Consumer Bankruptcy: the Role of Financial Frictions

Tsung-Hsien Li
Institute of Economics, Academia Sinica (IEAS)

EEA-ESEM

August 30, 2023

Introduction

Introduction

Motivation

Introduction

Motivation
■ Importance of consumer credit markets

Introduction

Motivation

■ Importance of consumer credit markets
■ Bankruptcy policy debate: Smoothing across states and over time

Introduction

Motivation

- Importance of consumer credit markets

■ Bankruptcy policy debate: Smoothing across states and over time
■ Focusing on (lots of) HH heterogeneity

Introduction

Motivation

■ Importance of consumer credit markets
■ Bankruptcy policy debate: Smoothing across states and over time
■ Focusing on (lots of) HH heterogeneity
■ Frictional liquidity provision? Financial Frictions (FFs)

Introduction

Motivation

- Importance of consumer credit markets

■ Bankruptcy policy debate: Smoothing across states and over time
■ Focusing on (lots of) HH heterogeneity
■ Frictional liquidity provision? Financial Frictions (FFs)

Research Questions

Introduction

Motivation

■ Importance of consumer credit markets
■ Bankruptcy policy debate: Smoothing across states and over time

- Focusing on (lots of) HH heterogeneity

■ Frictional liquidity provision? Financial Frictions (FFs)

Research Questions

■ How do FFs affect HH borrowing and default behavior?

Introduction

Motivation

■ Importance of consumer credit markets
■ Bankruptcy policy debate: Smoothing across states and over time
■ Focusing on (lots of) HH heterogeneity
■ Frictional liquidity provision? Financial Frictions (FFs)

Research Questions

- How do FFs affect HH borrowing and default behavior?
- Through what channels and to what extent do FFs shape the welfare implication of a consumer bankruptcy law?

This Paper

This Paper

Quantitative Theory

This Paper

Quantitative Theory
■ Build an Aiyagari-type model with consumer default and an endogenous banking leverage constraint (GK-type FFs)

This Paper

Quantitative Theory

■ Build an Aiyagari-type model with consumer default and an endogenous banking leverage constraint (GK-type FFs)
■ Use calibrated model to understand consumer credit with FFs

This Paper

Quantitative Theory

■ Build an Aiyagari-type model with consumer default and an endogenous banking leverage constraint (GK-type FFs)
■ Use calibrated model to understand consumer credit with FFs
■ Policy results: wage garnishment, borrowing exclusion, degree of FFs

This Paper

Quantitative Theory

■ Build an Aiyagari-type model with consumer default and an endogenous banking leverage constraint (GK-type FFs)
■ Use calibrated model to understand consumer credit with FFs
■ Policy results: wage garnishment, borrowing exclusion, degree of FFs

Key Findings

This Paper

Quantitative Theory

- Build an Aiyagari-type model with consumer default and an endogenous banking leverage constraint (GK-type FFs)
■ Use calibrated model to understand consumer credit with FFs
■ Policy results: wage garnishment, borrowing exclusion, degree of FFs

Key Findings

■ Borrowing premium $=$ Default premium + Incentive premium

This Paper

Quantitative Theory

■ Build an Aiyagari-type model with consumer default and an endogenous banking leverage constraint (GK-type FFs)
■ Use calibrated model to understand consumer credit with FFs
■ Policy results: wage garnishment, borrowing exclusion, degree of FFs

Key Findings

■ Borrowing premium $=$ Default premium + Incentive premium

- Effects of bankruptcy strictness interacts with FFs

This Paper

Quantitative Theory

- Build an Aiyagari-type model with consumer default and an endogenous banking leverage constraint (GK-type FFs)
- Use calibrated model to understand consumer credit with FFs
- Policy results: wage garnishment, borrowing exclusion, degree of FFs

Key Findings

- Borrowing premium $=$ Default premium + Incentive premium
- Effects of bankruptcy strictness interacts with FFs
- Bankruptcy strictness mitigates the negative effects of FFs

This Paper

Quantitative Theory

- Build an Aiyagari-type model with consumer default and an endogenous banking leverage constraint (GK-type FFs)
- Use calibrated model to understand consumer credit with FFs
- Policy results: wage garnishment, borrowing exclusion, degree of FFs

Key Findings

- Borrowing premium $=$ Default premium + Incentive premium
- Effects of bankruptcy strictness interacts with FFs
- Bankruptcy strictness mitigates the negative effects of FFs

Model Environment

Model Environment

- Discrete-time and incomplete market

Model Environment

- Discrete-time and incomplete market
- Fixed risk-free rate (small open economy)

Model Environment

- Discrete-time and incomplete market
- Fixed risk-free rate (small open economy)
- Production economy with idiosyncratic labor productivity

Model Environment

- Discrete-time and incomplete market
- Fixed risk-free rate (small open economy)
- Production economy with idiosyncratic labor productivity

■ Households, firms, banks

Model Environment

- Discrete-time and incomplete market
- Fixed risk-free rate (small open economy)
- Production economy with idiosyncratic labor productivity

■ Households, firms, banks
■ HHs: Defaulting on debts v.s. garnishment/borrowing exclusion

Model Environment

- Discrete-time and incomplete market
- Fixed risk-free rate (small open economy)
- Production economy with idiosyncratic labor productivity
- Households, firms, banks

■ HHs: Defaulting on debts v.s. garnishment/borrowing exclusion
■ Firms: Borrow to invest capital, otherwise standard

Model Environment

■ Discrete-time and incomplete market

- Fixed risk-free rate (small open economy)

■ Production economy with idiosyncratic labor productivity
■ Households, firms, banks
■ HHs: Defaulting on debts v.s. garnishment/borrowing exclusion
■ Firms: Borrow to invest capital, otherwise standard
■ Banks: Agency problem with depositors (i.e., HH savers)

Households

Households

- Infinitely-lived with survival rate ρ, risk-averse, and consume \boldsymbol{c}

Households

- Infinitely-lived with survival rate ρ, risk-averse, and consume \boldsymbol{c}
- Two types of idiosyncratic shocks (e, v):

Households

- Infinitely-lived with survival rate ρ, risk-averse, and consume \boldsymbol{c}

■ Two types of idiosyncratic shocks (e, v):

- Supply labor inelastically $w \exp (e)$

Households

- Infinitely-lived with survival rate ρ, risk-averse, and consume \boldsymbol{c}

■ Two types of idiosyncratic shocks (e, v):

- Supply labor inelastically $w \exp (e)$
- Have bank assets \boldsymbol{a}, credit history $\boldsymbol{h} \in\{0,1\}$

Households

- Infinitely-lived with survival rate ρ, risk-averse, and consume \boldsymbol{c}

■ Two types of idiosyncratic shocks (e, v):

- Supply labor inelastically $w \exp (e)$

■ Have bank assets \boldsymbol{a}, credit history $\boldsymbol{h} \in\{\mathbf{0 , 1 \}}$

- If $h=0$ (good):

Households

- Infinitely-lived with survival rate ρ, risk-averse, and consume \boldsymbol{c}
- Two types of idiosyncratic shocks (e, v) :
- Supply labor inelastically $w \exp (e)$

■ Have bank assets \boldsymbol{a}, credit history $\boldsymbol{h} \in\{\mathbf{0 , 1}\}$

- If $h=0$ (good):
- Repay: save/borrow a^{\prime} at $q\left(a^{\prime}, e\right)$, history remains good $h^{\prime}=0$

Households

- Infinitely-lived with survival rate ρ, risk-averse, and consume \boldsymbol{c}
- Two types of idiosyncratic shocks (e, v):
- Supply labor inelastically $w \exp (e)$

■ Have bank assets \boldsymbol{a}, credit history $\boldsymbol{h} \in\{\mathbf{0}, \mathbf{1}\}$

- If $h=0$ (good):
- Repay: save/borrow a^{\prime} at $q\left(a^{\prime}, e\right)$, history remains good $h^{\prime}=0$
- Default: debt discharge $a=0$, garnishment $(1-\boldsymbol{\eta}) w \exp (e)$, neither saving nor borrowing $a^{\prime}=0$, history turns bad $h^{\prime}=1$

Households

■ Infinitely-lived with survival rate ρ, risk-averse, and consume \boldsymbol{c}
■ Two types of idiosyncratic shocks (e, v):

- Supply labor inelastically $w \exp (e)$

■ Have bank assets \boldsymbol{a}, credit history $\boldsymbol{h} \in\{\mathbf{0}, \mathbf{1}\}$

- If $h=0$ (good):
- Repay: save/borrow a^{\prime} at $q\left(a^{\prime}, e\right)$, history remains good $h^{\prime}=0$
- Default: debt discharge $a=0$, garnishment $(1-\boldsymbol{\eta}) w \exp (e)$, neither saving nor borrowing $a^{\prime}=0$, history turns bad $h^{\prime}=1$
■ If $h=1$ (bad), borrowing exclusion but may turn good $h^{\prime}=0$ at $\mathbb{P}_{\boldsymbol{h}}$

Households

- Infinitely-lived with survival rate ρ, risk-averse, and consume \boldsymbol{c}

■ Two types of idiosyncratic shocks (e, v):

- Supply labor inelastically $w \exp (e)$

■ Have bank assets \boldsymbol{a}, credit history $\boldsymbol{h} \in\{\mathbf{0}, \mathbf{1}\}$

- If $h=0$ (good):
- Repay: save/borrow a^{\prime} at $q\left(a^{\prime}, e\right)$, history remains good $h^{\prime}=0$
- Default: debt discharge $a=0$, garnishment $(1-\boldsymbol{\eta}) w \exp (e)$, neither saving nor borrowing $a^{\prime}=0$, history turns bad $h^{\prime}=1$
■ If $h=1$ (bad), borrowing exclusion but may turn good $h^{\prime}=0$ at $\mathbb{P}_{\boldsymbol{h}}$

Firms

Firms

- Homogeneous goods with Cobb-Douglas production technology:

$$
F(K, E)=K^{\alpha} E^{1-\alpha}
$$

Firms

- Homogeneous goods with Cobb-Douglas production technology:

$$
F(K, E)=K^{\alpha} E^{1-\alpha}
$$

- Capital investment is financed by undefaultable bank loans

Firms

- Homogeneous goods with Cobb-Douglas production technology:

$$
F(K, E)=K^{\alpha} E^{1-\alpha}
$$

■ Capital investment is financed by undefaultable bank loans

- Gross rates of return on physical capital and labor:

$$
\begin{aligned}
1+r_{k} & =F_{K}(K, E)+(1-\delta) \\
w & =F_{E}(K, E)
\end{aligned}
$$

Banks

Banks

- Fixed risk-free rate r_{f} (SOE)

Banks

- Fixed risk-free rate r_{f} (SOE)
- Perfect competition, risk-neutrality, full information of HHs' type, owned by foreign investors, may exit at $1-\psi$

Banks

- Fixed risk-free rate r_{f} (SOE)
- Perfect competition, risk-neutrality, full information of HHs' type, owned by foreign investors, may exit at $1-\psi$
- Maximize the sum of discounted future dividends

Banks

- Fixed risk-free rate r_{f} (SOE)
- Perfect competition, risk-neutrality, full information of HHs' type, owned by foreign investors, may exit at $1-\psi$
- Maximize the sum of discounted future dividends
- Lend to firms K^{\prime} and issue one-period defaultable unsecured loans to HHs L^{\prime} using net worth N and deposits D^{\prime}

Banks

■ Fixed risk-free rate r_{f} (SOE)
■ Perfect competition, risk-neutrality, full information of HHs' type, owned by foreign investors, may exit at $1-\psi$
■ Maximize the sum of discounted future dividends
■ Lend to firms K^{\prime} and issue one-period defaultable unsecured loans to HHs L^{\prime} using net worth N and deposits D^{\prime}
■ Could divert a fraction θ of assets after determining K^{\prime} and L^{\prime}, and then sell them in a secondary market: $W(N) \geq \theta \cdot\left(K^{\prime}+L^{\prime}\right)$

Banks

- Fixed risk-free rate r_{f} (SOE)
- Perfect competition, risk-neutrality, full information of HHs' type, owned by foreign investors, may exit at $1-\psi$
- Maximize the sum of discounted future dividends
- Lend to firms K^{\prime} and issue one-period defaultable unsecured loans to HHs L^{\prime} using net worth N and deposits D^{\prime}
- Could divert a fraction θ of assets after determining K^{\prime} and L^{\prime}, and then sell them in a secondary market: $W(N) \geq \theta \cdot\left(K^{\prime}+L^{\prime}\right)$

Calibration Strategy

Calibration Strategy

- Model period is a year

Calibration Strategy

- Model period is a year

■ U.S. households in 2004 (avoid the 2005 bankruptcy reform)

Calibration Strategy

- Model period is a year

■ U.S. households in 2004 (avoid the 2005 bankruptcy reform)

- Two sets of parameters

Calibration Strategy

- Model period is a year
- U.S. households in 2004 (avoid the 2005 bankruptcy reform)
- Two sets of parameters
- Exogenously calibrated
- Standard values or direct empirical evidence
- Earnings processes from Storesletten et al. (2004)

Calibration Strategy

- Model period is a year
- U.S. households in 2004 (avoid the 2005 bankruptcy reform)
- Two sets of parameters
- Exogenously calibrated
- Standard values or direct empirical evidence
- Earnings processes from Storesletten et al. (2004)
- Internally calibrated to match default rate, banking leverage ratio

Calibration Strategy

- Model period is a year

■ U.S. households in 2004 (avoid the 2005 bankruptcy reform)

- Two sets of parameters
- Exogenously calibrated
- Standard values or direct empirical evidence
- Earnings processes from Storesletten et al. (2004)
- Internally calibrated to match default rate, banking leverage ratio

■ Untargeted Moments Aligned with Data: HH debts, borrowing rate

Calibration Strategy

- Model period is a year

■ U.S. households in 2004 (avoid the 2005 bankruptcy reform)

- Two sets of parameters
- Exogenously calibrated
- Standard values or direct empirical evidence
- Earnings processes from Storesletten et al. (2004)
- Internally calibrated to match default rate, banking leverage ratio

■ Untargeted Moments Aligned with Data: HH debts, borrowing rate

Consumer Credit with Financial Frictions

Two Channels due to Financial Frictions

Two Channels due to Financial Frictions

- Incentive constraint:

$$
W(N) \geq \theta \cdot\left(K^{\prime}+L^{\prime}\right) \rightarrow \frac{\xi}{\theta} \geq \frac{K^{\prime}+L^{\prime}}{N} \equiv L R
$$

where $W(N)=\xi \cdot N$

Two Channels due to Financial Frictions

- Incentive constraint:

$$
W(N) \geq \theta \cdot\left(K^{\prime}+L^{\prime}\right) \rightarrow \frac{\xi}{\theta} \geq \frac{K^{\prime}+L^{\prime}}{N} \equiv L R
$$

where $W(N)=\xi \cdot N$

- Incentive channel:

Two Channels due to Financial Frictions

- Incentive constraint:

$$
W(N) \geq \theta \cdot\left(K^{\prime}+L^{\prime}\right) \rightarrow \frac{\xi}{\theta} \geq \frac{K^{\prime}+L^{\prime}}{N} \equiv L R
$$

where $W(N)=\xi \cdot N$

- Incentive channel:

If binding, incentive premium $>0 \rightarrow$ Borrowing costs \uparrow

Two Channels due to Financial Frictions

- Incentive constraint:

$$
W(N) \geq \theta \cdot\left(K^{\prime}+L^{\prime}\right) \rightarrow \frac{\xi}{\theta} \geq \frac{K^{\prime}+L^{\prime}}{N} \equiv L R
$$

where $W(N)=\xi \cdot N$

- Incentive channel:

If binding, incentive premium $>0 \rightarrow$ Borrowing costs \uparrow

- Divestment channel:

Two Channels due to Financial Frictions

■ Incentive constraint:

$$
W(N) \geq \theta \cdot\left(K^{\prime}+L^{\prime}\right) \rightarrow \frac{\xi}{\theta} \geq \frac{K^{\prime}+L^{\prime}}{N} \equiv L R
$$

where $W(N)=\xi \cdot N$

- Incentive channel:

If binding, incentive premium $>0 \rightarrow$ Borrowing costs \uparrow
■ Divestment channel:
Reduced loans to firms \rightarrow lower capital, production, wages

Benchmark vs. Frictionless Economy $(\theta=0)$

Benchmark vs. Frictionless Economy $(\theta=0)$

Variable Benchmark Frictionless B - F

Benchmark vs. Frictionless Economy $(\theta=0)$

Variable	Benchmark	Frictionless	B - F
Incentive channel			
Incentive premium (\%)	0.6264	0.0000	0.6264

Benchmark vs. Frictionless Economy $(\theta=0)$

Variable	Benchmark	Frictionless	B - F
Incentive channel			
Incentive premium (\%)	0.6264	0.0000	0.6264
Avg. borrowing interest rate (\%)	12.1829	10.6505	1.5324

Benchmark vs. Frictionless Economy $(\theta=0)$

Variable	Benchmark	Frictionless	B - F
Incentive channel			
Incentive premium (\%)	0.6264	0.0000	0.6264
Avg. borrowing interest rate (\%)	12.1829	10.6505	1.5324
Conditional default rate (\%)	7.0445	6.0182	1.0263

Benchmark vs. Frictionless Economy $(\theta=0)$

Variable	Benchmark	Frictionless	B - F
Incentive channel			
Incentive premium (\%)	0.6264	0.0000	0.6264
Avg. borrowing interest rate (\%)	12.1829	10.6505	1.5324
Conditional default rate (\%)	7.0445	6.0182	1.0263
Fraction of HHs in debt (\%)	8.6335	9.0770	-0.4435
Debt-to-earnings ratio (\%)	1.8748	1.9551	-0.0803

Benchmark vs. Frictionless Economy $(\theta=0)$

Variable	Benchmark	Frictionless	B - F

Incentive channel			
Incentive premium (\%)	0.6264	0.0000	0.6264
Avg. borrowing interest rate (\%)	12.1829	10.6505	1.5324
Conditional default rate (\%)	7.0445	6.0182	1.0263
Fraction of HHs in debt (\%)	8.6335	9.0770	-0.4435
Debt-to-earnings ratio (\%)	1.8748	1.9551	-0.0803
Divestment channel			
GDP	1.8028	1.8552	-0.0524
Wage	1.1538	1.1873	-0.0335

Benchmark vs. Frictionless Economy $(\theta=0)$

Variable	Benchmark	Frictionless	B - F

Incentive channel			
Incentive premium (\%)	0.6264	0.0000	0.6264
Avg. borrowing interest rate (\%)	12.1829	10.6505	1.5324
Conditional default rate (\%)	7.0445	6.0182	1.0263
Fraction of HHs in debt (\%)	8.6335	9.0770	-0.4435
Debt-to-earnings ratio (\%)	1.8748	1.9551	-0.0803

Divestment channel

GDP	1.8028	1.8552	-0.0524
Wage	1.1538	1.1873	-0.0335

Bankruptcy Policy Debate

Welfare Analysis of Consumer Bankruptcy

Welfare Analysis of Consumer Bankruptcy

- Smoothing across states vs. over time (Zame, 1993)

Welfare Analysis of Consumer Bankruptcy

- Smoothing across states vs. over time (Zame, 1993)
- So far, HH heterogeneity

Welfare Analysis of Consumer Bankruptcy

- Smoothing across states vs. over time (Zame, 1993)
- So far, HH heterogeneity
- Interaction between bankruptcy law \& FFs

Welfare Analysis of Consumer Bankruptcy

- Smoothing across states vs. over time (Zame, 1993)
- So far, HH heterogeneity
- Interaction between bankruptcy law \& FFs
- Benchmark: Borrowing exclusion of 10 years

Welfare Analysis of Consumer Bankruptcy

- Smoothing across states vs. over time (Zame, 1993)
- So far, HH heterogeneity
- Interaction between bankruptcy law \& FFs
- Benchmark: Borrowing exclusion of 10 years
- Counterfactual: Longer borrowing exclusion of 15 years

Welfare Analysis of Consumer Bankruptcy

- Smoothing across states vs. over time (Zame, 1993)
- So far, HH heterogeneity
- Interaction between bankruptcy law \& FFs
- Benchmark: Borrowing exclusion of 10 years
- Counterfactual: Longer borrowing exclusion of 15 years

Stricter Rule Reduces Agency Tension

Stricter Rule Reduces Agency Tension

Variable	Benchmark	Longer Exclusion
Banking leverage ratio	4.5652	4.5443
Incentive \& divestment channels		
Incentive premium (\%)	0.6264	0.6203
Avg. borrowing interest rate (\%)	12.1829	11.9688
Wage	1.1538	1.1541

Stricter Rule Reduces Agency Tension

Variable	Benchmark	Longer Exclusion
Banking leverage ratio	4.5652	
		4.5443
Incentive \& divestment channels		
Incentive premium (\%)	0.6264	0.6203
Avg. borrowing interest rate (\%)	12.1829	11.9688
Wage	1.1538	1.1541

- Stricter rule (longer exclusion)

Stricter Rule Reduces Agency Tension

Variable	Benchmark	Longer Exclusion
Banking leverage ratio	4.5652	4.5443
Incentive \& divestment channels		
Incentive premium (\%)	0.6264	0.6203
Avg. borrowing interest rate (\%)	12.1829	11.9688
Wage	1.1538	1.1541

■ Stricter rule (longer exclusion) \rightarrow Default risk \downarrow

Stricter Rule Reduces Agency Tension

Variable	Benchmark	Longer Exclusion
Banking leverage ratio	4.5652	
		4.5443
Incentive \& divestment channels		
Incentive premium (\%)	0.6264	0.6203
Avg. borrowing interest rate (\%)	12.1829	11.9688
Wage	1.1538	1.1541

■ Stricter rule (longer exclusion) \rightarrow Default risk $\downarrow \rightarrow$ Borrowing price \downarrow

Stricter Rule Reduces Agency Tension

Variable	Benchmark	Longer Exclusion
Banking leverage ratio	4.5652	
		4.5443
Incentive \& divestment channels		
Incentive premium (\%)	0.6264	0.6203
Avg. borrowing interest rate (\%)	12.1829	11.9688
Wage	1.1538	1.1541

■ Stricter rule (longer exclusion) \rightarrow Default risk $\downarrow \rightarrow$ Borrowing price \downarrow \rightarrow HH borrowers \uparrow \& savers \downarrow

Stricter Rule Reduces Agency Tension

Variable	Benchmark	Longer Exclusion
Banking leverage ratio	4.5652	
		4.5443
Incentive \& divestment channels		
Incentive premium (\%)	0.6264	0.6203
Avg. borrowing interest rate (\%)	12.1829	11.9688
Wage	1.1538	1.1541

■ Stricter rule (longer exclusion) \rightarrow Default risk $\downarrow \rightarrow$ Borrowing price \downarrow \rightarrow HH borrowers $\uparrow \&$ savers $\downarrow \rightarrow N \uparrow$

Stricter Rule Reduces Agency Tension

Variable	Benchmark	Longer Exclusion
Banking leverage ratio	4.5652	4.5443
Incentive \& divestment channels		
Incentive premium (\%)	0.6264	0.6203
Avg. borrowing interest rate (\%)	12.1829	11.9688
Wage	1.1538	1.1541

■ Stricter rule (longer exclusion) \rightarrow Default risk $\downarrow \rightarrow$ Borrowing price \downarrow \rightarrow HH borrowers $\uparrow \&$ savers $\downarrow \rightarrow N \uparrow \rightarrow L R \downarrow$

Stricter Rule Reduces Agency Tension

Variable	Benchmark	Longer Exclusion
Banking leverage ratio	4.5652	
		4.5443
Incentive \& divestment channels		
Incentive premium (\%)	0.6264	0.6203
Avg. borrowing interest rate (\%)	12.1829	11.9688
Wage	1.1538	1.1541

■ Stricter rule (longer exclusion) \rightarrow Default risk $\downarrow \rightarrow$ Borrowing price \downarrow \rightarrow HH borrowers $\uparrow \&$ savers $\downarrow \rightarrow N \uparrow \rightarrow L R \downarrow \rightarrow$ Incentive premium \downarrow

Stricter Rule is Good, but Not for All

Stricter Rule is Good, but Not for All

Welfare (CEV in \%) Benchmark Longer Exclusion

Total	-	0.0092
Good credit history	-	0.0127
Bad credit history	-	-0.0519

Stricter Rule is Good, but Not for All

Welfare (CEV in \%)	Benchmark	Longer Exclusion
Total	-	0.0092
Good credit history	-	0.0127
Bad credit history	-	-0.0519

■ Lower borrowing cost + Mitigated adverse effects of FFs $>$ Costly filing

Stricter Rule is Good, but Not for All

Welfare (CEV in \%)	Benchmark	Longer Exclusion
Total	-	0.0092
Good credit history	-	0.0127
Bad credit history	-	-0.0519

■ Lower borrowing cost + Mitigated adverse effects of FFs $>$ Costly filing
■ Why so bad for HHs with bad credit history?

Stricter Rule is Good, but Not for All

Welfare (CEV in \%)	Benchmark	Longer Exclusion
Total	-	0.0092
Good credit history	-	0.0127
Bad credit history	-	-0.0519

■ Lower borrowing cost + Mitigated adverse effects of FFs $>$ Costly filing
■ Why so bad for HHs with bad credit history?
Loss of borrowing ability in the short run \gg Benefits in the long run

Conclusion

Concluding Remarks

Concluding Remarks

- Study the role of financial frictions in consumer credit markets

Concluding Remarks

- Study the role of financial frictions in consumer credit markets
- Incentive and divestment channels

Concluding Remarks

- Study the role of financial frictions in consumer credit markets
- Incentive and divestment channels
- Interaction between bankruptcy strictness \& FFs

Concluding Remarks

- Study the role of financial frictions in consumer credit markets
- Incentive and divestment channels
- Interaction between bankruptcy strictness \& FFs
- Stricter rules are favored by most HHs, but not all

Thank you and find me on Twitter @Li_Econ

Appendix

Bankruptcy Regimes in US

- Chapter 7
- Most unsecured debts are discharged in exchange for non-exempt assets
- Filers do not have to use future income to repay debts
- Filers must pay filing and legal fees
- Such record stays on credit report for 10 years
- In 2017, the non-business bankruptcy filings under Ch. $7 \approx 60 \%$

■ Chapter 13

- It involves reorganization
- Filers have to make a plan to repay debtors over 3 to 5 years
- Filers can keep property
- Such record stays on credit report for 7 years

Related Literature / Contributions

- Consumer default: Chatterjee et al. (2007), Livshits et al. (2007) Financial frictions: Gertler and Kiyotaki (2010), G. and Karadi (2011) First to model endogenous consumer default and financial frictions

■ Consumer bankruptcy debate: Athreya (2002), Li and Sarte (2006), Livshits et al. (2007), Nakajima (2017), Exler et al. (2020)
First to analyze the role of financial frictions consumer credit markets and its welfare implications

Timing

- Households begin each period with state (a, e, v, h)
- Given borrowing prices $q\left(a^{\prime}, e\right)$, households with good credit history $h=0$ choose to either repay $\operatorname{debt} d=0$ or file for bankruptcy $d=1$
- If $d=0$, they also choose a^{\prime} and consume $c=w \cdot \exp (e)+a-q\left(a^{\prime}, e\right) \cdot a^{\prime}$
- If $d=1$, they consume the leftover earnings $c=(1-\eta) \cdot w \cdot \exp (e)$ and their credit history turns bad $h^{\prime}=1$
- Households may die at a rate of $(1-\rho)$
- Among households who survive, e^{\prime} and v^{\prime} are drawn from $Q^{e}\left(e^{\prime} \mid e\right)$ and $Q^{v}\left(v^{\prime}\right)$. Bad credit history could be removed with probability \mathbb{P}_{h}
- Newborn households begin with no assets $a^{\prime}=0$, labor productivity e^{\prime} drawn from G^{e}, no present bias $v^{\prime}=1$, and good credit history $h^{\prime}=0$

Vale Function with $h=0$

The value function of households with good credit history is thus given by:

$$
V(\epsilon, a, e, v, h=0)=\max _{d}\left[V^{d=0}(a, e, v, h=0)+\epsilon^{d=0}, V^{d=1}(q, e, v, h=0)+\epsilon^{d=1}\right],
$$

where ϵ^{d} is drawn from the following extreme value distribution $E V\left(\epsilon^{d}\right)$:

$$
E V\left(\epsilon^{d}\right)=\exp \left\{-\exp \left(-\frac{\epsilon^{d}-\mu_{\epsilon}}{\zeta}\right)\right\}
$$

where $\zeta>0$ determines the variance of the shock and $\mu_{\epsilon}=-\zeta \cdot \gamma_{E}$ makes the shock mean zero and γ_{E} is the Euler's constant

Vale Function with $h=0$ (cont.)

The conditional value function of repayment is given by:

$$
\begin{aligned}
V^{d=0}(a, e, v, h=0)=\max _{a^{\prime}}[& u\left(w \cdot \exp (e)+a-q\left(a^{\prime}, e\right) \cdot a^{\prime}\right) \\
& \left.+v \cdot \beta \cdot \rho \cdot \sum_{\left(e^{\prime}, v^{\prime}\right)} Q^{e}\left(e^{\prime} \mid e\right) \cdot Q^{v}\left(v^{\prime}\right) \cdot V\left(a^{\prime}, e^{\prime}, v^{\prime}, h^{\prime}=0\right)\right],
\end{aligned}
$$

The conditional value function of defaulting is then given by:

$$
\begin{aligned}
V^{d=1}(a, e, v, h=0)= & u((1-\eta) \cdot w \cdot \exp (e)) \\
& +v \cdot \beta \cdot \rho \cdot \sum_{\left(e^{\prime}, v^{\prime}\right)} Q^{e}\left(e^{\prime} \mid e\right) \cdot Q^{v}\left(v^{\prime}\right) \cdot V\left(a^{\prime}=0, e^{\prime}, v^{\prime}, h^{\prime}=1\right)
\end{aligned}
$$

Assume that filing for bankruptcy is feasible only if $a<-\eta \cdot \exp (e)$

Vale Function with $h=0$ (cont.)

Under the distributional assumption on the utility shocks, the default choice probability g_{d} takes the following form:

$$
g_{d}(a, e, v, h=0)= \begin{cases}\frac{\exp \left\{V^{d=1}(a, e, v, h=0) / \zeta\right\}}{\exp \left\{V^{d=0}(a, e, v, h=0) / \zeta\right\}+\exp \left\{V^{d=1}(a, e, v, h=0) / \zeta\right\}} & \text { if } a<-\eta \cdot \exp (e) \\ 0 & \text { otherwise }\end{cases}
$$

The unconditional value function of households with good credit history is then given by:

$$
\begin{aligned}
& V(a, e, v, h=0)=\mathbb{E}_{\epsilon} V(\epsilon, a, e, v, h=0) \\
& =\zeta \cdot \ln \left(\exp \left\{\frac{V^{d=0}(a, e, v, h=0)}{\zeta}\right\}+\exp \left\{\frac{V^{d=1}(a, e, v, h=0)}{\zeta}\right\}\right)
\end{aligned}
$$

Vale Function with $h=1$

The value function of households with bad credit history $h=1$ is given by:

$$
\begin{aligned}
V(a, e, v, h=1)=\max _{a^{\prime} \geq 0} & {\left[u\left(w \cdot \exp (e)+a-\bar{q} \cdot a^{\prime}\right)+v \cdot \beta \cdot \rho \cdot \sum_{\left(e^{\prime}, z^{\prime}, h^{\prime}\right)} Q^{e}\left(e^{\prime} \mid e\right) \cdot Q^{v}\left(v^{\prime}\right)\right.} \\
& \left.\cdot\left(\mathbb{P}_{h} \cdot V\left(a^{\prime}, e^{\prime}, v^{\prime}, h^{\prime}=0\right)+\left(1-\mathbb{P}_{h}\right) \cdot V\left(a^{\prime}, e^{\prime}, v^{\prime}, h^{\prime}=1\right)\right)\right],
\end{aligned}
$$

where $\bar{q} \equiv \rho /\left(1+r_{f}\right)$ denotes the discount risk-free rate and bad credit record could be removed with probability \mathbb{P}_{h}. I use $\mu(a, e, v, h)$ to denote the cross-sectional distribution of households

Bank Optimization

$$
\begin{aligned}
W(N)= & \max _{K^{\prime}, \mathcal{A}^{\prime}}\left[\beta_{f}(1-\psi) \pi^{\prime}+\beta_{f} W\left(N^{\prime}\right)\right] \\
\text { s.t. } & N^{\prime}=\psi \pi^{\prime} \\
& \pi^{\prime}=\left(1+r_{k}^{\prime}-\delta\right) K^{\prime}+\left(1+r_{l}^{\prime}\right) L^{\prime}-\left(1+r_{f}\right) D^{\prime} \\
& K^{\prime}+L^{\prime}=D^{\prime}+N \\
& W(N) \geq \theta\left(K^{\prime}+L^{\prime}\right)
\end{aligned}
$$

(lifetime dividends)
(retained earnings)
(profit)
(balance sheet)
(incentive constraint)

- $\beta_{f}\left(1+r_{f}\right)=1$ (small open economy)
- r_{l}^{\prime} : Rate of return on one-period defaultable unsecured loans

Return on Unsecured Loans

- It is defined as:

$$
1+r_{l}^{\prime}=\frac{-\sum_{a^{\prime}<0, e}\left[\int_{e^{\prime}} R\left(a^{\prime}, e^{\prime}\right) d F\left(e^{\prime} \mid e\right)\right] \mathcal{A}^{\prime}\left(a^{\prime}, e\right)}{L^{\prime}}
$$

- Numerator consists of full repayment and wage garnishment

$$
R\left(a^{\prime}, e^{\prime}\right)=\left(1-d^{\prime}\left(a^{\prime}, e^{\prime}\right)\right) a^{\prime}+d^{\prime}\left(a^{\prime}, e^{\prime}\right) \eta w^{\prime} \exp \left(e^{\prime}\right)
$$

- Denominator denotes aggregate discount loans

$$
L^{\prime}=-\sum_{a^{\prime}<0, e}\left[q\left(a^{\prime}, e\right) a^{\prime}\right] \mathcal{A}^{\prime}\left(a^{\prime}, e\right)
$$

Agency Problem b/w Banks and Depositors

■ Incentive constraint:

$$
W(N) \geq \theta\left(K^{\prime}+L^{\prime}\right) \rightarrow \xi N \geq \theta\left(K^{\prime}+L^{\prime}\right) \rightarrow \frac{\xi}{\theta} \geq\left(\frac{K^{\prime}+L^{\prime}}{N}\right) \equiv L R^{\prime}
$$

where $W(N)=\xi N$ has been widely shown in the literature

- This translates to an endogenous leverage constraint

FOCs

- Necessary and sufficient conditions are:

$$
\begin{aligned}
\Lambda^{\prime}\left[r_{k}^{\prime}-\left(\delta+r_{f}\right)\right] & =\lambda \theta \\
\Lambda^{\prime}\left[\int_{e^{\prime}} R\left(a^{\prime}, e^{\prime}\right) d F\left(e^{\prime} \mid e\right)\right] & =\left[\Lambda^{\prime}\left(1+\tau+r_{f}\right)+\lambda \theta\right] q\left(a^{\prime}, e\right) \\
\lambda\left[\xi N-\theta\left(K^{\prime}+L^{\prime}\right)\right] & =0
\end{aligned}
$$

where $\Lambda^{\prime}=\beta_{f}\left(1-\psi+\psi \xi^{\prime}\right)$ is the adjusted discount factor and λ denotes the multiplier on the incentive constraint

No-Arbitrage Conditions

- Excess returns are equal:

$$
r_{k}^{\prime}-\left(\delta+r_{f}\right)=r_{l}^{\prime}-\left(\tau+r_{f}\right)=\iota \equiv \frac{\lambda \theta}{\Lambda^{\prime}} \geq 0
$$

ι : Leverage premium, λ : IC multiplier, Λ^{\prime} : Adjusted discount factor

- ι is determined by whether and how much IC is binding
- $\iota=0$ when IC is slack
$\bullet ~ \iota>0$ when IC is binding $\longrightarrow \iota \gg 0$ if IC becomes more binding

Price Schedule of Bank Loans

- For each loan contract $\mathcal{A}^{\prime}\left(a^{\prime}<0, e\right)$,

$$
\begin{aligned}
q\left(a^{\prime}, e\right) & =\frac{\rho \int_{e^{\prime}}\left[\left(1-d^{\prime}\left(a^{\prime}, e^{\prime}\right)\right)+d^{\prime}\left(a^{\prime}, e^{\prime}\right)\left(\frac{\eta w^{\prime} \exp \left(e^{\prime}\right)}{a^{\prime}}\right)\right] d F\left(e^{\prime} \mid e\right)}{1+r_{f}+\iota} \\
& =\frac{1-\text { individual-level default premium }}{\text { opportunity cost + aggregate-level incentive premium }}
\end{aligned}
$$

- Recall that: $e=\left(e_{1}, e_{2}, e_{3}\right) \rightarrow q\left(a^{\prime}, e_{1}, e_{2}\right)$
- $\theta=0$ resembles the frictionless case (only default premium)
- Note that: $q\left(a^{\prime}>0, e\right)=\left(1+r_{f}\right)^{-1}$

Exogenous Calibration

Parameter		Value	Source / Target
Households	γ	2	Standard
CRRA coefficient	ρ	0.98	Avg. working lifespan of 50 years
Household survival rate	β	0.9592	Effective discount factor of 0.94
Household discount factor			
	α	0.36	Standard
Production	δ	0.08	Standard
Capital share			

Exogenous Calibration (cont.)

Parameter		Value	Source / Target
Financial market	r_{f}	0.04	McGrattan and Prescott (2000)
Risk-free rate	η	0.25	25\% of disposable income
Wage garnishment rate	\mathbb{P}_{h}	0.10	Avg. exclusion of 10 years
Probability of flag removal	ψ	0.8926	Avg. planning period of 10 years
Bank survival rate	θ	0.2918	25\% lower than the targeted ratio
Diverting fraction	ω	0.0101	1% of total assets intermediated
Transfer to newly entering banks			
Exogenous processes			
S.D. of permanent labor productivity	σ_{1}	0.448	Storesletten et al. (2004)
AR(1) of persistent labor productivity	ρ_{2}	0.957	Storesletten et al. (2004)
S.D. of persistent labor productivity	σ_{2}	0.129	Storesletten et al. (2004)
S.D. of transitory labor productivity	σ_{3}	0.351	Storesletten et al. (2004)
Support of household preferences	$\left(v_{1}, v_{2}\right)$	$(0,1)$	Hand-to-mouth households

Internal Calibration

- Dispersion of extreme value shock $\left(\zeta_{d}\right)$
- Probability of preference shocks $\left(\mathbb{P}_{v}\right)$

Parameter	Value	Target	Data	Model
\mathbb{P}_{V}	0.01057	Banking leverage ratio	4.57	4.57
ζ	0.02150	Chapter 7 default rate (\%)	0.61	0.61

Untargeted Moments Aligned with Data

Untargeted Moments Aligned with Data

Moment (in \%)	Data	Model
Fraction of households in debt	7.05	8.63
Debt-to-earnings ratio	2.56	1.87
Average borrowing interest rate	$10.93-12.84$	12.18

Benchmark vs. Frictionless Economy in \%

Variable	Benchmark	Frictionless
Incentive premium	-	-100.0000
Avg. borrowing interest rate	-	-12.5789
Conditional default rate	-	-14.5683
Fraction of HHs in debt	-	5.1374
Debt-to-earnings ratio	-	4.2824
GDP	-	2.9035
Wage	-	2.9035

Effects of Varying Diverting Fraction θ

Effects of Varying Diverting Fraction θ

Variable	$\theta=0.2888$	$\theta=0.2918$	$\theta=0.2947$

Consumer credit markets

Avg. borrowing interest rate (\%)	12.1411	12.1829	12.2221
Conditional default rate (\%)	0.6073	0.6082	0.6090
Fraction of HHs in debt (\%)	8.6511	8.6335	8.6175
Debt-to-earnings ratio (\%)	1.8796	1.8748	1.8705

Incentive \& divestment channels

Incentive premium (\%)	0.5935	0.6264	0.6570
GDP	1.8055	1.8028	1.8004
Wage	1.1555	1.1538	1.1522

Effects of Varying Diverting Fraction θ

Variable $\quad \theta=0.2888 \quad \theta=0.2918 \quad \theta=0.2947$

Consumer credit markets

Avg. borrowing interest rate (\%)	12.1411	12.1829	12.2221
Conditional default rate (\%)	0.6073	0.6082	0.6090
Fraction of HHs in debt (\%)	8.6511	8.6335	8.6175
Debt-to-earnings ratio (\%)	1.8796	1.8748	1.8705

Incentive \& divestment channels

Incentive premium (\%)	0.5935	0.6264	0.6570
GDP	1.8055	1.8028	1.8004
Wage	1.1555	1.1538	1.1522

Effects of Varying ψ

Variable	$\psi=0.9091$	$\psi=0.9000$	$\psi=0.8889$
Consumer credit markets			
Avg. borrowing interest rate (\%)	11.8810	12.0933	12.2303
Fraction of HHs in debt (\%)	8.8426	8.6720	8.6143
Debt-to-earnings ratio (\%)	1.9602	1.8855	1.8697
Conditional default rate (\%)	0.5969	0.6064	0.6091
Incentive \& divestment channels			
Incentive premium (\%)	0.4670	0.5562	0.6635
GDP	1.8157	1.8085	1.7998
Wage	1.1621	1.1574	1.1519

Solving Transition Path

- Solve old and new equilibria and set the number of transition periods
- Guess the transition path of banking leverage ratio and the implied aggregate prices over time
■ First solve household problem backward to get policy functions and then use them to simulate the economy forward
- Compute aggregate variables and the updated banking leverage ratio
- Compare between the old and new ratios; if not close enough, update it and do the above procedures again

Transition Path of Banking Leverage Ratio

(a) $\eta=0.25 \rightarrow 0.20$
(b) $\eta=0.25 \rightarrow 0.30$

