Outlier Robust Inference in the (Weak) IV Model

Jens Klooster, Mikhail Zhelonkin

Erasmus University Rotterdam

August 30, 2023

Motivation

- Outliers are widespread in empirical IV research (Young 2022).
- Frequently only one or two outlying observations.
- Several ways how outliers can harm inference.
- Inference in IV is typically done in two steps.
 - 1. First determine instrument's strength by means of F-test.
 - 2. Based on first stage result: use 2SLS estimator or weak instrument robust test.
- One outlier in any stage can break down the whole procedure.
- In particular, an outlier can cause an instrument to be "seemingly" strong.
- How can we solve this problem?

Motivation

- Robust estimation: Cohen Freue *et al.* (2013), Sølvsten (2020), Jiao (2022).
- What can we do when the instrument is weak?
- We show how to construct outlier robust AR, K and CLR tests.
- These tests are robust to outliers and weak instruments.
- Benefits of weak instrument robust tests:
 - 1. CLR test is known to have good power properties in the (homoskedastic) linear IV model irrespective of the strength of the instrument (Andrews, Stock, Moreira, 2006).
 - 2. Not necessary to rely on a pre-test.

Outline

- 1. The IV model
- 2. Classical tests: AR, K and CLR
- 3. Robustness properties
- 4. The robust AR, K and CLR tests

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 4/22

- 5. Simulation study
- 6. Empirical example

The IV model

• We assume data is generated according to the following model F_{θ} :

Structural equation: $y = x\beta + u$, First-stage equation: $x = z^{\top}\pi + v$.

- We are interested in testing the hypothesis H₀: β = β₀ against H₁: β ≠ β₀.
- ▶ We assume we observe data $d_i = (y_i, x_i, z_i^{\top})$ from Huber (1964) gross-error model:

$$F_t = (1-t)F_\theta + tG,$$

where G is assumed to be completely unknown.

The IV model

• We assume data is generated according to the following model F_{θ} :

Reduced form equation: $y = z^{\top} \delta + \epsilon$, First-stage equation: $x = z^{\top} \pi + v$,

where $\delta = \pi \beta$.

- We are interested in testing the hypothesis H₀: β = β₀ against H₁: β ≠ β₀.
- We assume we observe data d_i = (y_i, x_i, z_i[⊤]) from Huber (1964) gross-error model:

$$F_t = (1-t)F_\theta + tG,$$

where G is assumed to be completely unknown.

Classical tests: AR, K and CLR

• Under the null hypothesis $\beta = \beta_0$,

$$\delta - \pi \beta_0 = \pi \beta - \pi \beta_0 = 0.$$

Following Andrews, Stock and Sun (2019), we construct the AR, K and CLR statistics based on two statistics:

$$g = \hat{\delta} - \hat{\pi}\beta_0$$
$$D = \hat{\pi} - (\Sigma_{\pi\delta} - \Sigma_{\pi\pi}\beta_0) \Omega^{-1}g,$$

where $\hat{\delta}$ and $\hat{\pi}$ are LS estimators of $\delta = \pi \beta$ and π .

- ▶ g and D are asymptotically normal and uncorrelated.
- We can then introduce the AR, K and Wald statistic:

$$AR = g^{\top} \Omega^{-1} g, \quad W = D^{\top} \Psi^{-1} D, \quad K = g^{\top} D (D^{\top} \Omega D)^{-1} D^{\top} g,$$
$$CLR = \frac{1}{2} \left(AR - W + \sqrt{(AR - W)^2 + 4W \cdot K} \right).$$

Robustness properties

Let T denote a statistical functional, then the influence function is defined as

$$\mathsf{IF}(d; T, F) = \lim_{t\downarrow 0} \frac{T\left((1-t)F + t\Delta_d\right) - T(F)}{t},$$

where Δ_d denotes a point mass at the point d.

Maximum bias over the neighborhood described by the pertubations F_t = (1 - t)F + tG, where G is an arbitrary distribution, is approximately

$$\sup_{G} ||T(F_t) - T(F)|| \approx t \sup_{d} ||\operatorname{IF}(d; T, F)||.$$

Condition for (local) robustness is a bounded influence function.

Robustness properties

Proposition

Under the null hypothesis $\beta = \beta_0$ the influence function of the CLR statistic, conditional on $D = \tilde{D}$, is

$$\mathsf{IF}(d; \sqrt{CLR}, F_{\theta}) = \begin{cases} \mathsf{IF}(d; \sqrt{AR}, F_{\theta}), & \text{if } \tilde{D} = 0, \\ \mathsf{IF}(d; \sqrt{K}, F_{\theta}), & \text{if } |\tilde{D}| > 0 \end{cases}$$

The IFs of the AR and K statistic depend on the IF of g:

$$\mathsf{IF}(d; g, F_{\theta}) = \mathsf{IF}(d; \hat{\delta}, F_{\theta}) - \beta_0 \mathsf{IF}(d; \hat{\pi}, F_{\theta}).$$

- The IF of the LS estimators $\hat{\delta}$ and $\hat{\pi}$ are not bounded!
- One outlying observations can bias the estimators and this will affect the test statistics.

Robust AR, K and CLR statistics

We construct the robust AR, K and Wald statistic based on two statistics:

$$g = \hat{\delta}_M - \hat{\pi}_M \beta_0,$$

$$D = \hat{\pi}_M - (\Sigma_{\pi\delta} - \Sigma_{\pi\pi} \beta_0) \Omega^{-1} g,$$

where $\hat{\delta}_M$ and $\hat{\pi}_M$ are M-estimators with a bounded IF.

We can then introduce the robust AR, K and Wald statistics:

$$\begin{aligned} & \mathsf{RAR} = \mathsf{g}^\top \Omega^{-1} \mathsf{g}, \\ & \mathsf{RW} = \mathsf{D}^\top \Psi^{-1} \mathsf{D}, \\ & \mathsf{RK} = \mathsf{g}^\top \mathsf{D} (\mathsf{D}^\top \Omega \mathsf{D})^{-1} \mathsf{D}^\top \mathsf{g}. \end{aligned}$$

We can write the robust CLR statistic as follows:

$$RCLR = \frac{1}{2} \left(RAR - RW + \sqrt{(RAR - RW)^2 + 4RW \cdot RK} \right).$$

Robust CLR test

Proposition

Under the null hypothesis $\beta = \beta_0$ the influence function of the CLR statistic, conditional on $D = \tilde{D}$, is

$$\mathsf{IF}(d; \sqrt{RCLR}, F_{\theta}) = \begin{cases} \mathsf{IF}(d; \sqrt{RAR}, F_{\theta}), & \text{if } \tilde{D} = 0, \\ \mathsf{IF}(d; \sqrt{RK}, F_{\theta}), & \text{if } |\tilde{D}| > 0, \end{cases}$$

and is bounded.

Proposition

Under the null hypothesis $\beta = \beta_0$ it holds that conditional on $D = \tilde{D}$

$$nRCLR \xrightarrow{d} \frac{1}{2} \left(\chi_{k-1}^2 + \chi_1^2 - \tilde{W} + \sqrt{(\chi_{k-1}^2 + \chi_1^2 + \tilde{W})^2 - 4\tilde{W}\chi_{k-1}^2} \right),$$

where $\tilde{W} = \tilde{D}^{\top} \Psi^{-1} \tilde{D}$, χ^2_{k-1} and χ^2_1 are independent chi-squared distributed random variables with k-1 and 1 degrees of freedom.

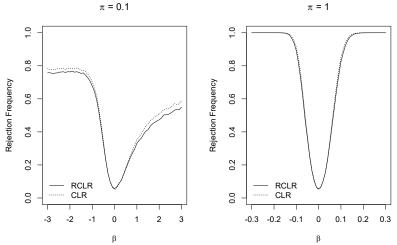
Simulation Study

We sample data from the model:

Second stage: $y = x\beta + u$, First stage: $x = z^{\top}\pi + v$.

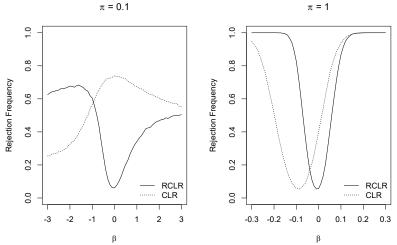
- We set n = 200, k = 5 and $\pi \in \{0.1, 1\}$.
- Each instrument is sampled from independent standard normal.
- We sample (u, v) from a bivariate normal with variances 1 and covariances 0.5.
- Test $H_0: \beta = 0$ at a 5% significance level.
- Consider three different settings:
 - 1. Setting without outliers.
 - 2. Setting where we set $y_1 = 20$ and $z_{11} = 5$.
 - 3. Setting where 20% of the errors are generated by a t(3)-distribution.

Simulation Study: no outlier



π = 1

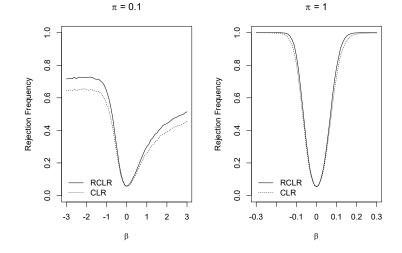
Simulation Study: large outlier



π = 0.1

A ID > A (P) > A э э 14/22

Simulation Study: "distributional" contamination



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - 釣�� 15/22

Empirical Example: Ananat (2011)

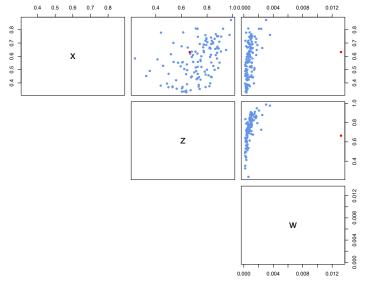
- Revisit Ananat (2011): "The wrong side(s) of the tracks: The causal effects of racial segregation on urban poverty and inequality"
- Following IV model is used:

Structural equation: $y = x\beta + w\gamma_1 + u$, First-stage equation: $x = z\pi + w\gamma_2 + v$,

where

- y: different poverty and inequality measures
- x: segregation
- z: railroad division index (instrument)
- w: length of the railroad track (control variable)
- Scatter plot of the data shows a large outlier in the control variable.

Empirical Example: Ananat (2011)



◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨーのへで 17/22

Empirical Example: Ananat (2011)

Specification	I	II		IV
	Gini index whites	Gini index blacks	Poverty rate whites	Poverty rate blacks
95% AR confidence set	(-0.64, -0.18)	(0.22, 2.15)	(-0.38, -0.09)	(0.00, 0.48)
95% RAR confidence set	$(-\infty,-0.12) \ \cup (1.62,\infty)$	$(-\infty, -3.79) \ \cup (0.19, \infty)$	$(-\infty,-0.08) \ \cup (0.90,\infty)$	$(-\infty,\infty)$
First-stage <i>F</i>	19.32	19.32	19.32	19.32
No. of observations	121	121	121	121

Large difference between AR and RAR confidence sets indicate the AR confidence set might not be reliable.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 18/22

Empirical Example: Angrist and Krueger (1991)

- Revisit Angrist and Krueger (1991): "Does Compulsory School Attendance Affect Schooling and Earnings?"
- Replicate the Staiger and Stock (1997) specifications.
- Following IV model is used:

Structural equation: $y = x\beta + w^{\top}\gamma_1 + u$, First-stage equation: $x = z^{\top}\pi + w^{\top}\gamma_2 + v$,

where

- y is the wage
- x is the education level
- z are quarter of birth (QOB) instruments
- w are (base) control variables (age, age², SOB)
- Recently Sølvsten (2020) shows distribution of residuals fit better with t(3) than normal. However, reasonably normal in the center.
- Reminiscent of the "distributional" contamination.

Empirical Example: Angrist and Krueger (1991)

Specification	I	II	111*	IV
95% CLR confidence set	[0.042, 0.136]	[0.026, 0.116]	[-0.069, 0.274]	[-0.070, 0.261]
95% RCLR confidence set	[0.047, 0.122]	[0.032, 0.100]	[-0.044, 0.185]	[-0.053, 0.172]
First-stage F	30.53	4.74	2.43	1.87
controls (w)				
Base controls	Yes	Yes	Yes	Yes
SOB	No	No	Yes	Yes
Age, Age ²	No	No	No	Yes
Instruments (z)				
QOB	Yes	Yes	Yes	Yes
QOB*YOB	No	Yes	Yes	Yes
QOB*SOB	No	No	Yes	Yes
No. of instruments	3	30	180	178
Observations	329,509	329,509	329,509	329,509

Summary

- Outliers are widespread in empirical IV research.
- Showed how to robustify the AR, K and CLR tests.
- ▶ The robust tests are robust against outliers (and weak instruments).

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 21/22

Can be used as a robustness check or stand-alone method!

The end

Thank you for your time!

