 0.00108        | 0.00265          |
|                             | (0.000)         | (0.000)        | (0.000)          |
| Wind speed at 350 hPa (m/s) | -0.0156***      | -0.257***      | -0.117***        |
|                             | (0.001)         | (0.003)        | (0.002)          |
| Wind speed at 500 hPa (m/s) | ( )             | 0.391***       |                  |
|                             |                 | (0.006)        |                  |
| Wind speed at 650 hPa (m/s) | -0.126***       | . ,            | -0.143***        |
|                             | (0.002)         |                | (0.003)          |
| Wind speed at 750 hPa (m/s) |                 | -0.863***      |                  |
|                             |                 | (0.015)        |                  |
| Wind speed at 850 hPa (m/s) | 0.144***        | 0.879***       |                  |
|                             | (0.006)         | (0.021)        |                  |
| Observations                | 1209572         | 1209572        | 1209572          |

 $^{***}p < 0.001$ ,  $^{**}p < 0.01$ ,  $^*p < 0.05$ . Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

# OLS results by medical specialty

|                  | General med.         | O.R.L.                          | Ophtalmo.            | Stoma.              | Chir. den.           | Cardio-vasc.        | Pneumology           |                     |
|------------------|----------------------|---------------------------------|----------------------|---------------------|----------------------|---------------------|----------------------|---------------------|
| Weekly mean NO2  | 10.15***<br>(0.660)  | 0.365***<br>(0.038)             | 1.194***<br>(0.110)  | 0.121***<br>(0.033) | 5.159***<br>(0.410)  | 0.849***<br>(0.102) | 0.0499<br>(0.071)    |                     |
| Weekly mean O3   | 0.752***<br>(0.121)  | 0.0351***<br>(0.008)            | 0.108***<br>(0.021)  | -0.00289<br>(0.007) | 0.233**<br>(0.073)   | 0.0422*<br>(0.019)  | 0.0268<br>(0.016)    |                     |
| Weekly mean PM10 | -2.954***<br>(0.315) | -0.0879***<br>(0.018)           | -0.200***<br>(0.048) | -0.0477*<br>(0.019) | -0.943***<br>(0.176) | -0.162**<br>(0.050) | 0.0478<br>(0.039)    |                     |
|                  | Neurology            | Gyneco.                         | Ambulance            | Gastro. hep.        | Rhuma.               | Nephrology          | Chir. trauma         | Chir. plas.         |
| Weekly mean NO2  | 0.204**<br>(0.063)   | 0.558 <sup>***</sup><br>(0.074) | 0.978***<br>(0.132)  | 0.403**<br>(0.152)  | 0.399***<br>(0.058)  | 0.0341<br>(0.046)   | 0.700***<br>(0.090)  | 0.180***<br>(0.050) |
| Weekly mean O3   | 0.00658<br>(0.013)   | 0.0169<br>(0.014)               | 0.122***<br>(0.026)  | 0.0981<br>(0.056)   | 0.0229<br>(0.014)    | 0.0217**<br>(0.008) | 0.0847***<br>(0.020) | 0.0137<br>(0.009)   |
| Weekly mean PM10 | -0.0583*<br>(0.029)  | -0.0999**<br>(0.034)            | -0.460***<br>(0.066) | -0.0744<br>(0.082)  | -0.0863**<br>(0.032) | -0.0461*<br>(0.023) | -0.151**<br>(0.047)  | -0.0156<br>(0.023)  |
| Observations     | 1209572              | 1209572                         | 1209572              | 1209572             | 1209572              | 1209572             | 1209572              | 1209572             |

 $^{***}p < 0.001, ^{**}p < 0.01, ^{*}p < 0.05$ . Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.
## OLS results by medical specialty

|                      | General med.         | O.R.L.                 | Ophtalmo. | Stoma.   | Chir. den.            | Cardio-vasc. | Pneumology |
|----------------------|----------------------|------------------------|-----------|----------|-----------------------|--------------|------------|
| Weekly mean NO2      | 8.967***             | 0.334***               | 1.196***  | 0.0833*  | 4.239***              | 0.751***     | 0.0740     |
|                      | (0.610)              | (0.040)                | (0.109)   | (0.038)  | (0.410)               | (0.104)      | (0.072)    |
| Weekly mean O3       | 0.989 <sup>***</sup> | 0.0372***              | 0.117***  | -0.00192 | 0.119                 | 0.0407*      | 0.0295     |
|                      | (0.121)              | (0.008)                | (0.021)   | (0.008)  | (0.077)               | (0.020)      | (0.017)    |
| Weekly mean PM10     | -2.800***            | -0.0847 <sup>***</sup> | -0.181*** | -0.0451* | -0.771 <sup>***</sup> | -0.133*      | 0.0476     |
|                      | (0.351)              | (0.018)                | (0.049)   | (0.020)  | (0.188)               | (0.052)      | (0.038)    |
| Lag weekly mean NO2  | 2.518 <sup>***</sup> | 0.139**                | 0.341**   | 0.105*   | 2.907***              | 0.297**      | -0.126     |
|                      | (0.584)              | (0.044)                | (0.113)   | (0.043)  | (0.418)               | (0.100)      | (0.074)    |
| Lag weekly mean O3   | -0.554***            | 0.00467                | 0.0376    | 0.000322 | 0.368***              | 0.0377*      | -0.0217    |
|                      | (0.133)              | (0.008)                | (0.024)   | (0.009)  | (0.083)               | (0.019)      | (0.019)    |
| Lag weekly mean PM10 | -0.675*              | -0.0447*               | -0.224*** | -0.0311  | -1.102***             | -0.127**     | 0.0143     |
|                      | (0.302)              | (0.020)                | (0.049)   | (0.020)  | (0.179)               | (0.044)      | (0.034)    |
| Observations         | 1186311              | 1186311                | 1186311   | 1186311  | 1186311               | 1186311      | 1186311    |

 $^{***}p < 0.001, ^{**}p < 0.01, ^{*}p < 0.05$ . Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

Back to IV results by medical specialty

## OLS results by medical specialty - sanity check continued

|                      | Neurology | Gyneco.   | Ambulance             | Gastro. hep. | Rhuma.               | Nephrology | Chir. trauma | Chir. plas. |
|----------------------|-----------|-----------|-----------------------|--------------|----------------------|------------|--------------|-------------|
| Weekly mean NO2      | 0.270***  | 0.492***  | 1.031***              | 0.399*       | 0.356 <sup>***</sup> | 0.0416     | 0.643***     | 0.177***    |
|                      | (0.073)   | (0.071)   | (0.134)               | (0.158)      | (0.062)              | (0.044)    | (0.092)      | (0.053)     |
| Weekly mean O3       | 0.00434   | 0.0200    | 0.188 <sup>***</sup>  | 0.101        | 0.0262               | 0.0278**   | 0.0785***    | 0.0209*     |
|                      | (0.015)   | (0.015)   | (0.027)               | (0.064)      | (0.016)              | (0.008)    | (0.021)      | (0.010)     |
| Weekly mean PM10     | -0.0820*  | -0.0701*  | -0.483 <sup>***</sup> | -0.0886      | -0.0803*             | -0.0380    | -0.123*      | -0.0166     |
|                      | (0.034)   | (0.035)   | (0.068)               | (0.089)      | (0.034)              | (0.023)    | (0.048)      | (0.024)     |
| Lag weekly mean NO2  | -0.157*   | 0.302***  | 0.0387                | 0.198        | 0.143*               | -0.0227    | 0.222*       | 0.0632      |
|                      | (0.062)   | (0.091)   | (0.111)               | (0.148)      | (0.066)              | (0.044)    | (0.091)      | (0.048)     |
| Lag weekly mean O3   | -0.00281  | 0.00346   | -0.00559              | 0.00507      | -0.00419             | -0.00500   | 0.0340       | -0.0165     |
|                      | (0.017)   | (0.015)   | (0.029)               | (0.038)      | (0.016)              | (0.009)    | (0.020)      | (0.010)     |
| Lag weekly mean PM10 | 0.0719*   | -0.167*** | -0.00932              | -0.0241      | -0.0465              | -0.0159    | -0.0629      | -0.0476*    |
|                      | (0.034)   | (0.039)   | (0.059)               | (0.085)      | (0.042)              | (0.021)    | (0.046)      | (0.023)     |
| Observations         | 1186311   | 1186311   | 1186311               | 1186311      | 1186311              | 1186311    | 1186311      | 1186311     |

 $^{***}p < 0.001$ ,  $^{**}p < 0.01$ ,  $^{*}p < 0.05$ . Robust standard errors clustered at the postcode level in parenthesis. All models include weather dummies, month, year and postcode fixed effects.

Back to IV results by medical specialty