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Motivation
Imperfect compliance in causal effect estimation

2 important consequences of imperfect compliance

1. Identification of a Local Average Treatment Effect (LATE)

2. Low avr. compliance ⇒ possibly uninformative inference
(high variance in estimation)
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]
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N : sample size, p: sh. encouraged indiv., π: sh. compliers, σε: sd. errors

Let’s assume: P[G = 0] = 0.5, πG=0 = 0 and P[G = 1] = 0.5, πG=1 = 0.10
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This paper
From Insight to Practice

Illustrative example suggests potential gains in precision in case of
heterogeneous first-stage along observables.

Yet in practice, no ex-ante knowledge of which pop. does not comply...

How can we still exploit such first-stage heterogeneity?

Intuitive (“näıve”) Test-and-Select procedure:

(i) t-test first-stage coef. (compliance rate) by group

(ii) restrict 2SLS estimation to groups with significant first-stages

→ would yield a biased estimator.
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This paper
Preview of the results

1. Study of the bias of the “näıve” selection rule

2. Proposition of a “sophisticated” selection rule to correct bias
→ Test-and-Select (TS henceforth) estimator

3. Result 1: under “standard” asymptotic sequences, TS estimator is
shown to be asymptotically normal and unbiased for the LATE

4. Result 2: under “weak-IV-like” asymptotics (better approx. of finite

sample behavior) , TS estimator asymptotically normal and unbiased
for the LATE under restrictions on TE heterogeneity

5. Result 3: finite sample properties studied in Monte-Carlo simulations

6. Applications to a natural experiment and an encouragement design
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3. Result 1: under “standard” asymptotic sequences, TS estimator is

shown to be asymptotically normal and unbiased for the LATE

Henceforth, θ̂ (estimator of θ) is said to be asymp. normal and unbiased if
√
n ·

(
θ̂ − θ

)
d−−−−→

n→∞
N (0,Σ)

It has a “first-order” or “asymptotic” bias B if
√
n ·

(
θ̂ − θ

)
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N (B,Σ)

→ can lead to invalid inference (CIs centered on θ+B instead of θ).
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Roadmap

Framework

Proposed estimator

Asymptotic results under “standard” sequences

Asymptotic results under “local-to-zero” sequences

Finite-sample properties: Monte-Carlo simulations

Practical guidance and Conclusion

5



Framework
Following Angrist, Imbens and Rubin (1996)

Data-generating process:

• Super-population:
(Y (1), Y (0), D(1), D(0), G, Z)

• I.i.d. sample:
{(Yi(1), Yi(0), Di(1), Di(0), Gi, Zi)}ni=1

• Potential outcomes framework:
Y = D · Y (1) + (1−D) · Y (0)

D = Z ·D(1) + (1− Z) ·D(0)

Assumption 1 (LATE identification)

1. Independence:
(Y (1), Y (0), D(1), D(0), G) ⊥ Z

2. Exclusion restriction:
Y (D,Z) = Y (D)

3. First Stage:
E [D(1)−D(0)] > c > 0, c ∈ R+\{0}

4. Monotonicity: D(1) ≥ D(0)

Identified estimand: LATE ≡ E[Y (1)− Y (0)|D(1) > D(0)]

6



Framework
First-stage heterogeneity

Key addition to usual framework:

• Pre-determined discrete covariate G ⊥ Z

[Rationale: quite common to collect additional pre-experiment covariates

even in completely randomized experiments.]

• 1st stage can be heterogeneous across groups

πg ≡ E[D(1)−D(0)|G = g]

In practice, we do not know ex-ante for which g πg = 0 vs. πg > 0

⇒ we need to learn it from the data (testing).

What are the consequences of this pre-testing step?

How to best implement it in order to avoid bias?
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“Näıve” Test-and-Select estimator
Procedure

Näıve Test-and-Select (Näıve TS) estimation procedure:

1. For each group G = g: one-sided t-test on π̂g at level α
2. Select only groups for which we reject the null of πg = 0

Example of decision rule: t-stat(π̂g) > 1.64 (α = 0.95)

3. Compute usual Wald (=2SLS) estimator on selected sample

Intuition: we drop only groups with no compliers or very few compliers,
so we might not be too far away from the LATE.

Table: Bias introduced by näıve pre-test (Monte-Carlo simulations)

2SLS Näıve TS
Bias 0.003 -0.221

Coverage 0.953 0.861
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Test-and-Select estimator
Procedure

Test-and-Select (TS) estimation procedure:

1. Divide sample in 2 equally sized random sub-samples I1 and I2

(stratifying the random split by G)

2. In I1: for each group G = g, one-sided t-test on π̂g at a given level α
3. In I2: select groups for which the null of πg = 0 was rejected in I1
4. Compute 2SLS estimator on the selected sub-sample of I2.
5. Repeat steps 2 to 4 reversing the roles of I1 and I2 (cross-fitting).
6. Take the average of the estimators obtained in 4. within I1 and I2.

Table: 1st-order bias correction (Monte-Carlo simulations)

2SLS Näıve TS TS
Bias 0.003 -0.221 0.097

Coverage 0.953 0.861 0.976
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4. Compute 2SLS estimator on the selected sub-sample of I2.
5. Repeat steps 2 to 4 reversing the roles of I1 and I2 (cross-fitting).
6. Take the average of the estimators obtained in 4. within I1 and I2.

Intuition: data-splitting ⇒ testing step ⊥ estimation step
⇒ no 1st-order bias

cross-fitting ⇒ reduces the efficiency loss due to splitting
(see Lemma 3 in working paper)
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Framework
“Standard” asymptotics

Assumption 2 (No weak 1st-stages)

For any group g ∈ |G|, we have either πg = 0 or πg ≥ c, c ∈ R+\{0}.
In other words: there are only groups with “zero” or “strong” 1st-stages.

Let us stick to a 2-group case (G ∈ {0, 1}) for clarity of exposition. Our
assumptions (1 and 2) imply:

• LATE is identified: overall first-stage well separated from 0

π ≡ π0 · P[G = 0] + π1 · P[G = 1] > c′ > 0

• One of the conditional LATEs might be unidentified, e.g.:(
π0 = 0, π1 > c

)
or

(
π0 > c, π1 = 0

)
or

(
π0 > c, π1 > c

)
Let’s consider (wlog) the case:

(
π0 = 0, π1 > c

)
12



Limiting distribution of the TS estimator
under “standard” asymptotics

Recall we have 2 sub-samples: I1 (testing sample) and I2 (estimation sample)

Selection rule determined in I1. We get (asymptotically):

P [{G = 1 is selected}] −−−−→
n→∞

1

P [{G = 0 is selected}] −−−−→
n→∞

α

Hence in I2, we compute:

w/ proba. α : T̂Sn = 2̂SLSn =
En[Y |Z = 1]− En[Y |Z = 0]

En[D|Z = 1]− En[D|Z = 0]
√
n · (2̂SLSn − LATE)

d−−−−→
n→∞

N (0, V 2SLS)

w/ proba. (1− α) : T̂Sn = 2̂SLS1
n=

En[Y |Z = 1, G = 1]− En[Y |Z = 0, G = 1]

En[D|Z = 1, G = 1]− En[D|Z = 0, G = 1]
√
n · (2̂SLS

1

n − LATE1︸ ︷︷ ︸
=LATE

)
d−−−−→

n→∞
N (0, V 2SLS1︸ ︷︷ ︸

≤V 2SLS

)

Variance gains
13
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Summary of results under “standard” asymptotics

So far:

• T̂ S is asymptotically normal and unbiased for the LATE...

• ... w/ smaller variance when selection occurs ⇒ improved inference
... w/ smaller variance when selection occurs ⇒ im(shorter CIs)

Too good to be true?

• In finite samples: we expect groups w/ small share of compliers to
be dropped in the process → not captured by our asymptotic approx.

• How much bias would that create?

⇒ Change asymptotic sequence for credible finite sample approx.
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Framework
“Local-to-zero” asymptotics

Assumption 3 (Some weak 1st-stages)

Some groups have “local-to-zero” (Staiger and Stock, 1997) share of compliers.
Formally: ∃g ∈ G s.t. πg =

Hg

√
n
, with Hg ∈ R+\{0}

Why would this yield a better approximation of finite sample behavior?
→ Because it allows for de-selection of groups with non-zero shares of
compliers asymptotically.
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Again, let us stick to a 2-group case (G ∈ {0, 1}) — a “weak” and a
“strong” one. Assumptions 1 and 3 imply:

• LATE is identified: overall first-stage well separated from 0
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Limiting distribution of the TS estimator
under “local-to-zero” asymptotics

Recall we have 2 sub-samples: I1 (testing sample) and I2 (estimation sample)
Selection rule determined in I1. We get (asymptotically):

P [{G = 1 is selected}] −−−−→
n→∞

1

P [{G = 0 is selected}] −−−−→
n→∞

q ∈ (α, 1)

Hence in I2, we compute:

w/ proba. q : T̂Sn = 2̂SLSn =
En[Y |Z = 1]− En[Y |Z = 0]

En[D|Z = 1]− En[D|Z = 0]
√
n · (2̂SLSn − LATE)

d−−−−→
n→∞

N (0, V 2SLS)

w/ proba. (1− q) : T̂Sn = 2̂SLS1
n=

En[Y |Z = 1, G = 1]− En[Y |Z = 0, G = 1]

En[D|Z = 1, G = 1]− En[D|Z = 0, G = 1]
√
n · (2̂SLS

1

n − LATE1︸ ︷︷ ︸
=LATE

)
d−−−−→

n→∞
N (0, V 2SLS1︸ ︷︷ ︸

≤V 2SLS

)
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Limiting distribution of the TS estimator
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Selection rule determined in I1. We get (asymptotically):

P [{G = 1 is selected}] −−−−→
n→∞

1

P [{G = 0 is selected}] −−−−→
n→∞

q ∈ (α, 1)

Hence in I2, we compute:

w/ proba. q : T̂Sn = 2̂SLSn =
En[Y |Z = 1]− En[Y |Z = 0]

En[D|Z = 1]− En[D|Z = 0]
√
n · (2̂SLSn − LATE)

d−−−−→
n→∞

N (0, V 2SLS)

w/ proba. (1− q) : T̂Sn = 2̂SLS1
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Asymptotic bias
under “local-to-zero” asymptotics

√
n · (2̂SLS

1

n − LATE1︸ ︷︷ ︸
̸=LATE

)
d−−−→

n→∞
N (0, V 2SLS1

)

(an) =
√
n · (2̂SLS

1

n − LATE1) +
√
n · (LATE1 − LATE)

d−−−→
n→∞

N (0, V 2SLS1
) +B

where B is defined as:
√
n ·

(
LATE1−LATE

)
−−−→
n→∞

B

One can show that ( Proposition 2 in WP ):

√
n ·

(
LATE1 −LATE

)
=

H · P [G = 0]

P [D(1) > D(0)]
·
(
LATE1 −LATE0

)
(
LATE1−LATE0

)
unrestricted ⇒ asymptotic bias arbitrarily large.
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Restricting treatment effect heterogeneity

Assumption 4 (vanishing treatment effect heterogeneity)(
LATE1 −LATE0

)
= O( 1√

n
) ⇔ supn

{√
n ·

(
LATE1 −LATE0

)}
< ∞.

Why could this make sense?

→ Equivalently: “TE heterogeneity is of the order of sampling var.”

→ Often times, applied researchers have a hard time detecting such
heterogeneity ⇒ must be of this order in a lot of relevant applications

Recap: credibility of our assumption

− in overpowered sciences (TE heterogeneity detected systematically)

+ in underpowered sciences (economics and social sciences seem to
fall in this category) where TE heterogeneity detected with difficulty

Comparison with alternatives in recent lit. Conclusion
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DGP 1 – a “best-case” scenario

DGP 1 in short:
• N = 1000

• 10 groups with ̸= shares of compliers (overall π = 0.25)
→ some with πg = 0 vs. others with above average πg

πG =(π1 = π2 = π3 = π8 = π9 = π10 = 0,

π4 = π7 ≈ 0.25, π5 = π6 ≈ 0.99)

• LATEg ≡ E[Y (1)− Y (0) |D(1) > D(0), G = g] correlated with πg

We vary the magnitude of the variance of treatment effects (TE), and
scale it with respect to e∗, the minimum detectable effect (MDE).
→ Objective = assess the robustness of our method (vs. alternatives)
to various magnitudes of TE heterogeneity. Alternative estimators
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DGP 2 – introduction of “weak” first-stages

DGP 2 in short:
• N = 1000

• 10 groups with ̸= shares of compliers (overall π = 0.25)
→ some with πg close to 0 vs. others with above average πg

πG =(π1 = π10 ≈ 0.001, π2 = π9 ≈ 0.08,

π3 = π8 ≈ 0.24, π4 = π7 ≈ 0.40, π5 = π6 ≈ 0.5)

• LATEg ≡ E[Y (1)− Y (0) |D(1) > D(0), G = g] correlated with πg

We vary the magnitude of the variance of treatment effects (TE), and
scale it with respect to e∗, the minimum detectable effect (MDE).
→ Objective = assess the robustness of our method (vs. alternatives)
to various magnitudes of TE heterogeneity.
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Practical guidance: When should we use TS?

✓ When treatment effect heterogeneity fails to be detected
→ relatively high p-value for test of H0: “no TE heterogeneity”
→ possibility to use ML-based tests for TE heterogeneity, e.g.

in Chernozhukov et al., 2021 or Athey, Tibshirani, and Wager, 2019

✓ When some non-compliance can be predicted by covariates
→ Use of contextual knowledge and/or ML prediction of TE het. in 1st stage

to use covariate info. in this step
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Conclusion

• New estimator (TS) of the LATE exploiting 1st-stage heterogeneity
→ builds on an intuitive estimation procedure
→ fixes pre-testing issue of näıve implementation
→ improves inference when non-compliance can be predicted

• TS estimator remains 1st-order unbiased for the LATE under
reasonable assumptions on treatment effect heterogeneity
→ ̸= from other estimators proposed in literature
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Variance gains

√
n
(
2̂SLSn − LATE

)
→d N (0, V 2SLS)

√
n

2̂SLS
1

n − LATE1︸ ︷︷ ︸
=LATE

 →d N (0, V 2SLS1

)

A closer look:

V 2SLS1

=
P [G = 1]

(π1)2
·
[

1

E[Z]
·Var[ε|Z = 1, G = 1] +

1

1− E[Z]
·Var[ε|Z = 0, G = 1]

]

V 2SLS =
1

(π)2︸︷︷︸
=(π1)2

·

 1

E[Z]
· V [ε|Z = 1]︸ ︷︷ ︸
≥P [G=1]·Var[ε|Z=1,G=1]

(law of tot. var.)

+
1

1− E[Z]
· V [ε|Z = 0]︸ ︷︷ ︸
≥P [G=1]·Var[ε|Z=0,G=1]

(law of tot. var.)


≥ V 2SLS1

where ε = Y − LATE ·D Back
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Restricting treatment effect heterogeneity Back Back MC

Comparison with alternatives in the literature(
LATE1−LATE0

)
= O(1/

√
n) vs. LATE1 = LATE0

• TE homogenous: optimal IV is given by
(E[D | Z = 1, X]− E[D | Z = 0, X])︸ ︷︷ ︸

=πx

· (Z − E[Z|X])

• TE heterogeneous: optimal IV targets a compliance-weighted LATE

c.w. -LATE ≡ E[πX · LATEX | D(1) > D(0)]

E[πX | D(1) > D(0)]

[Intuition: LATEX reweighted by (πX)2 instead of πX for the usual LATE.]

• TE heterogeneity = O(1/
√
n): 1st-order bias (Coussens and Spiess, ’21)

Cov(LATEX , πX | D(1) > D(0))

E[πX | D(1) > D(0)]

⇒ Usual CIs do not necessarily cover LATE at (1-nominal level)
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Why should we care about LATE? Back

The choice of estimand

• When Z is the policy instrument at hand for the planner, the LATE (or
equivalently the ITT) is a policy-relevant quantity.

• But “easiest” parameter to estimate is the compliance-weighted LATE
[Coussens and Spiess (2021) target this estimand]

Statistical decision theory

• Null hypothesis testing (NHST) famously difficult to motivate...

• Still: motivation of NHST on ITT [conjecture: can be adapted for LATE]

based on reference-dependence [Tetenov (2012), Banerjee et al. (2020)]

• Much more complicated for compliance-weighted LATE
[Conjecture: most straightforward way = planner has a social welfare

function with weights πx instead of uniform weights. Why would that be?]
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Why should we care about LATE? Back

What can we learn from compliance-weighted LATE?

• Inferring positivity of compliance-weighted LATE
⇒ There is some groups w/ positive LATE...
[Because compliance-weighted LATE is a convex avr. of conditional LATEs]

• If no TE heterogeneity:
compliance-weighted LATE = LATE = ATE

⇒ optimal estimator = compliance-weighted estimator

• If TE heterogeneity: LATE can still be < 0

• A compliance-weighted estimator could dominate in RMSE...
But no valid CIs can be derived if it is biased.

All in all: keeping the LATE as target parameter has important pros.
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