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Motivation

▶ Outliers are widespread in empirical IV research (Young 2022).

▶ Frequently only one or two outlying observations.

▶ Several ways how outliers can harm inference.
▶ Inference in IV is typically done in two steps.

1. First determine instrument’s strength by means of F-test.
2. Based on first stage result: use 2SLS estimator or weak instrument

robust test.

▶ One outlier in any stage can break down the whole procedure.

▶ In particular, an outlier can cause an instrument to be “seemingly”
strong.

▶ How can we solve this problem?
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Motivation

▶ Robust estimation: Cohen Freue et al. (2013), Sølvsten (2020), Jiao
(2022).

▶ What can we do when the instrument is weak?

▶ We show how to construct outlier robust AR, K and CLR tests.

▶ These tests are robust to outliers and weak instruments.
▶ Benefits of weak instrument robust tests:

1. CLR test is known to have good power properties in the
(homoskedastic) linear IV model irrespective of the strength of the
instrument (Andrews, Stock, Moreira, 2006).

2. Not necessary to rely on a pre-test.
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Outline

1. The IV model

2. Classical tests: AR, K and CLR

3. Robustness properties

4. The robust AR, K and CLR tests

5. Simulation study

6. Empirical example



5/22

The IV model

▶ We assume data is generated according to the following model Fθ:

Structural equation: y = xβ + u,

First-stage equation: x = z⊤π + v .

▶ We are interested in testing the hypothesis H0 : β = β0 against
H1 : β ̸= β0.

▶ We assume we observe data di = (yi , xi , z
⊤
i ) from Huber (1964)

gross-error model:

Ft = (1− t)Fθ + tG ,

where G is assumed to be completely unknown.



6/22

The IV model

▶ We assume data is generated according to the following model Fθ:

Reduced form equation: y = z⊤δ + ϵ,

First-stage equation: x = z⊤π + v ,

where δ = πβ.

▶ We are interested in testing the hypothesis H0 : β = β0 against
H1 : β ̸= β0.

▶ We assume we observe data di = (yi , xi , z
⊤
i ) from Huber (1964)

gross-error model:

Ft = (1− t)Fθ + tG ,

where G is assumed to be completely unknown.
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Classical tests: AR, K and CLR
▶ Under the null hypothesis β = β0,

δ − πβ0 = πβ − πβ0 = 0.

▶ Following Andrews, Stock and Sun (2019), we construct the AR, K
and CLR statistics based on two statistics:

g = δ̂ − π̂β0

D = π̂ − (Σπδ − Σππβ0) Ω
−1g ,

where δ̂ and π̂ are LS estimators of δ = πβ and π.

▶ g and D are asymptotically normal and uncorrelated.

▶ We can then introduce the AR, K and Wald statistic:

AR = g⊤Ω−1g , W = D⊤Ψ−1D, K = g⊤D(D⊤ΩD)−1D⊤g ,

CLR =
1

2

(
AR −W +

√
(AR −W )2 + 4W · K

)
.
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Robustness properties

▶ Let T denote a statistical functional, then the influence function is
defined as

IF(d ;T ,F ) = lim
t↓0

T ((1− t)F + t∆d)− T (F )

t
,

where ∆d denotes a point mass at the point d .

▶ Maximum bias over the neighborhood described by the pertubations
Ft = (1− t)F + tG , where G is an arbitrary distribution, is
approximately

sup
G

||T (Ft)− T (F )|| ≈ t sup
d

|| IF(d ;T ,F )||.

▶ Condition for (local) robustness is a bounded influence function.
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Robustness properties

Proposition

Under the null hypothesis β = β0 the influence function of the CLR
statistic, conditional on D = D̃, is

IF(d ;
√
CLR,Fθ) =

{
IF(d ;

√
AR,Fθ), if D̃ = 0,

IF(d ;
√
K ,Fθ), if |D̃| > 0.

▶ The IFs of the AR and K statistic depend on the IF of g :

IF(d ; g ,Fθ) = IF(d ; δ̂,Fθ)− β0IF(d ; π̂,Fθ).

▶ The IF of the LS estimators δ̂ and π̂ are not bounded!

▶ One outlying observations can bias the estimators and this will
affect the test statistics.
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Robust AR, K and CLR statistics
▶ We construct the robust AR, K and Wald statistic based on two

statistics:

g = δ̂M − π̂Mβ0,

D = π̂M − (Σπδ − Σππβ0) Ω
−1g ,

where δ̂M and π̂M are M-estimators with a bounded IF.

▶ We can then introduce the robust AR, K and Wald statistics:

RAR = g⊤Ω−1g ,

RW = D⊤Ψ−1D,

RK = g⊤D(D⊤ΩD)−1D⊤g .

▶ We can write the robust CLR statistic as follows:

RCLR =
1

2

(
RAR − RW +

√
(RAR − RW )2 + 4RW · RK

)
.
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Robust CLR test

Proposition

Under the null hypothesis β = β0 the influence function of the CLR
statistic, conditional on D = D̃, is

IF(d ;
√
RCLR,Fθ) =

{
IF(d ;

√
RAR,Fθ), if D̃ = 0,

IF(d ;
√
RK ,Fθ), if |D̃| > 0,

and is bounded.

Proposition

Under the null hypothesis β = β0 it holds that conditional on D = D̃

nRCLR
d→ 1

2

(
χ2
k−1 + χ2

1 − W̃ +
√

(χ2
k−1 + χ2

1 + W̃ )2 − 4W̃χ2
k−1

)
,

where W̃ = D̃⊤Ψ−1D̃, χ2
k−1 and χ2

1 are independent chi-squared
distributed random variables with k − 1 and 1 degrees of freedom.
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Simulation Study

▶ We sample data from the model:

Second stage: y = xβ + u,

First stage: x = z⊤π + v .

▶ We set n = 200, k = 5 and π ∈ {0.1, 1}.
▶ Each instrument is sampled from independent standard normal.

▶ We sample (u, v) from a bivariate normal with variances 1 and
covariances 0.5.

▶ Test H0 : β = 0 at a 5% significance level.
▶ Consider three different settings:

1. Setting without outliers.
2. Setting where we set y1 = 20 and z11 = 5.
3. Setting where 20% of the errors are generated by a t(3)-distribution.
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Simulation Study: no outlier
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Simulation Study: large outlier
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Simulation Study: “distributional” contamination
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Empirical Example: Ananat (2011)

▶ Revisit Ananat (2011): “The wrong side(s) of the tracks: The
causal effects of racial segregation on urban poverty and inequality”

▶ Following IV model is used:

Structural equation: y = xβ + wγ1 + u,

First-stage equation: x = zπ + wγ2 + v ,

where
▶ y : different poverty and inequality measures
▶ x : segregation
▶ z : railroad division index (instrument)
▶ w : length of the railroad track (control variable)

▶ Scatter plot of the data shows a large outlier in the control variable.
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Empirical Example: Ananat (2011)
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Empirical Example: Ananat (2011)

Specification I II III IV
Gini index
whites

Gini index
blacks

Poverty rate
whites

Poverty rate
blacks

95% AR confidence set (−0.64,−0.18) (0.22, 2.15) (−0.38,−0.09) (0.00, 0.48)

95% RAR confidence set
(−∞,−0.12)
∪(1.62,∞)

(−∞,−3.79)
∪(0.19,∞)

(−∞,−0.08)
∪(0.90,∞)

(−∞,∞)

First-stage F 19.32 19.32 19.32 19.32
No. of observations 121 121 121 121

▶ Large difference between AR and RAR confidence sets indicate the
AR confidence set might not be reliable.
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Empirical Example: Angrist and Krueger (1991)

▶ Revisit Angrist and Krueger (1991): “Does Compulsory School
Attendance Affect Schooling and Earnings?”

▶ Replicate the Staiger and Stock (1997) specifications.

▶ Following IV model is used:

Structural equation: y = xβ + w⊤γ1 + u,

First-stage equation: x = z⊤π + w⊤γ2 + v ,

where
▶ y is the wage
▶ x is the education level
▶ z are quarter of birth (QOB) instruments
▶ w are (base) control variables (age, age2, SOB)

▶ Recently Sølvsten (2020) shows distribution of residuals fit better
with t(3) than normal. However, reasonably normal in the center.

▶ Reminiscent of the “distributional” contamination.
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Empirical Example: Angrist and Krueger (1991)

Specification I II III∗ IV

95% CLR confidence set [0.042, 0.136] [0.026, 0.116] [−0.069, 0.274] [−0.070, 0.261]
95% RCLR confidence set [0.047, 0.122] [0.032, 0.100] [−0.044, 0.185] [−0.053, 0.172]
First-stage F 30.53 4.74 2.43 1.87
controls (w)
Base controls Yes Yes Yes Yes
SOB No No Yes Yes
Age, Age2 No No No Yes
Instruments (z)
QOB Yes Yes Yes Yes
QOB*YOB No Yes Yes Yes
QOB*SOB No No Yes Yes
No. of instruments 3 30 180 178
Observations 329,509 329,509 329,509 329,509
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Summary

▶ Outliers are widespread in empirical IV research.

▶ Showed how to robustify the AR, K and CLR tests.

▶ The robust tests are robust against outliers (and weak instruments).

▶ Can be used as a robustness check or stand-alone method!
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The end

Thank you for your time!


