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Research question

How to estimate Difference-in-Differences (DiD) with multiple
treatment cohorts?

Recent literature shows that conventional TWFE implementations
can be severely biased.

e A new regression-based framework: LP-DiD.

o Local projections (Jorda 2005) + clean controls (Cengiz et al 2019).

Montecarlo simulation to assess its performance.

Empirical application:
o The effect of banking deregulation on the wage share.

o (In the paper also democracy & growth.)



Research question

Why do we need yet another DiD estimator?

Advantages of LP-DiD:

e Simpler, faster and more transparent than other recent DiD
estimators.

e Flexible: can easily accommodate different settings, weighting
schemes, and target estimands.

e General: encompasses other DiD estimators as specific sub-cases.

e Allows controlling for pre-treatment values of the outcome and of
other time-varying covariates.
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Background

The conventional (until recently) DiD estimator: TWFE

Static TWFE

Yie = @ + 0t + 5TWFEDit + €t

Event-study (distributed lags) TWFE

H
Yie = aj + 0¢ + Z BIWFED, b+ €
h—Q

OK in the 2x2 setting.

Biased even under parallel trends with staggered treatment, if
treatment effects are dynamic and heterogeneous.



The problems with TWFE in the staggered setting

e TWFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1. Newly treated vs Never treated;

2. Newly treated vs Not-yet treated;

3. Newly treated vs Earlier treated.
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Background

The problems with TWFE in the staggered setting

e TWEFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1. Newly treated vs Never treated;
2. Newly treated vs Not-yet treated;
3. Newly treated vs Earlier treated.

e Bias formula for TWFE (Goodman-Bacon 2021)

plimy_yoo BTWFE = VWATT—AATT



Background

The problems with TWFE in the staggered setting

e TWEFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1. Newly treated vs Never treated;
2. Newly treated vs Not-yet treated;
3. Newly treated vs Earlier treated.

e Bias formula for TWFE (Goodman-Bacon 2021)

plimy_yoo BTWFE = VWATT—AATT

e TWFE as a weighted-average of cell-specific AT Ts (de Chaisemartin &
D’Haultfoeuille 2020)

, N
E[™E] 6| Y T weibe
(8,):Dg=1

o Weights can be negative!



LP-DiD: baseline version

A Local Projections Diff-in-Diff Estimator (LP-DiD)

Baseline version

Setting & Assumptions:

e Binary absorbing treatment.

Staggered adoption.

e Treatment effects can be dynamic & heterogeneous.

No anticipation.

e Parallel trends.



LP-DiD: baseline versions

A Local Projections Diff-in-Diff Estimator (LP-DiD)

Baseline version

Estimating equation:

Yijt+h — Yijt—1 = 5,€P_DiDAD;t } treatment indicator
+ &h } time effects
+eh; forh=0,...,H.

restricting the sample to observations that are either:

{ newly treated AD; =1,

or clean control Di¢tyn=0



LP-DiD Estimator

What does LP-DiD identify?
e A variance-weighted average effect:

E( "isP—DiD) _ wéf-’/’rDiDTg(h)
g#0

o 7g(h) = h-periods forward ATT for treatment-cohort g.

e No negative weights.



LP-DiD Estimator

What does LP-DiD identify?

e A variance-weighted average effect:

( LP DID)_ LP D:DTg(h)

g#0
o 7g(h) = h-periods forward ATT for treatment-cohort g.

e No negative weights.

e Weights depend on & treatment variance:
LP—DIiD _ [ngn(nc.g.n)]
h - )
& Zg;éo NCCSg,h[”g,h(”c,gyh)]
o = size of subsample including group g & its clean controls.

0 [ngh(nc,g,n)] = treatment variance in that subsample.



LP-DiD as a ‘swiss knife’

Flexibility in choosing a weighting scheme

e Can apply any desired weights through
weighted regression.

\ \ e Equally-weighted ATT:
o weighted regression with weights
Y = 1/(wgly PP/ Ng)

o can also use regression
adjustment.
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LP-DiD as a ‘swiss knife’

LP-DiD encompasses other DiD estimators

e Baseline +> stacked estimator (CDLZ,
2019)

e But no need to stack the datal

e Baseline + reweighting <> CS
/ estimator.

e Baseline 4 reweighting + alternative

base period ~ BJS estimator.

o LHS: yjt4n — %Z:—li—k Yi.m
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LP-DiD as a ‘swiss knife’

Easy to adapt to different settings

e Covariates & outcome lags
e Non-absorbing treatment

/ e Continuous treatment variable
\9
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Extensions

LP-DiD with covariates and outcome lags

Estimating equation:

Vitth — Yit—1 = ﬁﬁP’D"DAD,-t } treatment indicator
+ Z,’f 1 VSA)/: = } outcome lags
+ o Zp 0V pDXmit—p } covariates
+&f } time effects
+ef; for h=0,...,H,

restricting the sample to observations that are either

{ newly treated AD; =1,

or clean control Ditynh=0
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Extensions

LP-DiD with covariates and outcome lags

Estimating equation:

Vitth — Yit—1 = ﬁﬁP’D"DAD,-t } treatment indicator
+ Z,’f 1 VSA)/: = } outcome lags
+ o Zp 0V pDXmit—p } covariates
+&f } time effects
+ef; for h=0,...,H,

restricting the sample to observations that are either

{ newly treated AD; =1,

or clean control Ditynh=0

e Covariates will generally alter the weights.

e Can use p-score methods to make sure weights remain non-negative,

or regression adjustment to get equally-weighted ATT.
13



Extensions

LP-DiD with non-absorbing or continuous treatment

e In general: Adapt the clean control condition to the specific setting.
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Extensions

LP-DiD with non-absorbing or continuous treatment

e In general: Adapt the clean control condition to the specific setting.

treatment (ADiy=1) & (ADj;—j=0for —h<j<L;j#0)
clean control ADj;_j=0for —h<j<L
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Extensions

LP-DiD with non-absorbing or continuous treatment

e In general: Adapt the clean control condition to the specific setting.

treatment (ADiy=1) & (ADj;—j=0for —h<j<L;j#0)
clean control ADj;_j=0for —h<j<L

movers (JAXi| > ¢c) & (JAXi—j| <cfor —h<j<L;j#0)
quasi-stayers |AX; —j| < cfor —h<j<L

e Underlying assumption: treatment effects stabilize after L periods.
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Simulation Evidence

Simulation
N=500; T=50.

e DGP:
Yoir = pYo,i—1+FAiFyeters —1<p<l,  Xj7eer ~ N(0,25)

Binary staggered treatment.

TE grows in time for 20 periods, and is stronger for early adopters.

15



Simulation Evidence

Simulation
e N=500; T=50.
e DGP:
Yoir = pYo,i—1+FAiFyeters —1<p<l,  Xj7eer ~ N(0,25)
e Binary staggered treatment.
e TE grows in time for 20 periods, and is stronger for early adopters.

1 Exogenous treatment

o Units randomly assigned to 10 groups of size N/10
o One group never treated; others treated at t = 11,13,15...,27.
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Simulation Evidence

Simulation
e N=500; T=50.
* DGP:
Yoie = pYoit—1+Ai+ve e, —1<p<1l; A7, e~ N(0,25)
e Binary staggered treatment.

e TE grows in time for 20 periods, and is stronger for early adopters.

1 Exogenous treatment

o Units randomly assigned to 10 groups of size N/10

o One group never treated; others treated at t = 11,13,15...,27.
2 Endogenous treatment

o Probability of treatment depends on past outcome dynamics.
o Negative shocks increase probability of treatment.
o Parallel trends holds only conditional on outcome lag.
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Simulation 1 — exogenous treatment scenario

True effect path and estimates from 200 replications

150 150 150 150

LP-DiD Reweighted LP-DiD PMD LP-DiD Reweighted PMD LP-DiD

Event-study TWFE Sun-Abraham

Treatment Effect

100 100

5 0 s 10 5 0 5 10 5 0 5 10 5 0 5 0
Event Time
Full range of true treatment effects True equally-weighted ATE
— Average estimate — = 5th and 95th pct of estimate
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Simulation 2 — endogenous treatment scenario

True effect path and estimates from 200 replications

150 150 150 150
LP-DID Reweighted LP-DiD { PMD LP-DiD {
100 100 ) 100
5 5 )
0 0 0
g
g 50 0 0
& ; o : o ; 0 : o ; . : o
I=1
Y
E w 150 150 150
= 4
54 Sun-Abraham /
& w 100 100
E) E E
0 0 0
50 50 50
5 0 5 10 5 0 5 I 5 0 5 0 0 5 I

Event Time

Full range of true treatment effects True equally-weighted ATE
— Average estimate — = 5th and 95th pct of estimate
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Simulation Evidence

Computational speed

Estimating the treatment effect path in a single repetition of the
simulations (seconds):

Simulation 1 (exogenous treatment scenario)

ES PMD Rw Rw PMD
TWEE LP-DiD LP-DiD LP-DiD LP-DiD

\ 74 / 8o 1.59 1.64

Simulation 2 (endogenous treatment scenario)

ES PMD Rw Rw PMD
TWFE LP-DiD LP-DiD LP-DiD LP-DiD
61 \ 74 / .82 16.27 19.03 177 5 902.78 7. 48

(using a laptop with 2.80 GHz Quad-core Intel i7 Processor and 16 GB of
Ram)

cs SA
7925 17771

BJS
7.08

18


Daniele Girardi

Daniele Girardi

Daniele Girardi

Daniele Girardi


Empirical Application

Application: Banking Deregulation and the Labor Share

1970-1996: US states deregulate | i
banking in a staggered fashion.

-

| /

o Intra-state branching 6
Year

o Inter-state banking

9% of States with Policy

deregulation

deregulation
— % of States that deregulated inter-state banking
% of States that deregulated intra-state branching

e Leblebicioglu & Weinberger (EJ, 2020) use static & event-study
TWEFE to estimate effects on the labor share.
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Empirical Application

TWFE estimates :

o Negative effect of inter-state
bank deregulation (=~ —1pp). o % %

Labor Share

e No effect of intra-state

only FEs. F FEs + other +otner
Specification

branching deregulation.

© Inter-state Banking ¢ Intra-state Branching

(a) Inter-state Banking (b) Intra-state Branching
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Years after Inter-state Banking Reform Years after Intra-state Branching Reform
® Only FEs ® FEs + branching ® Only FEs ® FEs + banking
® FEs + other policies ~ ® FEs + other policies + economy ® FEs + other policies ~ ® FEs + other policies + economy
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Empirical Application

Forbidden comparisons in the TWFE specification

e TWEFE uses ‘forbidden’ comparisons: earlier liberalizers are controls
for later liberalizers.

e Goodman-Bacon (2021) decomposition to quantify their influence.

e Contribution of unclean comparisons to TWFE estimates:

o 36% for inter-state banking deregulation;

o 70% for intra-state branching deregulation.
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Empirical Applications (1)

Effect of banking deregulation on the labor share:

LP-DiD estimates

(a) Inter-state banking deregulation (b) Intra-state branching deregulation

77777777777777777777777777777777777777777
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Conclusions

Khoa Vu
@KhoaVuUmn

Always has been.

@ Arin Dube @arindube - May 1
Difference-in-differences working paper alert

Our Local-Projections DiD offers a unified approach that encompasses many
popular alternatives as specific instances; allows for extensions; and does it all

using an OLS regression.

nber.org/papers/w31184

| &
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Additional Slides
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Identification Assumptions (baseline specification)

No anticipation
E [yi(p) — y(0)] = 0, for all p and t such that t < p.

Units do not respond in anticipation of a future treatment.

Parallel trends

E [yix(0) — yin(0)|pi = p] = E [yi(0) — yin(0)],
forall t € {2,..., T} and for all p € {1, ..., T, o0}.

Average trends in untreated potential outcomes do not
depend on treatment status.
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Reweighted LP-DiD

Obtaining an equally-weighted ATT

LP—DiD
g:h
cohort size & treatment variance.

e Baseline weights w depend on

e But you can apply any desired weights
using weighted regression.

Wi e Equally-weighted ATE: Reweight by

1/(wgtp P/ Ne).

LP—DiD
gh .
‘residualized’ treatment indicator AD.

o w easy to compute from

e Can also use regression adjustment.
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Al - Other new DiD estimators
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Alternative estimators: de Chaisemartin & D’Haultfoeiulle

de Chaisemartin & D'Haultfoeiulle estimator

e For a given time-horizon /, it estimates the average effect of having
switched in or out of treatment ¢ periods ago.

e A weighted average, across time periods t and possible values of
treatment d, of 2x2 DiD estimators.

e The constituent 2x2 DiDs compare the t — ¢ — 1 to t outcome
change, in groups with a treatment equal to d at the start of the
panel and whose treatment changed for the first time in t — ¢ (the
first-time switchers) and in control groups with a treatment equal to
d from period 1 to t (not-yet switchers).
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Alternative estimators: Callaway-Sant’Anna

Callaway-Sant'Anna estimator

e Estimates each group specific effect at the selected time horizon.

e Take long-differences in the outcome variable, and compare each
treatment group g with its control group.

e To control for covariates, re-weight observations based on outcome
regression (OR), inverse-probability weighting (IPW) or
doubly-robust (DR) estimation.

e Aggregate group-time effects into a single overall ATT using some
weights.
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Alternative estimators: Sun-Abraham

Sun-Abraham interaction-weighted estimator

e Event-study DiD specification, with leads and lags of the treatment
variable.

e Includes a full set of interaction terms between relative time
indicators DY (ie, leads and lags of the treatment variable) and
treatment cohort indicators 1{ G, = g} (dummies for when a unit
switches into treatment).

e Then calculates a weighted average over cohorts g for each time
horizon, in order to obtain a standard event-study plot.
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Alternative estimators: Borusyak-Jaravel-Spiess

Borusyak-Jaravel-Spiess imputation estimator

Estimate unit and time FEs only using untreated sample.

Take them out from Y to form counterfactual Y'.

Then for any treatment group, just compare Y and Y’ for treated

units around event time.

Average these across events to get an average effect.
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