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Abstract

We study the value of a cooperative solution to the global climate externality problem

in a world that is uncertain and dynamic. Our analysis incorporates negative emissions

technologies that seem critical to resolve the crisis, especially if the climate future proves

catastrophic. We generalize earlier theoretical results for Lindahl’s equilibrium, and in-

tegrate with an up-to-date version of Nordhaus’s pioneering RICE-model to quantify

regional economic impacts. Low-income regions end up with the highest relative value

of cooperation through three distinct channels: lower damages, equilibrium compensa-

tions, and burden sharing of abatement actions.
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1 Introduction

“Here, in Paris, we can show the world what is possible when we come to-

gether, united in common effort and by a common purpose.”

—Barack Obama, speaking to the COP21.

International negotiations on climate change are challenged by conflicting interests among

stakeholders and trade-offs between future uncertainty and the short-term costs of action.

This article addresses both these concerns jointly. In particular, we study the value of

cooperation and explore the returns of far-reaching technologies that could cushion the most

disastrous climatic outcomes. We evoke Lindahl’s solution as our cooperative equilibrium

concept in a setting where multiple regions dynamically adjust to an uncertain climatic

future, and quantify outcomes.

Reaching an agreement on global climate change policy is particularly convoluted because

of uncertainty that stems from three distinct channels: 1) nature reveals the impacts of

today’s emissions on climate with a delay, 2) economic damages in the out-of-sample future

are hard to predict, and 3) the possibilities of novel future technologies to resolve the crisis

remain under-explored. Both climate change impacts and the initial economic endowments

are heterogeneous across regions, adding to tensions in the labyrinthine negotiations. Our

model is motivated by the possibility to include uncertainties explicitly: trying to reach

consensus on, e.g., a global carbon tax, is bound to be more difficult than agreeing on the

potential range of outcomes and available responses1. We thus agree with Barnett, Brock

and Hansen (2022) that “. . . uncertainty considerations should remain as first-order concerns

and not be shunted to the background as they often are in policy discussions”.

Lindahl’s solution to the public good allocation problem is to find a global level of taxes

that everyone agrees on, given the personalized reimbursements that the collected taxes fund.

Our theoretical contribution is to generalize the static and deterministic early results on Lin-

dahl equilibrium – the seminal papers in the context of climate change are Chichilnisky, Heal

and Starrett (1993);Chichilnisky and Heal (1994);Mäler and Uzawa (1994) – to a world that
1E.g., Battaglini and Harstad (2020) show how political economy considerations limit the ability to

commit to strong climate treaties.
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is dynamic and uncertain and consensus is sought over time and over a variety of potential

states of nature2. We implement carbon pricing through a tradeable emissions permit system

that enables smoothing of consumption across regions and we include financial markets for

smoothing over time. Unanimity on permit prices in each contingency over time determines

the global emissions reduction ambition. Our solution concept is based on Negishi (1972)’s

existence proof of the competitive equilibrium: We formulate the equilibrium conditions of

Lindahl’s allocation as a social welfare maximization problem, with appropriately weighted

regional utilities, and prove the existence of the equilibrium3. We show that the resulting

equilibrium can implement the first-best solution, at least under reasonable assumptions

about the economic and climate primitives4. Notably, Lindahl’s equilibrium also gives us

well-founded motivation for social planner’s weighting of regional utilities.

The theoretical conceptualizations above lead to a computationally non-trivial exercise.

Stakeholders’ equilibrium willingness-to-pay values depend on intricate climate–economy

interactions that need to be solved simultaneously with the equilibrium conditions. Our

empirical approach is novel and offers gains in versatility and transparency over the past

literature. We opt for the RICE model (Nordhaus and Yang, 1996, 2021) as our point of

departure as it provides an establsihed calibration of the climate and economic interde-

pendencies, sufficient for our quantitative aims5. Our closest correspondence in building a

dynamic integrated-assessment model with uncertainty and heterogeneous regions is with

Hassler and Krusell (2012), yet they rely on a more stylized model and abstract away from

global equilibrium solutions. More recent work has abstracted away from uncertainties to
2We abstract away from incentives of the parties to do so, see, e.g., Hoel and Schneider (1997) and

Weikard, Finus and Altamirano-Cabrera (2006).
3We construct the proof directly. The existence of static Lindahl’s equilibrium in Foley (1970) follows

from general equilibrium concepts: Public goods are included in consumption bundle, and then the ”public

competitive equilibrium” can be defined for general economies, including non-convex ones (see Murty, 2010).
4Conceptually this is not surprising: Lindahl’s equilibrium is connected to efficiency in static and de-

terministic climate applications (Chichilnisky, Heal and Starrett, 1993), in design of efficient compensation

mechanisms (Varian, 1994), and in efficient uniform price auctions for public goods where an optimal VCG

mechanism can be given an interpretation of Lindahlian flavor (Montero, 2008).
5Despite the simple structure of RICE, as shown by, e.g., Golosov et al. (2014); Gerlagh and Liski (2016),

even more compressed models can be sufficient to capture key climate dynamics.
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either focus on key economics, as in, e.g., Barrage (2020) who studies the question of op-

timal carbon taxes in the presence of other distortionary taxes, or more detailed climate

models, see, e.g., Krusell and Smith (2022); Cruz and Rossi-Hansberg (2023). Our aim is

for the middle ground, keeping the foundations of the well-known RICE model mostly intact

even as we incorporate the latest research on key climate and economic uncertainties.6

Our main contribution is to the study of negative emissions technologies that could shape

the environmental state directly. Though these technologies seem like science fiction today,

they appear to be instrumental especially in catastrophic climate outcomes. We use a flexible

probabilistic representation, a model that has path dependent draws for the state of nature

realized over time, to capture the possibility of a catastrophe over the current range of

plausible estimates of key uncertainties7. One can interpret the catastrophe as a sudden

substantial markdown in the carbon budget available for a relatively safe climate future; the

increased scarcity then necessitates a more immediate response from a backstop technology

(see Nordhaus, 1973; also Liski and Murto, 2006).

Our integrated assessment model reproduces many of the earlier findings. First, while

global emissions fall, the slow removal of current carbon stocks leads to a warming planet

(e.g., Rogelj et al., 2019), and even ambitious reductions in emissions/output ratios appear

insufficient to meet climate targets – still true in a cooperative solution. Second, as in, e.g.,

Lemoine (2021), we find that uncertainty increases the social cost of carbon; however, this

result is diluted if negative emissions technology is successfully deployed as the adverse tail

of the outcomes is removed. Third, like, e.g., Crost and Traeger (2014), we find uncertainty

about economic damages less relevant than uncertainty about temperature sensitivity. These

results hold true in Lindahl’s equilbrium, in which the economic and environmental impacts

seem identical with the first-best allocation in our configurations8; however, the social planner

is indifferent to the distribution of consumption among the world regions.

The literature on quantitative comparisons between cooperative and non-cooperative
6We use an updated model for climate dynamics, as in Barnett, Brock and Hansen (2022), we use Geoffroy

et al. (2013) as the starting point; see also Dietz et al. (2021). Also, we favor more stringent economic damages

than the default polynomial form in RICE, and opt for exponential damages akin to Weitzman (2009).
7This formulation follows naturally from stochastic programming, see, e.g., Wets (1989).
8See Shiell (2003) for a discussion.
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allocations has been thin.9 Perhaps surprisingly, the present value of the expected aggregate

over-time consumption in Lindahl’s allocation is only marginally higher than in Cournot–

Nash competition between the regions in moderate climatic futures. However, compared to

the cooperative equilibrium, competing regions consume more and abate less in the short-

term, exposing them to damages that are greater later on, especially if an adverse draw from

climatic uncertainties is realized. In our baseline configuration, damages in a catastrophic

scenario wipe out around half of global output by the mid 22nd century if regions continue

to compete against each other, whereas the damages are “only” around one-third in the

cooperative solution. The relative gains from cooperation differ between regions; however,

all regions gain, particularly some of the poorest parts of Africa and Asia.

Our main novelty is to allow for a negative emissions technology and study its global

and regional impacts under uncertainty10. Strikingly, in the non-cooperative solution, the

high-income regions free-ride on the abatement actions of the poorer regions as the high-

income regions mostly are also the ones most resilient to the warming climate11. As in the

global analysis of Cai and Lontzek (2019), high damages in the catastrophic scenario imply

high insurance value to the new technology. Depending on the probability of successful

technology deployment, the present value of a negative emissions technology is in trillions of

U.S. dollars in the cooperative solution. If no agreement is reached, the regions that face the

highest damages will be forced to employ negative emissions technology, but this enforces

the free-riding potential of the high-income regions. In the cooperative regime, high-income

regions contribute to the uptake of the technology much earlier, leading to shared benefit

from the improved state of the environment.

Combined, our results point to several policy implications: 1) cooperation improves ef-

ficiencies at least close to the first best level, 2) not cooperating contributes to worsening
9Kotchen (2018) and Groot and Swart (2018) share some of our research motivations but operate with

more stylized models, as do Van der Ploeg and de Zeeuw (2016) who study the differences with a two region

model.
10We study Direct Air Capture (DAC), one potential future technology, see, e.g., National Academies of

Sciences (2019). Note that while DAC technologies share the benefits of geoengineering, they seem less risky,

cf. Barrett (2008).
11Like in the more stylized model of Jaakkola and Van der Ploeg (2019).
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climate conditions that wipe out the economic gains from the short-term use of additional

emissions, 3) redistributions can make all regions better off with Lindahl’s allocation com-

pared to the non-cooperative outcomes, and 4) benefits from cooperation are large for the

more vulnerable regions. Finally, a general interpretation of the results is that the rich

countries could fund the public good technology development as a politically acceptable con-

tribution to a global climate agreement. As a related example, the U.S. recently allocated

$3.7 billion for such technology development12.

Finally, the list of caveats to our quantification is long and well-documented. First

thing to note is the choice of discounting rate; our main analysis is done with 3%, a lower

value would place a higher weight on future generations’ welfare. For a critical discussion

of the other modeling assumptions in integrated assessment models, see Pindyck (2013),

which we subscribe to, to a large extent. Switching to a more modern economic model

could provide a deeper view on the mechanisms of adaptation to the changing climate in

areas such as endogenous technology growth, energy sector involvement, migration, or trade,

but a universally accepted way into incorporate all these aspects to one single model is

still lacking13. We also steer clear of the discussion on the uncertainty about uncertainty

as other emerging work is documenting the implications14 We reemphasize the scope of

our quantification: it is not to learn about a precise tax level that shall never be globally

implemented, but to understand the interplay between regional tensions, uncertainty, and

the possibility of new negative emissions technologies.

The paper proceeds as follows. We start with a stylized illustration in Section 2. Section 3

introduces the theory and computation of dynamic Lindahl equilibrium under uncertainty.

Section 4 discusses the computational results and Section 5 concludes. All proofs are in

Appendix D, and Online Appendix B explains how the RICE-2020 model is adapted to

implement our Lindahl equilibrium model.
12Funding to develop carbon dioxide removal industry (source: U.S. DOE, 22 Dec 2022).
13See, e.g., Gillingham et al. (2018).
14E.g., Jensen and Traeger (2021) in addition to Barnett, Brock and Hansen (2022).
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2 Static illustration

2.1 Lindahl’s equilibrium

Lindahl (1919)’s proposition was based on the ideal of a political bargaining protocol where

all sensible actors would reach unanimity on the level of public good provision and its financ-

ing. We will use the following interpretation of Lindahl’s equilibrium. While the theory is

applicable in more generality, we are steered by our climate setting: Regions produce with a

polluting technology to enjoy private consumption but face a common global externality that

reduces output. Each region chooses its own level of production that results in a negative

global externality that can be reduced with costly abatement actions. We also assume the

existence of an international market for tradable pollution permits and financial markets.

Lindahl’s equilibrium. Four conditions hold in all states of nature over time: (1) regions

reach unanimity on preferred global emissions, (2) local production decisions are consistent

with global emissions, (3) net emission charges sum up to zero, and (4) financial positions

are globally balanced.

The behavioral assumptions behind Lindahl’s solution are strong: the parties report

their preferences truthfully and everyone commits to its implementation. As critiqued by

Samuelson (1954), such information disclosure is not in everyone’s best interest, breaking

down the equilibrium. Also, with global problems, outside intervention cannot be provided,

which makes it difficult to sustain agreement over the extended time span required (see,

e.g., Baliga and Maskin, 2003). To counterbalance Samuelson’s criticism, we argue that the

quantified Lindhal’s solution, with uncertainties, can help to structure climate negotiations

as no party has superior private information on their valuations over the coming decades

and centuries. Moreover, our results suggest that if the compensations required are paid as

investments in technology development, shorter commitment periods may suffice.

2.2 Static and deterministic model of two regions

To fix ideas, consider first a highly stylized climate version of Lindahl’s original idea. The

planet is divided into two regions, the North and the South. The output of region i is given
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by yi = yi(ki,li,ei,x) with capital ki, labor li, and emissions ei as inputs. Production is

heterogeneously affected by the global state of the environment x that deteriorates based on

total emissions e =
∑

i ei with some rate f . For the regions, reducing emissions is increasing

costly; hence, yi is increasing with ei. Consumption of region i is ci, yielding per capita

utility u(ci/li) where the utility function is assumed to be concave. In the static model

without transfers, all output is consumed immediately and we have ci = yi.

Lindahl’s solution is to seek unanimity on the state of the global climate, in this stylized

illustration determined directly based on the level of total emissions, and to agree on the

burden sharing of the costly actions required to mitigate the externality. We construct

Lindahl’s equilibrium through two variants of cooperation: First, we start with a world

where cooperation is possible but emissions trading is not, i.e., conditions (1) and (2) above

are fulfilled. Second, we show how a combination of emissions pricing and compensations can

be used to reach efficiency, even as we require that condition (3) is also met. The full model

in use from Section 3 onward is with emissions pricing and compensations, and includes

financial markets for the over-time smoothing of consumption.

To see how Lindahl’s equilibrium is reached in the simple setup, let both regions report

their desired level of total emissions, e, as a function of the share of the total emissions they

can use for their private production; in effect regions agree on a global emissions quota and

its regional allocation. Figure 1 offers an illustration where a growing share of emissions is

allocated to the North and the remainder to the South15. Given a fixed quota, each region

will choose a level of output that trades-off its marginal cost of abatement ∂yi/∂ei with

marginal damages from the deteriorating state of the environment ∂yi/∂x. Initially, the

larger the quota a region receives, the larger the total emissions it is willing to accept, but

the trend can reverse if marginal costs differ; in Figure 1 the preferred emissions of the North

decline with higher allocations as abatement is costlier for it than the South. However, if the

non-convexities related to the externality are weak enough in the relevant subset of possible

production decisions, there is a unique equilibrium allocation of emissions so that the choice

of global emissions is unanimous, this is Point A in Figure 1.

The first-best solution may deviate from cooperative equilibrium as the planner maxi-
15Online Appendix A provides details of the primitives and computations used in Figure 1
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Figure 1: Lindahl’s equilibrium
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Notes: Solid line represent the desired emissions of the North and the thin dashed line of the South as a

function of the allocation between the two regions (0 = all emissions are allocated to the South, 1 = all

emissions are allocated to the North). Efficient frontier (bold blue dashed line) shows the emission quota

that a social planner would choose given the allocation of the quota between the regions. Point A is the

agreed allocation if transfers are not possible. Point B is Lindahl’s equilibrium that includes emissions trade

and implements also the first-best. Point C is the non-cooperative Cournot-Nash equilibrium.

mizes output by allocating abatement actions so that marginal costs equalize across regions.

Here social planner’s allocation, Point B in Figure 1, increases the aggregate consumption,

and utility, over the first cooperative equilibrium (Point A). As is well-known, if lump-sum

transfers are not available across national borders, the traditional separation between equity

and efficiency breaks down on policies for global public goods (see, e.g., Sandmo, 2003)16, but

allowing for indirect transfers via emissions pricing may or may not be sufficient to support

the efficient allocation17. Cost sharing can proceed as follows: regional emissions ei are taxed
16Though the discussion here is disguised under neutral terms, the choice of an equilibrium concept is

a normative one: In Lindahl’s solution the initial endowments of stakeholders are taken as given, see e.g.

Stanton (2011) for a discussion. Other equity considerations could be included as well (see, e.g., Anthoff and

Emmerling, 2019 for global equity questions), but we entertain no such causes for this paper.
17The static case is analyzed in Chichilnisky, Heal and Starrett (1993). Also Varian (1994) discusses the

sufficiency of linear pricing to sustain the first-best equilibrium.
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at a global rate P and each of the regions gets compensation, Pie, based on total emissions

e at personalized rates Pi. In equilibrium, tax finances compensations so that
∑

i Pi = P

because
∑

i ei = e. This is Lindahl’s equilibrium: regions agree on 1) the level of global

emissions e, 2) their regional production decisions are aligned with the total emissions, and

3) the emissions charges sum up to zero. There is no difference between Lindahl’s solution

and the planner’s allocation in this static case, and the differences are minute even in our

full model; we elaborate on this below.

The non-cooperative solution, where regions compete à la Cournot, leads to substan-

tially higher emissions than the cooperative allocation. Each region makes an independent

output decision based on the same trade-off between the marginal cost of abatement and

global damages but with no regard to the allocation of emissions between the regions. If

best response functions are concave, again at least empirically in the relevant part of the

strategy space, an unique pure strategy Nash equilibrium is found; see Point C in Fig. 1. In

this stylized illustration, the gains from self-serving production decisions lead to lower total

output than in the cooperative solution, but the distributional impacts are heterogeneous;

in the numerical example the North gaining at the expense of the South.

Final step is to show how the equilibrium tax and compensation prices in Lindahl’s

allocation are determined. In the stylized model used in Fig. 1, the prices can be derived

analytically, but this does not hold for more complex settings. Following Negishi (1972),

we show how the equilibrium conditions of Lindahl’s allocation coincide with the following

social welfare maximization problem with appropriately selected weights λi for the utilities

of the regions:

max
∑
i

λiui(ci/li)

s.t. ∑
i

( ci − yi ) = 0 (d)

−x+ f
∑
i

ei = 0 (µ)

where d is the shadow price associated with the budget balance constraint and µ with the

environmental state equation. Denoting with u′i = ∂ui/∂ci, yei = ∂yi/∂ei, and yxi = ∂yi/∂x,
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optimality (dual feasibility) requires

λiu
′
i = d, dyei = µf and d

∑
i

yxi = −µ.

Given a global emissions tax P and a compensation price Pi, the problem of region i is to

find consumption ci, output yi, local emissions ei, global emissions e preferred by i, and

environmental state x to

maxλiui(ci/li)

s.t.

ci − yi + Pei − Pie = 0 (di)

−x+ fe = 0 (µi)

where di and µi are shadow prices, and optimality requires

λiu
′
i = di, P = yei , diy

x
i = −µi and diPi = µif.

In equilibrium, the Negishi weights λi are such that optimal ci, yi x, ei and e =
∑

i ei for the

global problem are optimal for the local problems as well. Then the following conditions must

hold: i) the marginal value of consumption across regions is equal, di = d, ii) the marginal

value of emissions reductions globally normalized with the marginal value of consumption

gives the global tax, P = µf/d, iii) the normalized marginal value of emissions reductions

for the region gives the compensation rate Pi = µif/d, and iv) budgets balance in all regions

ci − yi + Pei − Pie = 0. The first three conditions follow from optimality conditions of

the global and local problems. In Section 3.3 we propose an algorithm to find weights λi

for resolving the budget issue. Such optimal solutions for the local problems constitute a

Lindahl equilibrium satisfying the conditions stated above. The next Section shows that the

principles above carry to the dynamic and stochastic models as well.
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3 Dynamic Lindahl equilibrium under uncertainty

Generalization of Lindahl’s equilibrium to a setting where multiple regions make state depen-

dent production decisions over time requires several steps18. We continue by first introducing

how uncertainty is brought into the model in Section 3.1. In Section 3.2, we describe the op-

timization problem each of the regions faces and state the equilibrium conditions. Section 3.3

introduces the global problem and includes the main theory for the existence and efficiency of

Lindahl’s equilibrium as well as the computational algorithm to find one. Finally, Section 3.4

shows how emissions trading is incorporated into the model.

3.1 Preliminaries for dynamic and stochastic models

We employ a discrete time approach, where T periods are defined by time stages t =

0,1, . . . ,T ; i.e., the time horizon is subdivided into T periods. An index t < T also refers

to a period between stages t and t + 1. For convenience, let the time span of period t be a

constant ∆.

Uncertainty is captured by a discrete set of states of nature at each time stage. The

realizations of uncertainties are path dependent so that over time they are represented by a

scenario tree; for an example, see Figure 2. We adopt the following simplifying notation. Let

n ≥ 0 denote a node of the scenario tree with n = 0 referring to the root. For n ̸= 0, let n−

denote the predecessor of node n. Let E be the set of terminal state nodes in stage T and

F the set of final control nodes in stage T − 1. For all nodes n, let n+ denote an immediate

successor node of n and let Sn be the set of all such successor nodes n+. For terminal nodes

n ∈ E, Sn is an empty set. Hence, for all s ∈ Sn, we have s− = n. If node n appears at

stage t then the predecessor node n− is at stage t− 1, and the successor nodes n+ ∈ Sn are

at stage t + 1. A node n in stage t < T also refers to a period between stages t and t + 1

starting with n; for example, emissions in node n refers to emissions during the period. The

probability of attaining node n is πn > 0, for all n.
18Earlier generalizations of Lindahl’s solution exist, for instance, in Foley (1970), Kaneko (1977), and

Mas-Colell and Silvestre (1989), but they do not cover our setting.
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3.2 Equilibium conditions

Before writing Lindahl’s equilibrium conditions for the global allocation problem we describe

how the local interests of stakeholders are formed. Consider the world subdivided into N

regions i = 1,2, . . . ,N . Preferences of region i are characterized by the expected utility

of a stochastic consumption stream over time. If vector ci = (cit) denotes a deterministic

consumption stream, such that cit ≥ 0 is the level of consumption of region i in period t, for

t = 0,1,2, . . . ,T − 1, then an additive utility function of region i is

ui(ci) =
∑
t<T

ρitvi(cit), (1)

where ρit is an exogenous parameter accounting for time preference and vi(c) is a utility

function. We assume the following:

Assumption A0: Utility functions vi(ci) ∈ C1 are increasing and strictly concave, with

v′i(ci) → ∞ as ci → 0.

The state of global environment at node n is given by vector xn. In the climate applica-

tion, component xa,n denotes the average atmospheric temperature above the pre-industrial

level and xc,n the global atmospheric CO2 concentration. Other components of xn may in-

clude average ocean temperature and carbon stocks in land and oceans. The level of CO2

emissions ein of region i in node n ̸∈ E is endogenous. Given global emissions en =
∑

i ein,

the state xn of the global environment is incremented by fen, where the column vector f is

a unit vector with a component 1 assigned to increment the atmospheric carbon xc,n. For

the local problem, en = ein denotes the global emissions preferred by region i. The impact

of the preceding state xn− during the period is given by a continuously differentiable vector

valued function M(xn−) so that the state dynamics is given, for all nodes n, by

−xn +M(xn−) + fein− = gn− ∀ n (µin). (2)

where gn− is exogenous. The initial state x0 is exogenously fixed; it is formally defined in (2)

by exogenous preceding levels x0− , e0− and g0− . Parameter µin is the vector of dual variables

of constraint (2) of the local optimization problem.

13



Let yin denote the output per period of the consumption good in region i at node n ̸∈ E.

The output satisfies

yin − ψin(kin,lin,ein,xa,n) ≤ 0 ∀ n ̸∈ E (ηin). (3)

where the production function ψin depends on an exogenous labour lin and three endogenous

attributes: capital stock kin and the emissions ein of region i, and average global atmospheric

temperature xa,n whose increase causes damage losses. Above, ηin is the dual variable of the

equation (3) in the local optimization problem.

Assumption A1: Production functions ψin(kin,lin,ein,xa,n) are strictly concave, strictly

increasing in kin, lin and ein, strictly decreasing in xa,n, and differentiable with continuous

partial derivatives.

In each node n ̸∈ E, investments zin increment the capital stock at node n+ ∈ Sn. Due to

depreciation, capital stock at the predecessor node depreciates during the period by factor

δk, 0 < δk < 1. Hence, the capital stock dynamics of region i is given, for all nodes n, by

kin − δkkin− − zi,n− = 0 ∀ n (νin) (4)

where the initial capital stock ki0 in (4) is exogenous defined by ki0− and zi,0− = 0, and νin

denotes the dual variable of the constraint (4) in the local optimization problem.

For all n ̸∈ E, let Pn denote the price used to charge region i for its emissions ein and Pin

the price to compensate region i for global emissions en. Hence, the net payments of charges

and compensations, the side-payments, contributed by region i at node n are Pnein − Pinen.

Lindahl prices Pin and Pn are determined by Lindahl’s equilibrium, and in the local problem

they are taken as given.

Financial markets may include a single period risk free asset (bank account), which can

be used for lending (saving) or borrowing. Additionally, depending on the stage and state

(node), there may be several risky assets. We assume that the market is perfect. In this case

there are no market frictions, such as transaction costs, nonzero interest rate margin between

borrowing and lending, costs or restrictions on short positions. Additionally, assume that

the financial market is complete. To summarize:

Assumption A2: Financial market is perfect and complete.
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There are |Sn| successor nodes of node n. Hence, it follows from Assumption A2 that

there are at least |Sn| assets for financial investment at node n. These may consist of a

risk free asset and risky assets, such as futures or forward contracts on emission permits, for

instance. For financial investments, let sin be the column vector of endogenous investment

positions (levels of investments) taken by region i at node n ̸∈ E. Let the row vector Bn

denote the unit values (prices) of assets at node n and let the row vector Qn+ denote the

unit values at successor node n+ ∈ Sn. Hence, given investment sin, the investment cash

flow at node n is −Bnsin and at node n+ ∈ Sn the resulting cash flow is is Qn+sin. Given

investment sin− at the predecessor node of node n, the total investment cash flow at node n

is −Bnsin +Qnsin− . The initial vectors B0 and Q0 are exogenous.

Vectors Bn and Qn are determined by a competitive market equilibrium, and they are

exogenous for regional optimization problems. For example, if a single period risk free asset

exists at node n with total return Rn, we may define its component in Bn to be equal to

one so that the cash flow component in Qn+ is Rn, for all n+ ∈ Sn. Total return Rn is

endogenously determined by an equilibrium.

As another example, suppose a single period forward contract on emissions permits with

a forward price Fn is one of the risky assets at node n. Then its component in Bn is equal to

zero and the cash flow component in Qn+ is the difference of the emissions price at n+ ∈ Sn

and the forward price Fn, both of which are endogenously determined in an equilibrium.

Taking into account production, consumption, capital stock investments, financial in-

vestments, and side-payments (emission charges and compensation based on desired global

emissions en = ein), the budget balance constraint for region i, for all nodes n ̸∈ E, is

cin + zin − yin + Pnein − Pine
i
n +Bnsin −Qnsin− = 0 ∀ n ̸∈ E (din). (5)

Parameter din is the dual variable of the budget constraint. For the root node n = 0, the

prices B0 and Q0 are given, and the preceding financial investment position si0− is exogenous.

For instance, si0− may be an initial debt which can be renewed at n = 0. However, we require

the debt to be in balance over the entire horizon of T periods. Therefore, for end nodes F

we require

sin = 0 ∀ n ∈ F. (6)

15



For subsequent use, we scale the expected utility of each region i by weights λi > 0 with∑
i λi = 1. The weights λi will be used in the Negishi iteration when we seek the global

equilibrium. Summarizing (1) - (6), the local problem i is as follows: Given Lindahl prices

Pin and Pn, and financial market data Bn and Qn, find cin, yin, zin, kin, ein, ein, xn and sin

to

maxλi
∑
n̸∈E

πnρinvi(cin) (7)

s.t. (2)− (6).

Lemma 1. Assume A0 holds and an optimal solution exists for each regional problem (7).

Then the weights λi > 0 can be chosen such that the optimal dual variables di0 = d0 at the

root node are equal for all regions, and subsequently, Assumption A2 implies that the optimal

dual variables din = dn > 0, for all nodes n ̸∈ E, are independent of regions.

Definition 1. Lindahl equilibrium conditions. An equilibrium prevails if the prices Pin

and Pn and financial market prices Bn and Qn, for all n ̸∈ E, are such that optimal solutions

for local problems satisfy, for all regions i and nodes n ̸∈ E, the following:

L1. Unanimity. All regions agree on preferred global emissions en

ein = en ∀ i (8)

L2. Balanced emissions. Optimal emissions of regions sum up to global emissions en:∑
i

ein = en (9)

L3. Balanced net payments. The side-payments (net contributions) sum up to zero:∑
i

(Pnein − Pinen) = 0 (10)

L4. Balanced positions. Optimal positions of regions sum up to zero:∑
i

sin = 0 (11)
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In this definition, accounting for (9), condition (10) is equivalently stated by∑
i

Pin = Pn (12)

which is consistent with the theory of public expenditure on collective consumption goods

(Samuelson, 1954).

3.3 Existence, efficiency and computation of a Lindahl equilibrium

For the computation of a Lindahl equilibrium, we employ a convex and compact set of

Negishi weights Λ = {λ ≥ 0 |
∑

i λi = 1} in RN . Given λ ∈ Λ, we consider the following

global problem to find, for all i and n ̸∈ E, cin ≥ 0, yin, ein and zin, and for all i and n, kin

and xn, to

max
∑
i

λi
∑
n̸∈E

πnρinvi(cin) (13)

s.t.∑
i

( cin + zin − yin ) = 0 ∀ n ̸∈ E (dn) (14)

kin − δkkin− − zi,n− = 0 ∀ n (νin) (15)

−xn +M(xn−) + f
∑
i

ei,n− = gn− ∀ n (µn) (16)

yin − ψin(kin, lin, ein, xa,n) ≤ 0 ∀ n ̸∈ E (ηin) (17)

Similar to local problems, the initial states ki0 and x0 are exogenous. The dual variables

associated with the constraints are shown in parentheses.

Next, consider an optimal solution for the global problem (13)–(17) with optimal con-

sumption cin, output yin, capital investment zin, capital stock kin, level of emissions ein and

environmental state xn, for all regions i and nodes n as specified above. Let dn, νin, µn

and ηin denote optimal dual variables for (14), (15), (16) and (17), respectively. Then the

following result shows that with a suitable choice of the Negishi weight vector λ, the global

optimum yields local optimal solutions satisfying the conditions for a Lindahl equilibrium.

Given an optimal solution for the global problem, for each local problem (7) of region i

and for all nodes n ̸∈ E, define dual variables din = dn, and µin to satisfy dual feasibility
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requirements (as seen by region i) for the environmental state vector xn. Thereafter, define

for all i and n ̸∈ E

Pn =
∑

n+∈Sn

µn+f/dn (18)

Pin =
∑

n+∈Sn

µi,n+f/dn (19)

∆in = cin + zin − yin + Pnein − Pinen (20)

ri =
∑
n̸∈E

dn∆in (21)

In (21), it can be shown that ri/d0 is the net present value of the deficits ∆in evaluated by

stochastic discounting factors19, and for short, we refer by npv to ri defined in (21).

Theorem 1. Assume A0, A1 and A2 hold and optimal solutions of the global and local

problems exist with the definitions in (18)–(21). Then ri = 0, for all i, implies

(i) for all regions i, globally optimal variables cin, zin, kin, xn, ein and en =
∑

i ein, with

unanimously preferred global emissions ein = en, are optimal for local problems (7),

while financial positions sin can be chosen to satisfy the budget balance (5).

(ii) such optimal local solutions constitute a Lindahl equilibrium with prices Pn in (18) and

Pin in (19) such that
∑

i Pin = Pn > 0.

Given a weight vector λ, let r = r(λ) ∈ RN denote the npv vector. If r(λ) = 0 then the

vector λ supports a Lindahl equilibrium.

Lemma 2. Given assumptions A0, A1 and A2, any Lindahl equilibrium is Pareto optimal

with respect to expected utilities of regions.

Lemma 2 asserts that regional utilities in a Lindahl equilibrium are such that no region can

improve its utility without a sacrifice by other regions. Additionally, if Cn =
∑

i cin is the

global net output (consumption) in node n, then the following results shows that a Lindahl

solution is also Pareto optimal with respect to total net outputs Cn; i.e., the Lindahl solution

is output efficient.
19See, e.g., Newell, Pizer and Prest (2022).
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Lemma 3. Given assumptions A0, A1 and A2, let C∗
n =

∑
i c

∗
in be the global net output in

node n in a Lindahl equilibrium. Then outputs C∗
n are optimal for maximizing

∑
n ιnCn s.t.

(14)–(17), for some weights ιn > 0.

The first-best solution by a social planner (SP ) is to maximize welfare over the regions

over time, but as indicated by Lemma 3, there would be several potential interpretations of

the weights that the optimization should use (for discussion, see, e.g., Hassler and Krusell,

2012). In Section 4 we opt for the maximization of the per capita utility of consumption

over time so that the global problem (13)–(16) is retained but the objective (13) is replaced

by

max
∑
n

πnρnL̂n log(Cn/Ln) (22)

where for all n, Cn =
∑

i cin is the total world consumption, Ln =
∑

i lin is the total popu-

lation, and parameters L̂n are positive. The following proposition shows an interdependence

of the SP and Lindahl solutions.

Lemma 4. For region i and node n, suppose the utility function of consumption cin is

vi(cin) = lin log(cin/lin), and the discounting factor ρin = ρn is independent of i. Assuming

a Lindahl equilibrium with a supporting weight vector λ exists, let L̂n =
∑

i λilin. Then the

SP solution with the objective (22) is identical with Lindahl’s solution, except that regional

consumption levels cin may differ, although the total Cn =
∑

i cin is the same for both.

In Section 4 we use L̂n = Ln in (22) for the SP solution. Equivalently, this means using

the arithmetic mean L̂n = Ln/N instead of the weighted average as in Lemma 4. Thereby,

Lemma 4 yields the insight to understand why our SP solutions are very close to the Lindahl

solutions.

Our iterative computation of an equilibrium is similar to Negishi (1972): in each iteration,

(i) solve a global problem using Negishi weights λ ∈ Λ for regional objectives, (ii) evaluate

Lindahl’s prices and financial asset prices, (iii) construct solutions for the local problems and

(iv) evaluate the npv, the net present values of the financial deficits, for all regions. If all net

present values are zero, an equilibrium is found; otherwise, the Negishi weights are revised,

and the next iteration begins.
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The Algorithm for finding a Lindahl equilibrium proceeds over iterations τ = 0,1,2, . . . .

For updating the Negishi weights λi in iteration τ , we use a relaxation parameter θi > 0 and

a step-size parameter κτ > 0 where θi is independent of τ and κτ is independent of i. In

Appendix A we show how θi can be determined. For the step size we assume

lim
τ→∞

κτ = κ̄ with 0 < κ̄ < 1/2. (23)

The steps of the Algorithm are as follows:

1. In iteration τ = 0, take any λτ ∈ Λ = {λ ≥ 0|
∑

i λi = 1}.

2. Solve the global problem (13)–(16) and compute ∆in in (20) using (18)–(19), for all i

and n ̸∈ E.

3. Compute the npv rτi =
∑

n dn∆in using (21), for all i.

4. If rτi = 0, for all i, then stop; a Lindahl equilibrium is found.

5. For each region i, with parameters θi > 0 and κτ in (23), define

λ̂i = λτi − κτ min(rτi ,0)/θi (24)

6. Scale λ̂ to obtain the update in Λ:

λτ+1 = λ̂/
∑
i

λ̂i (25)

Replace τ by τ + 1 and return to step 2.

Im Appendix B we discuss convergence properties of the Algorithm. In Step 3 of the Algo-

rithm, note that
∑

i ri = 0 by (9), (12) and (14). Hence, unless ri = 0, for all i (in which

case a Lindahl equilibrium is found by Theorem 1), at least one npv ri is strictly negative. In

order to ensure positive Negishi weights for the subsequent iteration, we only employ regions

i in (24) such that ri < 0. Note that λτ > 0 implies λτ+1 > 0. On the other hand, if λτi = 0

for some region i, then in the global optimum, cin = 0 is optimal for all n while other regions

exploit the resourses of region i. This leads to a negative npv ri < 0, which in turn implies

λτ+1
i > 0.
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The Algorithm defines a mapping Γ : Λ → Λ for updating the Negishi weights on the

weight simplex Λ. Iteration τ , begins with some λτ ∈ Λ, producing an npv vector r(λτ ),

and an updated weight vector λτ+1 = Γ(λτ ) to begin the subsequent iteration. We use this

mapping to prove the existence of an equilibrium given the following additional assumption:

Assumption A3: (i) The feasible set of solutions for the global problem (13)–(17) is

nonempty, (ii) the production functions are uniformly bounded such that 0 < ψin ≤ ψ̄ for

all i, n and feasible solutions, and (iii) the transition mapping M(x) for the environmental

state vector x is affine.

Lemma 5. Given assumptions A0–A3, a Lindahl equilibrium exists.

3.4 Lindahl equilibrium and emissions trading

Let win be the amount of emission permits initially allocated free of charge to region i at

node n ̸∈ E and let θn denote the price of emission permits in the international market.

If the emissions of region i at node n is ein then the cash flow associated with emissions

is θn(win − ein), and the problem of region i under emissions trade is as follows: For some

weights λi > 0 such that
∑

i λi = 1, given prices θn, global emissions en =
∑

iwin and

financial market data Bn and Qn, find cin, yin, zin, kin, ein and sin to

maxλi
∑
n̸∈E

πnρinvi(cin) (26)

s.t.

cin + zin − yin + θn(ein − win) +Bnsin −Qnsin− = 0 ∀ n ̸∈ E (din) (27)

kin − δkkin− − zin = 0 ∀ n ̸∈ E (νin) (28)

yin − ψin(kin, lin, ein, xa,n) ≤ 0 ∀ n ̸∈ E (ηin) (29)

sin = 0 ∀ n ∈ F.

Here global emissions en determine the environmental state xn by (2) to be used in pro-

duction functions ψin. Again, the initial capital ki0 and the preceding financial position

si0− are exogenous for all i, and the dual variables associated with constraints are shown in

parentheses.
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At an equilibrium of the international emissions market (9) and (11) are satisfied. The

following result generalizes the static and deterministic case by Mäler and Uzawa (1994).

Lemma 6. Consider a Lindahl equilibrium with emission charge prices Pn, compensation

prices Pin, and global emissions en, for all n ̸∈ E. Suppose that the amounts win of emission

permits initially allocated to regions i satisfy

Pinen = Pnwin. (30)

Then Lindahl’s equilibrium is an equilibrium of the international emissions market with

prices θn = Pn of emission permits.

4 Results

Our quantifications include both deterministic and stochastic experiments. A Lindahl equi-

librium is found for each case, as well as social planner’s solution (SP ) and Cournot-Nash

equilibrium for comparison. We use data for the 12 regions of RICE-202020. Key modifi-

cations to RICE assumptions are steeper economic damages at temperatures above 2.5◦C,

endogenous choice of conventional technologies, and a climate model where the impact of

emissions is materialized sooner. In addition, we introduce the negative emission technol-

ogy21. Time horizon is from the base year 2015 until the terminal year 2200 and it is split

into equal intervals of five years. We use 3% annual discounting for all regions.

For the SP solution, we maximize the per capita utility of consumption over time: i.e.,

we maximize the objective in (22), weighted by L̂n = Ln, the total world population, subject

to the global constraints. For the Cournot–Nash solution, we let the regions be autarkies

where each region reacts other regions’ emissions. Our computations are standard: starting

with some initial emissions each region in turn takes the total emissions of other regions as

given and finds its best response. We iterate until convergence.
20The 12 regions are: the U.S., Western Europe, Japan, other high income countries (OHI), Russia, East-

ern Europe, China, India, the Middle East and North Africa (MDE), Sub-Saharan Africa, Latin America,

and the rest of the world (ROW ).
21Online Appendix B contains a detailed account of the changes.
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Figure 2: Scenarios in the stochastic model.

Notes. The scenario tree has its the root node in year 2015 and time step is 5 years. The four scenarios start realizing in 2035;

however, the first split is the tree is in 2030. Baseline shares the same parameters as the deterministic case. High forcing

scenario has higher climate sensitivity with the forcing parameter κ in (88) increased by 30%, but economic damage function

parameters a1,i are 50% from their baseline values. In the high damages scenario, economic damages are more severe due

to a 50% increase in the parameters a1,i, but climate sensitivity is lowered with a 30% decrease in κ. Finally, a catastrophe

scenario captures the possibility of a severe adverse outcome in both key uncertainties: the forcing parameter κ is increased

by 60% and the damage parameters a1,i are doubled. The probability for the catastrophe scenario is 1% while the other three

scenarios are equally likely.

We begin with the baseline results assuming current technologies where negative emis-

sions technologies are not available; thereafter, we consider the impact of possible Di-

rect Air Capture technology (DAC). For computations, we use modeling software AMPL

(Fourer, Gay and Keringham, 2003) with MINOS 5.5 -solver using default options (Murtagh

and Saunders, 1978).

4.1 Baseline results

Table 1 summarizes our main results. Panel A gives our baseline quantifications which are

restricted to abatement with current technologies only. The first three rows contrast the

impact of the equilibrium concept; the comparison is between Cournot-Nash competition

between the regions, the first-best (SP ), and Lindahl’s equilibrium. All these scenarios

are without uncertainty and have the same baseline parameters for climate sensitivity and

economic damages. Table 1 also shows outcomes in Lindahl’s and Cournot equilibria under

uncertainty that is captured by four distinct scenarios involving scaling of the temperature
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forcing and economic damages parameters. For all model runs and scenarios, the percentage

increases in the atmospheric carbon stock and atmospheric temperatures are presented for

2050, 2100, and 2150. The table also shows the social cost of carbon (SCC) for 2015 and

2050, as well as per capita annual consumption (net output) in 2150 and output relative to

the benchmark based on the SP result.

Table 1, Panel A presents several findings. First, both first-best and cooperative solu-

tion offer marked improvements over competition between regions. In Cournot–Nash, slower

action in emissions reductions results in higher increase in carbon stock, and, consequently,

in higher temperatures and losses of ca. 6% in global output in 2150. In contrast, Lin-

dahl’s equilibrium outcomes are almost indistinguishable from the first-best solution in our

quantifications; this is explained by Lemma 4 and the related discussion.

Second result is that uncertainty increases the initial value of action now, as measured by

the social cost of carbon, confirming the earlier similar findings in literature (e.g. Lemoine,

2021), at least with current technologies. As the uncertainty embedded in the scenarios

unravels by 2050, in Lindahl’s equilibrium regions react strongly by adjusting the preferred

global emissions levels, and as a result also the social cost of carbon. Scenarios that draw

stronger climate sensitivities see emissions reduced whereas scenarios with lower forcing

parameters allow larger carbon budgets going forward.

Third, the outcomes in terms of output loss are modest in all scenarios but the catas-

trophic one. These findings are in line with the origins of the model, see e.g. Nordhaus (2017),

where the damages from climate change remain limited in comparison to economic growth22.

However, using our sharper calibrations, if the most adverse outcome is realized, the dam-

ages are significant: a loss of one half (one third) of global output in the non-cooperative

(cooperative) case by 2150. While our approach is different, the qualitative findings are in

line with the stochastic growth simulations in Cai and Lontzek (2019).

Figure 3 decomposes the value of cooperation further across the range of future outcomes,

measured in Cournot solution in proportion to Lindahl’s solution. Carbon concentrations

(left panel) are higher in Cournot in all scenarios, but even non-cooperative regions start to

restrict emissions more if a bad draw from climate sensitivity distribution is realized. Non-
22An update to the parameters of the related DICE-model is discussed in Barrage and Nordhaus (2023).
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Table 1: Main results.

Temperature CO2 increase SCC Consumpt. Output

°C % $/tCO2 1000$ %

year 2050 2100 2150 2050 2100 2150 2015 2050 2150 2150

Panel A. Results with current technologies

Cournot (det.) 1.9 2.8 3.4 20 32 37 0 0 74 94.3

SP (det.) 1.6 2.3 2.8 11 13 16 92 337 79 100.0

Lindahl (det.) 1.7 2.3 2.8 11 14 17 93 341 79 100.3

Lindahl (stoch.) 1.7 2.3 2.8 11 14 17 101 387 79 99.9

1 baseline 1.6 2.3 2.8 11 13 16 101 333 79 100.7

2 high forcing 2.1 2.9 3.5 10 12 15 101 560 78 98.4

3 high damages 1.2 1.7 2.1 12 18 21 101 141 80 101.7

4 catastrophe 2.5 3.4 4.1 8 8 11 101 >1000 50 63.7

Cournot (stoch.) 1.8 2.8 3.4 19 31 39 75 94.5

1 baseline 1.8 2.8 3.3 18 30 36 75 95.1

2 high forcing 2.3 3.4 4.1 18 25 29 72 90.8

3 high damages 1.3 2.1 2.6 20 39 52 78 99.2

4 catastrophe 2.6 3.6 4.3 11 12 14 36 46.1

Panel B. Results when DAC technologies are available

Cournot (det.) 1.9 2.9 2.7 21 33 8 0 0 78 99.5

SP (det.) 1.7 1.8 0.9 13 -8 -32 66 193 82 103.5

Lindahl (det.) 1.7 1.8 0.9 14 -8 -32 66 193 82 103.7

Lindahl (stoch.) 1.7 1.8 1.0 14 -5 -31 64 182 81 103.2

1 baseline 1.7 1.8 0.9 14 -8 -32 64 193 81 103.2

2 high forcing 2.2 2.1 1.2 13 -13 -31 64 228 82 103.5

3 high damages 1.2 1.7 1.0 15 10 -26 64 118 81 103.2

4 catastrophe 2.3 0.8 0.1 -1 -35 -46 64 438 72 91.0

Cournot (stoch.) 1.9 2.8 2.8 21 33 17 79 99.6

1 baseline 1.9 2.9 2.7 21 33 8 78 99.4

2 high forcing 2.4 3.5 2.9 20 23 -4 79 100.7

3 high damages 1.4 2.2 2.7 23 44 50 78 98.7

4 catastrophe 2.8 2.6 1.6 16 -10 -30 80 101.7

Notes. The first three rows are from deterministic model runs with Cournot–Nash, SP (the first-best) and Lindahl’s allocation.
For Lindahl and Cournot, the results from stochastic model run with four scenarios are included, the summary row for each
presents the expected values. Outcome variables are annual values of selected years. For 2050, 2100 and 2150, the results
show global mean temperature over the pre-industrialized era in degree Celsius, and the percentage increase of atmospheric
CO2 stock relative to the base year 2015. For the years 2015 and 2050, the social cost of carbon (SCC) is measured in U.S.
dollars per metric ton of carbon dioxide. Output is the annual consumption value in U.S. dollars per capita in 2150, and the
relative value of output is compared to the deterministic SP (first-best) solution in percentage points.

cooperative regions consume slightly more initially (right panel), but this slower abatement

leads to severe losses in total consumption later on, especially in the catastrophic outcome.
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Figure 3: Cournot-Nash vs. Lindahl

1.0

1.1

1.2

1.3

2020 2040 2060 2080 2100 2120 2140 2160

ra
tio

 n
as

h/
lin

da
hl

Carbon concentration in atmosphere

0.7

0.8

0.9

1.0

2020 2040 2060 2080 2100 2120 2140 2160

ra
tio

 n
as

h/
lin

da
hl

World aggregate consumption per capita

1 baseline 2 high forcing 3 high damages 4 catastrophe

Notes. The ratio figures from Cournot relative to Lindahl solutions for atmospheric carbon concentration (left panel)

and the aggregated consumption (right panel) over time. The ratios are calculated by the scenario.

4.2 Regional breakdown of cooperation

Figure 4 offers a view of how relative gains from cooperation are distributed across the globe.

The measure is constructed by first calculating the compensating variation that each region

would be willing to pay to move from Cournot-Nash equilibrium to Lindahl’s allocation23.

The absolute dollar value is largest in the U.S. ($6 trillion), and the smallest in Eastern Eu-

rope ($.4 trillion). For high-income regions combined, the value is estimated to be $10 trillion

while for other regions the total value is $15 trillion. To make the valuations more compa-

rable, we take two steps: First, we calculate the per capita dollar values using population

estimates from 2015. Even when measured per capita, high income regions have around four

times greater valuations than low and middle income regions. Second, we compare the per
23The precise values are calculated from bid price valuation as follows: Let u∗

i denote the expected present

value of the utility function of region i in the Cournot–Nash equilibrium. We find the maximal price Vi

which the region i is willing to pay such that the optimal utility after the payment Vi is at least u∗
i . For such

optimization, we use the regional problems where the price Vi/∆ is charged in the annual budget balance

equation at the root node, the global emissions as well as the emissions prices Pn and Pin, and financial asset

prices Bn and Qn are given by the Lindahl equilibrium. More accurately, starting with financial market

prices Bn and Qn from the Lindahl equilibrium, we iterate to find adjusted prices which balance supply and

demand in the financial market.
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capita value to the purchase parity index adjusted annual gross national incomes (GNI)24.

Such measure gives the highest relative valuation to the Middle East (that includes Northern

Africa) and the least relative valuation to OHI (other high income countries). Regions with

low per capita GNI (India and Sub-Saharan Africa) fare well in the comparison.

Figure 4: Beneficiaries of cooperation
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Notes. The map represents the relative value of cooperation by the region. The gain from cooperation is the maximum price

each region would pay to move from Cournot to Lindahl allocation in the deterministic model. These dollar amounts are

converted to per capita values using 2015 population estimates. The percentages represent the ratio between the values and

per capita annual gross national income of 2015 converted to international dollars using purchasing power parity rates.

There are two key mechanisms at play. The first channel is direct; the poorer regions suffer

largest economic damages from the elevated temperatures of the non-cooperative world. The

absolute present values are highest in China ($34 trillion), India ($23 trillion), the Middle

East ($26 trillion) and Latin America ($25 trillion). The Lindahl solution avoids about half

of the damage costs. Although the relative gain is similar in other regions, the absolute

damages are smaller to begin with in the high income regions, e.g., the U.S. ($12 trillion) or

the EU ($17 trillion), even though their economies are much larger.

The second channel of adjustment across regions comes from Lindahl’s equilibrium com-

pensations. In the cooperative outcome, it is mostly the poorer regions who receive person-

alized compensations based on global emissions, with China ($6 trillion), India ($4 trillion),
24Regional GNI is calculated as a population weighted average of the countries in the region. Data from

World Bank Statistics.
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Middle East ($4 trillion), Latin America ($4 trillion) and the region Rest of the World

(ROW , $5 trillion) ending up with the highest net compensations. As global tax revenues

need to balance and efficiency gains alone cannot support payments, some regions are still

net payers. These include the U.S. and most of the high income regions25.

The absolute values presented above are based on the deterministic model and 3% in-

terest rate. The absolute magnitudes will be specific to the exact model specification, but

valuations are bound to be significantly higher in catastrophic outcomes. Also, given that

major savings from cooperation will occur after 2050, a decrease in the discounting rate

would increase the gains substantially. In all model runs, the economic activity in emissions

trading, investments, and financial markets seems rational, e.g., it is the high income regions

that initially lend to the other regions.

4.3 Value of negative emissions technology

Even if all emissions/output ratios are set to zero, global temperatures continue to increase

above the 1.5 oC level well before the end of the century and keep on increasing. The reason

is that the initial carbon concentration of 850 Gt only reduces by about 2% by 2100. This

observation motivates developing a large-scale negative emissions technology, such as Direct

Air Capture (DAC), as a backstop technology. Indeed, National Academies of Sciences

(2019) concludes: "If the goals for climate and economic growth are to be achieved, negative

emissions technologies will likely need to play a large role in mitigating climate change by

removing ∼10 Gt/y CO2 globally by mid-century and ∼20 Gt/y CO2 globally by the century’s

end."

Table 1, Panel B shows summary results assuming DAC is available. Due to the high

marginal costs of DAC, artificial carbon removals are deferred until the SCC increases high

enough. Hence, the major impacts of DAC show up during the second half of the current

century. Figure 5 displays the increase in atmospheric temperature for four scenarios in

Lindahl’s solution both with and without DAC. If DAC is not available, then the temperature
25Western Europe, China, and ROW are the interesting deviations here: Europe stands to gain net

compensations on its emissions, this can be due to cleaner production technology. China and ROW , on the

other hand, are going to be net payers despite the highest compensations.
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increases by 2.1–4.1 oC by 2150. With DAC, Lindahl’s solution in 2150 is 1.2oC at the

maximum; however, the temperature maxes at above 2oC because DAC deployment is not

competitive during the first decades.

Figure 5: Impact of DAC to temperatures
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Notes. Temperature outcomes across scenarios in Lindahl’s equilibrium if no direct air capture (DAC) technology is

available (left panel) or if the technology is available (right panel).

Figure 6 demonstrates the impact of cooperation on technology adoption in the baseline

scenario of the stochastic model26. In Lindahl’s solution, the regions start to use DAC to

reduce atmospheric carbon concentration around mid-century but the technology is taken up

only by the end of the century when regions compete against each other. Interestingly, there

is a marked difference in which regions start to employ DAC: In Cournot-Nash, it is only low

and middle income regions that are forced to use the technology as their private marginal

damages are higher. However, this removal of carbon from the atmosphere means that

the higher income countries never need to respond. In Lindahl’s allocation, the technology

is employed in a more balanced manner, with all regions contributing to abatement costs

with DAC. This is the third channel where cooperation yields greater benefits to the poorer

regions than the high income regions, if DAC technology is available.27

26The conclusions are quite similar for other scenarios, but the timing of DAC removals varies depending

on the strength of forcing by scenario: decreased forcing postpones the start of DAC use.
27Intriguingly, in equilibrium, global carbon prices turn negative so that investments in DAC technology

are indirectly funded by allowing increased emissions to the investing regions.
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Figure 6: Use of DAC in the catastrophic scenario
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Right: The panels show the consequences in terms of percentage increase in the atmospheric CO2 concentration relative

to base year levels in 2015 (Lindahl: top right panel, Cournot: bottom right panel)

We use real option valuation of arbitrage pricing theory to assess new technology develop-

ment. If the technology works for certain, then from the stochastic model its value at present

reaches $8 trillion obtained as a bid the price based on SP solutions as specified in Lemma 4;

from the deterministic model the value is $6 trillion. However, these valuations drop almost

linearly with the odds of DAC actually being successfully deployed. Obviously, much of the

difference between the two valuations is extracted from avoiding the catastrophic scenario.

The valuation is highly sensitive to the discounting rate used, if we change from our baseline

3% to 1.5%, the bid price value of the technology increases five-fold to $39 trillion based on

the stochastic model and to $33 trillion in the deterministic model.
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5 Concluding remarks

Unlike the quote at the top of the paper suggests, cooperative equilibrium concepts are not

generally considered realistic as agreement is challenged by conflicts between stakeholders’

private interests and trade-offs between future uncertainty and short-term costs. We may

argue that climate negotiations are different as private information on global externalities has

limits and physics will catch up with the free-riders in the end. Indeed, academic and policy

discussions on climate court ideas of Lindahlian flavor28. Yet even if the global emissions

scheme is out of reach in negotiations proper, our findings guide policy on three fronts.

First, purely self-centred decisions on emissions now force more costly abatement later

on, and cooperation can benefit all regions across the range of uncertain futures we study.

Second, in the case of catastrophic climate outcomes, a technology akin to the negative

emission technology we study seems a necessity, and in expectation its present “insurance”

value is measured in trillions of U.S. dollars. Third, in the long-run, all regions benefit

from Lindhal’s allocation through the reduction of damages, and participation by everyone

is attained through equilibrium compensations. Low- and middle-income regions also benefit

from more evenly shared abatement costs. In a non-cooperative world, high income regions

are more shielded from damages and can free-ride on low income regions’ abatement actions.

One interpretation of our results is that the well-off countries could proxy the cooperative

solution by offering to develop new radical technologies to contain damages, not unlike the

proposals made for vaccine development in Kremer and Glennerster (2004), if in return all

regions agree to moderate their short-term pollution. Politicians in wealthy nations may

be more inclined to justify subsidies to technology development through induced domestic

economic activity and spillover gains than by asking for billions in direct cash transfers.

Finally, we see also potential in revitalizing the study of Lindahl’s concept for other

tangled global problems, biodiversity in particular (Dasgupta, 2021). In comparison to the

climate problem, our understanding of how to deal with other global public goods is still in

its infancy, offering a rich environment for research.

28E.g., by IMF in (Parry, Black and Roaf, 2021) where an idea of differentiated carbon floor prices for rich

vs. poor countries is entertained.
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Appendix

A Estimating relaxation parameters θi for the Algorithm

For the relaxation parameters θi in Step 5, consider the case based on log-utility vi(cin) =

log(cin). After solving the global problem (13)–(16), define δin = ∆in− cin. Using optimality

conditions for cin, substitute cin = λiπnρin/dn and rewrite (21) as

ri =
∑
n

(λiπnρin + dnδin). (31)

Solving for λi such that ri = 0 in (31), while keeping other parameters unchanged, yields

λ̂i = −
∑
n

dnδin/
∑
n

πnρin,

where
∑

n dnδin = ri − λi
∑

n πnρin. Hence, we rewrite

λ̂i = λi − ri/θi

where relaxation parameter is

θi =
∑
n

πnρin. (32)

B Convergence of the Algorithm

For the convergence of the Algorithm, we employ an intuitive assumption with strong empir-

ical support. Given λ, the npv vector is r(λ) = rc(λ) + r′(λ) where rci accounts for the con-

sumption of region i and r′i takes care of the rest. An update in the weight vector to λ+∆λ

(for a small increment ∆λ) merely leads to redistribution of consumption among regions

while changes in the total net output is rather insignificant. Therefore, the major increment

in the npv vector is due to changing consumption; i.e., ∆ri = ri(λ+∆λ)−ri(λ) = ∆rci +∆r′i

where ∆r′i is small in comparison with ∆rci . In particular, we assume

∆r′i < |∆rci | ∀i. (33)

If ∆rci ≤ 0, it follows from (33) that ∆rci +∆r′i < 0, and if ∆rci > 0, then ∆rci +∆r′i < 2∆rci .
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Lemma 7. Assume A0–A3 and (33) hold true. For all i, let vi(c) = log(c) and let θi =∑
n πnρin be given by (32). Then, iterations τ of the Algorithm with step-sizes κτ satisfying

(23) converge to a Lindahl equilibrium.

Remark: The proof of Lemma 7 reveals an important consequence of assumption (33):

the set of regions i with non-negative npv rτi converges over iterations τ to a non-empty

subset I+ and in the tail rτi is strictly decreasing for i ∈ I+. Then
∑

i∈I+ r
τ
i must converge

to zero, implying rτi converges to zero for all i because
∑

i r
τ
i = 0; therefore, the algorithm

converges to a Lindahl equilibrium by Theorem 1. However, we note that empirically (33)

may be violated occasionally for some regions i; nevertheless, in all of our numerical tests,

the important consequences mentioned, and thereby convergence to a Lindahl equilibrium,

remain valid.

C Karush-Kuhn-Tucker (KKT) conditions

KKT conditions for the local problem of region i. For the local problems (7), Karush-Kuhn-

Tucker (KKT) optimality conditions involve the primal constraints (2) - (6), one for each

dual variable din, νin, µin and ηin, and a dual conditions, for each primal variable cin, yn, zin,

kin, ein, en, xn and sin. Denoting ψe
in = ∂ψin/∂ein, ψx

in = ∂ψin/∂xn, ψk
in = ∂ψin/∂kin and

Mn = ∂M(xn)/∂xn, the dual conditions are:

λiπnρinv
′
i(cin)− din = 0 ∀ n ̸∈ E (cin) (34)

din − ηin = 0 ∀ n ̸∈ E (yin) (35)

(
∑

n+∈Sn

νi,n+ − din)zin = 0,
∑

n+∈Sn

νi,n+ − din ≤ 0 ∀ n ̸∈ E (zin) (36)

ηinψ
k
in − νin + δk

∑
n+∈Sn

νin+ = 0 ∀ n > 0 (kin) (37)

ηinψ
e
in − dinPn = 0 ∀ n ̸∈ E (ein) (38)

dinPin −
∑

n+∈Sn

µi,n+f = 0 ∀ n ̸∈ E (ein) (39)

ηinψ
x
in + µin −

∑
n+∈Sn

µin+Mn = 0 ∀ n (xn) (40)

dinBn −
∑

n+∈Sn

din+Qn+ = 0 ∀ n ̸∈ E (sin) (41)
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KKT conditions for the global problem. For the global problem (13)–(17), the optimality

conditions comprise of the primal constraints (14)–(17), one for each dual variable dn, νin,

µn and ηin, and dual conditions (including complementarity) for all primal variables. For

the primal variables cn, yn, zn, kn, ein and xn, the dual conditions are:

λiπnρinv
′
i(cin)− dn ≤ 0, (λiπnρinv

′
i − dn)cin = 0 ∀ n ̸∈ E (cin) (42)

dn − ηin = 0 (yin) (43)

(
∑

n+∈Sn

νi,n+ − dn)zin = 0,
∑

n+∈Sn

νi,n+ − dn ≤ 0 ∀ n ̸∈ E (zin) (44)

ηinψ
k
in − νin + δk

∑
n+∈Sn

νin+ = 0 ∀ n > 0 (kin) (45)

ηinψ
e
in −

∑
n+∈Sn

µn+f = 0 ∀ n ̸∈ E (ein) (46)∑
i

ηinψ
x
in + µn −

∑
n+∈Sn

µn+Mn = 0 ∀ n > 0 (xn) (47)

D Proofs

Proof. of Lemma 1. Optimality condition (34) implies that weights λi, with
∑

i λi = 1, can

be chosen such that di0 = λiρi0vi(ci0) = d0 > 0, for all i. Condition (41) can be rewritten

as dinBn = d+inQ
+
n , where d+in is the row vector of dual variables din+ , for n+ ∈ Sn and Q+

n is

the matrix with rows Qn+ , for n+ ∈ Sn. Assumption A2 implies that Q+
n has full row rank.

Hence, the dual variables din+ , for n+ ∈ Sn, are uniquely determined by din and vectors Bn

and Qn+ . Inductively, if for the root node di0 = d0 is independent of region, then for all

nodes n, din = dn is independent of i. Furthermore, (34) implies din > 0.

Proof. of Theorem 1. For (i), first, note that (42) implies dn = λiπnρinv
′
i(cin), and hence,

dn > 0 because λiπnρin > 0 and v′i > 0. Second, we need to verify the KKT conditions

(5) - (6) and (34)–(41), for the local problems (7). Conditions (4)–(3) and (34)–(41), follow

directly from the global KKT conditions (14)–(17) and (42)–(47) together with the definitions

din = dn, µin satisfying (40) with (35), Pn in (18), Pin in (19), ein ≡ en =
∑

i ein, and Bn and

Qn defined to satisfy the arbitrage pricing condition (41) with din = dn > 0. The remaining

KKT conditions are the local budget constraints (5) and terminal investment conditions (6).
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To satisfy the budget balance (5) for n ̸∈ E, we find suitable investments positions sin. Using

deficit ∆in in (20), constraints (5) are rewritten as follows:

−Bnsin +Qnsin− = ∆in ∀ n ̸∈ E. (48)

For redundant assets, which can be substituted by portfolios of other assets, we fix the

positions in sin to zero. Thereafter, for the non-redundant assets, we determine uniquely

the investment positions recursively as follows. Recalling that Sn is the set of immediate

successor nodes of n, for all time stages 0 ≤ t < T −1, it follows from (48) that, for all nodes

n in stage t,

Qn+sin = ∆i,n+ +Bn+si,n+ ∀ n+ ∈ Sn. (49)

For n in stage T − 2, n+ ∈ F , si,n+ = 0 by (6), and by the complete market assumption

A2, the non-redundant components in sin are uniquely determined by (49). Similarly, for

t = T − 3, . . . ,0 and nodes n in stage t, we assume the positions in successor nodes Sn

are already determined and we obtain the non-redundant components in sin. Thereby, the

chosen investment positions sin satisfy (48), (5) and (6), for all nodes n ̸= 0. Multiplying

both sides of equation (48) by dn > 0 and summing over n ̸∈ E, yields∑
n ̸∈E

dn(−Bnsin +Qnsin−) =
∑
n̸∈E

dn∆in = ri (50)

where the right side is ri by (21). Because ri = 0, it follows that (48) is satisfied for the root

n = 0 as well.

For (ii), first note that Pn > 0, because
∑

n+∈Sn
µn+f = dnψ

e
in > 0 by (43) and (46),

dn > 0 and ψe
in > 0 by assumption A1. Second, we need to verify Lindahl’s equilibrium

conditions (8)–(11), given the local optimal solutions in (i), and the prices Pn in (18) and

Pin in (19). We already defined en = ein =
∑

i ein implying (8) and (9). Summing over i in

(40) and accounting for (47) yields (inductively backwards)∑
i

µin = µn. (51)

Hence, (18) and (19) with (51) yield (12), which together with (9) imply (10). To show the

remaining conditions (11), for all n ̸∈ E, we use induction as follows. Summing over i on
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both sides of (49) yields

Qn+

∑
i

sin = Bn+

∑
i

si,n+ ∀ n+ ∈ Sn (52)

because
∑

i ∆i,n+ = 0 by (14) and (10). For all n at time stage T − 2 and n+ ∈ Sn, si,n+ = 0

by (6). Hence, Qn+

∑
i sin = 0, and consequently (because redundant components in sin are

fixed to zero),
∑

i sin = 0 by A2. Similarly, for the inductive steps, for n in stages T−3, . . . ,0,

we assume
∑

i si,n+ = 0, for all n+ ∈ Sn, to conclude
∑

i sin = 0.

Proof. of Lemma 2. It suffices to show that the primal variables cin, zin, kin, ein and xn from

Lindahl equilibrium are optimal for the global problem (13)–(16) for some weights λi > 0. To

see the primal feasibility, budget constraints (5) and equilibrium conditions (8)–(11) imply

(14), (4) is identical to (15), (3) and (17) are identical, and (16) follows from (2) with (9).

For the global dual requirements (42)–(47), based on Lemma 1, choose weights λi > 0 such

that, for all nodes n, din = dn is independent of region. Then (34)–(37) are identical to

(42)–(45). If we define µn =
∑

in µin, then summing over i in (40) yields (47). Finally, (38),

(39) and (12) imply (46).

Proof. of Lemma 3. Let λ be the weight vector supporting the Linhdahl equilibrium. Then

the Lindahl solution is optimal for the global problem

max
∑
in

λiπnρinvi(cin) s.t. (14)− (17). (53)

We show the assertion by three consequtive replacements of the objective function in (53)

in such a way that the optimal solution remains unchanged. First, define ain > 0 such that

ain/c
∗
in = λiρinv

′
i(c

∗
in), the scaled discounted marginal utility for i in n. Then the Lindahl

solution is optimal for the following revised problem with log-utilities

max
∑
in

πnain log(cin) s.t. (14)− (17) (54)

Denote by dn the dual variable of the budget constraint (14). Then the optimality conditions

for (54) imply ain/cin = ajn/cjn = dn for all i, j and n. Consequently, denoting an =
∑

i ain,

we have ain/cin = an/Cn = dn. Second, it follows that the Lindahl solution is optimal for
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the following revised problem with log-utilities for Cn =
∑

i cin

max
∑
n

πnan log(Cn) s.t. (14)− (17) (55)

Third, to complete the proof, using linear approximation log(Cn) ≈ log(C∗
n)+(Cn−C∗

n)/C
∗
n,

the Lindahl solution is optimal for the following revised problem

max
∑
n

ιnCn s.t. (14)− (17) (56)

where ιn = πnan/C
∗
n > 0 for all n.

Proof. of Lemma 4. In the Lindahl equilibrium, let c∗in denote the consumption of i in n

obtained from an optimal solution of the global problem

max
∑
i,n

πnρnλilin log(cin/lin) s.t. (14)− (17) (57)

Optimality conditions imply πnρnλilin/dn = cin, for all i nd n. Summing over i yields

πnρnL̂n/dn =
∑
i

cin = Cn (58)

where Cn is the global consumption in node n. Maximizing
∑

n πnρnL̂n log(Cn/Ln) in (22)

subject to (14)–(17) leads to the optimality condition (58), and hence, the assertion follows.

Proof. of Lemma 5. We show that a fixed point λ∗ ∈ Λ exists for the mapping Γ : Λ → Λ

in (24)–(25). Then, by Theorem 1, Γ(λ∗) = λ∗ implies a Lindahl equilibrium is found with

Negishi weights λ∗. We show that Γ is continuous; then the assertion follows from Bouwer’s

fixed point theorem because Λ is convex and compact. Continuity of Γ is established in three

steps as follows.

(i) For the global problem, we denote a solution by ξ = (c,y,z,k,e,x) where c = (cin),

y = (yin), z = (zin), k = (kin), e = (ein) and x = (xn). The objective function in (13)

is denoted by f(ξ,λ). Assumptions A0–A3 imply that the global problem (13)–(17) is a

convex optimization problem. Given that c ≥ 0, z ≥ 0, and y is bounded above in (17) by

assumption A3, it follows from (14) and A3 that the feasible set of solutions c is convex,
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compact and non-empty. Therefore, an optimal solution for the global problem exists for

all λ ∈ Λ. Furthermore, assumptions A0–A3 together with (14)–(17) and c, z ≥ 0 imply

that the set of optimal solutions for the global problem is uniformly bounded over λ ∈ Λ.

Therefore, there exists a convex and compact set (a box) B of solutions ξ such that B

contains the optimal solutions for any given λ ∈ Λ. This in turn allows us to restrict the set

Ξ0 of feasible solutions for (13)–(17) to a convex and compact set Ξ = Ξ0 ∩B, independent

of λ, such that ξ(λ) solves the restricted global problem maxξ∈Ξ f(ξ,λ) if and only if ξ(λ) is

optimal for the global problem (13)–(17). Next, given λ ∈ Λ, we conclude that the global

problem attains a unique optimal solution ξ(λ) ∈ Ξ.

• An optimal solution ξ = ξ(λ) ∈ Ξ for the global problem exists and the set of optimal

solutions is convex.

• Based on assumption A0, for all i with λi = 0, the optimal consumption stream is

ci = (cin) = 0, and for all i with λi > 0, the optimal consumption stream ci is strictly

positive and unique. Hence, the optimal consumption c is unique.

• Suppose the optimal output y = (yin) is not unique. Then there exist optimal solutions

ξh, for h = 1,2, and i,n such that y1in = ψin(k
1
in,lin,e

1
in,x

1
a,n) ̸= y2in = ψin(k

2
in,lin,e

2
in,x

2
a,n).

A convex combination ξw of the two solutions, with weights wh > 0, is optimal. How-

ever, ywin < ψw
in = ψin(k

w
in,lin,e

w
in,x

w
a,n) by assumption A1. Hence, incrementing cin and

ywin by ψw
in − ywin > 0 is feasible but leads to a contradiction because optimal cin is

unique. Therefore, optimal output y is unique.

• Similarly, by assumption A1, optimal scenarios of capital stock k = (kin), emissions

e = (ein), and atmospheric temperatures xa,n, for all n, are unique.

• Then, (15) implies z = (zin) is unique and (16) implies x = (xn) is unique. Conse-

quently, optimal ξ(λ) is unique.

(ii) Continuity of the optimal solution function ξ(λ) over λ ∈ Λ follows from Berge’s

maximum theorem29 given the continuity of the objective function f(ξ,λ) on Ξ × Λ, the
29See e.g., pp. 115–117 in Berge (1963), Corollary 9.20 on p. 239 in Sundaram (1996), and Theorem 3.1

in Terazono and Matani (2015).
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convexity and compactness of the set Ξ which is nonempty and independent of λ, and the

uniqueness of optimal solutions ξ(λ) shown in (i).

(iii) Accounting for (i) and (ii),

• condition (42) with A0 implies that optimal dual prices dn are strictly positive and dn

is continuous on Λ.

• Then, condition (46) with A1 implies
∑

n+∈Sn
µn+f = dnψ

e
in is continuous and Pn =∑

n+∈Sn
µn+f/dn = ψe

in > 0 is continuous on Λ.

• Given din = dn and ηin = din by (35), (40) defines for all n, µin = −dnψx
in +∑

n+∈Sn
µin+M , where the matrix M defines the linear component of the affine the

transition mapping in assumption A3. Thus, (40) defines (recursively) dual variables

µin which by A1 are continuous on Λ so that Pin =
∑

n+∈Sn
µi,n+f/dn is continuous,

for all i and n.

• Thus, ∆in in (20) and ri in (21) are continuous on Λ, for all i and n, and given constants

θi in (32), λ̂i in (24) is continuous on Λ.

Consequently, Γ(λ) in (25) is continuous on Λ.

Proof. of Lemma 6. For the KKT optimality conditions, primal requirements are given by

primal feasibility constraints (27)–(29), and the dual requirements with the associated primal

variables in parentheses are as follows:

λiπnρinv
′
i(cin)− din = 0 ∀ n ̸∈ E (cin) (59)

din − ηin = 0 ∀ n ̸∈ E (yin) (60)

νin − din = 0 ∀ n ̸∈ E (zin) (61)

ηinψ
k
in − νin + δk

∑
n+∈Sn

νin+ = 0 ∀ n > 0 (kin) (62)

ηinψ
e
in − dinθn = 0 ∀ n ̸∈ E (ein) (63)

dinBn −
∑

n+∈Sn

din+Qn+ = 0 ∀ n ̸∈ E (sin) (64)
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Given the assumptions, equilibrium conditions for (2)–(29), (59)–(64), (9), (11) and sin = 0

for all n ∈ F in (6) follow directly from Lindahl equilibrium conditions.

Proof. of Lemma 7. An equilibrium exists by Lemma 5. If convergence is finite, then the npv

vector rτ = 0, for some iteration τ , and the assertion follows from Theorem 1. Otherwise,

for τ = 0,1,2, . . . , consider iteration τ starting with a weight vector λτ , leading to an npv

vector rτ and ending with a revised weight vector λτ+1. For all τ , let Iτ+ = {i|rτi ≥ 0},

Iτ− = {i|rτi < 0} and I = Iτ+∪Iτ−, the set of all regions. Let rτ+ =
∑

i∈Iτ+
rτi and rτ− =

∑
i∈Iτ−

rτi ,

where rτ+ + rτ− = 0 because
∑

i∈I r
τ
i = 0. Next, we show that rτ+1

+ < rτ+ in the tail; i.e., the

sequence {rτ+} is strictly decreasing.

In iteration τ , at an optimal solution of the global problem (13)–(16), (42) states

dn = λτi πnρin/cin ∀ i and n ̸∈ E. (65)

For region i, the consumption based component of the npv rτi in (20) and (21) is rci =∑
n dncin. For the npv increment ∆τ+1rin in node n from iteration τ to τ +1, condition (65)

yields

∆τ+1rcin ≡ dτ+1
n cτ+1

in − dτnc
τ
in = (λτ+1

i − λτi )πnρin.

Summing over n with (32) yields the npv increment

∆τ+1rci = (λτ+1
i − λτi ) θi. (66)

For i ∈ Iτ+, by (24) and (25) we have λτ+1
i = λτi /ωτ < λτi , where

ωτ ≡
∑
i

λ̂τi = 1− κτ
∑
i∈Iτ−

rτi /θi > 1. (67)

Then, using (66) we have

∆τ+1rci = (1/ωτ − 1)λτi θi < 0

and using assumption (33),

rτ+1
i = rτi +∆τ+1rci +∆τ+1r′i < rτi ∀ i ∈ Iτ+ (68)

For i ∈ Iτ−, (24), (25), (66) and (67) yield

∆τ+1rci = [(λτi − κτr
τ
i /θi)/ωτ − λτi ]θi = −(κτ/ωτ )r

τ
i + (1/ωτ − 1)λτi θi
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= −(κτ/ωτ )r
τ
i + (κτ/ωτ )λ

τ
i θi

∑
j∈Iτ−

rτj /θj.

If ∆τ+1rci ≤ 0 and i ∈ Iτ−, then assumption (33) implies

rτ+1
i = rτi +∆τ+1rci +∆τ+1r′i < 0. (69)

If ∆τ+1rci > 0 and i ∈ Iτ−, then (23) implies that there is τ ′ such that 0 < κτ < 1/2 for all

τ > τ ′. Consequently, assumption (33) implies

rτ+1
i = rτi +∆τ+1rci +∆τ+1r′i < rτi + 2∆τ+1rci

= rτi (1− 2κτ/ωτ ) + (2κτ/ωτ )λ
τ
i θi

∑
j∈Iτ−

rτj /θj < 0 (70)

where the inequality follows from the convex combination of two negative components.

For τ > τ ′ and for all i ∈ Iτ−, components rτ+1
i , are negative by (69)–(70) so that

i ∈ Iτ− implies i ∈ Iτ+1
− . Furthermore, rτ+1

i < rτi for all i ∈ Iτ+ by (68); however, some

components rτ+1
i may be negative and such i ∈ Iτ+ is moved to Iτ+1

− . Therefore, there is

τ̄ > τ ′ such that, for all τ > τ̄ , Iτ+ = I+ and Iτ− = I−, both sets independent of τ . Consider

iterations τ > τ̄ . Then for all i ∈ I+, the sequence {rτi }τ>τ̄ is non-negative and strictly

decreasing by (68). Therefore rτi → r̄i ≥ 0, for all i ∈ I+. Likewise, rτ+ =
∑

i∈I+ r
τ
i →

r̄+ =
∑

i∈I+ r̄i and rτ− = −rτ+ =
∑

i∈I− r
τ
i → r̄− = −r̄+. Suppose that r̄+ > 0. Because

−
∑

i∈I− r
τ
i =

∑
i∈I+ r

τ
i > r̄+ > 0, there is δ > 0, independent of τ , such that for all τ > τ̄ ,

−
∑

i∈I− r
τ
i /θi > δ. In iteration τ > τ̄ , for all i ∈ I+, we have

λτ+1
i = λτi /ωτ = λτi /(1− κτ

∑
i∈I−

rτi /θi) < λτi /(1 + κτδ)

Hence, for all i ∈ I+, λτi converges to zero, because
∏τ

ν=τ̄ (1+κνδ) → ∞ by (23); a contradic-

tion because r̄+ = −r̄− > 0 cannot hold. Hence, r̄+ = r̄− = 0 and the algorithm converges

to a Lindahl equilibrium.
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A Introducing Lindahl equilibrium via a static model

Two regions i = 1,2 consider cooperation on climate change. Both agree on the use of

endogenous side-payments si, i = 1,2, paid by i to the other party; i.e. s1 = −s2 where s1

may be positive or negative and
∑

i si = 0. Additionally, it is agreed that si = Pei − Pie,

where ei is the emissions of i, e =
∑

i ei is total emissions, P is an emissions charge price

(tax), Pi is a compensation price and
∑

i Pi = P because
∑

i si = 0 and
∑

i ei = e.

Let yi be an exogenous output of i which creates exogenous gross emissions σi. The

endogenous abatement is σi− ei ≥ 0 with a cost δi(σi− ei)
2 for region i. A damage cost αie

2

is due to total emissions creating a temperature increase30. The utility function of region i

is ui(ci), where ci ≥ 0 is the consumption defined by output less abatement costs, damage

costs and the side-payment; i.e.,

ci = yi − δi(σi − ei)
2 − αie

2 − Pei + Pie (71)

The problem of region i is to find emissions ei and the most preferred total emissions denoted

by ei to maximize ui(ci) s.t. (71) with e = ei. Assuming ui is increasing and strictly concave

with u′i → ∞ as ci → 0, the first order optimality conditions yield

ei = σi − P/(2δi) (72)

ei = Pi/(2αi). (73)
30Arrhenius (1896) suggests an atmospheric temperature increase κ log[(C̄ + e)/C̄] ≈ κe/C̄, where κ and

C̄ are constants. Hence, the damage cost αie
2 is assumed proportional to the temperature increase squared.

1
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In a Lindahl equilibrium, first, both regions prefer the same total emissions; i.e. for the

optimal solutions,

e = ei = Pi/(2αi) i = 1,2 (74)

which implies P1/P2 = α1/α2, and consequently Pi/P = αi/
∑

j αj. Thus, total emissions

are

e = P/(2
∑
j

αj) (75)

Second, e =
∑

i ei implies

e =
∑
i

[σi − P/(2δi)] (76)

which together with (75) yields the equilibrium charge price

P = 2
∑
i

σi/[
∑
i

1/δi + 1/
∑
i

αi]. (77)

Thereafter, (74)–(75) yield the compensation prices

Pi = αiP/
∑
j

αj. (78)

For illustration, data is shown in Table A.2, including population li. Unanimity occurs with

with e = 0.9215 Gt obtained from (75) with the charge price P = 55.29 $/t in (77).

Table A.2: Two-region example with parameters yi (T$), σi (Gt), δi (M$/(Mt)2), αi (M$/(Mt)2) and li
(millions).

i yi σi δi αi li

1 16 1.4 0.024 0.01 320

2 20 2.8 0.013 0.02 1410

Lindahl (1919) introduces the equilibrium based on optimal responses of regions given the

share of costs covered by each region. An equilibrium prevails if the parties are unanimous

about the desired outcome of the environmental state - in our case, the atmospheric tem-

perature determined by total emissions. In a similar spirit, Figure 1 illustrates the static

model.

2
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B Implementing a stochastic and dynamic Lindahl model

Next, we introduce the implementation of the model for finding Lindahl equilibrium solutions

for the numerical results of Section 4. The model underlying our stochastic programming

formulation is the deterministic and dynamic 12-region model RICE-2020 (Nordhaus and

Yang, 2021). In the implementation we introduce a more detailed representation of the

economy compared to the Section 3. One potential concern may be the loss of convexity,

true in theory, but we have not faced any computational issues in the implementation. The

large number of regions seems sufficient to keep the non-convexities weak enough so that

an unique equilibrium is consistently found31. The bulk of the data is adopted from RICE,

including the choice of the base year 2015 and the time step ∆ = 5 years32. We also introduce

some modifications to the climatic and economic model in RICE, including uncertainty, the

financial sector of Section 3, and others to be discussed below.

Welfare function. In RICE the welfare function (1) is based on log-utility:

ui(ci) =
T−1∑
t=0

ρtlit log(cit/lit) (79)

where the discounting factor time stage t is ρt = (1 + R)−∆t with R = 0.03, and lit is an

exogenously given population of region i. Thus the discounting is independent of regions

and the single-period utility function vi in (1) is vi(cit) = lit log(cit/lit).33

Output. In RICE, the annual output of region i in node n is yin = yin(kin,lin,hin,xn), where

the capital kin is endogenous, the population lin is a proxy for labor, xn is the environmental

state, and hin is emissions abatement level to be defined shortly. Capital dynamics are as

above in (4) with δk = 0.9∆ where ∆ = 5 years. The initial capital stock of the regions,

ki0, ranges from $5 to $50 trillion. Given an exogenous total factor productivity Ain, the

output y0in, excluding damage and abatement costs, is given by a constant returns to scale
31A possible formal treatment of non-convexities could be pursued following standard techniques if the

number of regions is large.
32Following RICE, unlike in Section 3, control variables in time stage t or node n refer to annual levels;

for instance, en now is the total annual emissions during the five-year period starting at node n.
33In our implementation, the log-utility in (79) is used for relative risk aversion α = 1, and for α ̸= 1, we

have the power utility v(cit) =
lit
1−α (cit/lit)

1−α with α > 0. In Section 4 we only report results for α = 1.

3
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production function

y0in = Aink
γ
inl

(1−γ)
in (80)

with γ = 0.3, and the output yin after damage and abatement costs is

yin = y0in
1− b1,ih

b2
in

1 + a1,i[Ta,n/T0]a2
. (81)

In (81), the denominator accounts for the damage costs relative to output related to an

increase Ta,n in atmospheric temperature above pre-industrial level (the component xa,n in

the environmental state vector xn), and T0 = 2.5 (oC) is an exogenous reference level. Pa-

rameters a1,i, ranging from 1% to 2%, reveal the share of output lost is case the temperature

increase is at the reference level; i.e., Ta,n = T0.

The emissions/output ratio σin is exogenous and an endogenous emission control rate

hin ≤ 1 defines the abatement share of the emissions; thereafter, the remaining output

related emissions are (1−hin)σiny0in. The abatement cost in (81) relative to output is b1,ihb2in.

Parameters b1,i, ranging from 5% to 10%, define the share of output lost is in the extreme

case of hin = 1 resulting in zero emissions from output.

We revise (81) in two ways. First, following Weitzman (2009), the damage loss function

may be replaced by exp(βiT
2
a,n) which improves the sensitivity to large temperature increases.

Parameters βi are chosen such that the cost at Ta,n = T0 is the same as the damage cost in

RICE. As an alternative, we consider a revised damage function (1 + a1,i exp[β(Ta,n − T0)])

with β = a2. The two damage functions have the similar characteristics; however, the

latter reacts more strongly to temperature increases above 3 oC and is also more suitable for

numerical optimization. Figure B.7 (left) displays the RICE and the revised damage cost

functions, for which the costs are equal for Ta,n = T0. Second, for artificial carbon sinks we

consider possible new carbon absorbing technologies, such as direct air capture (DAC)34, for

removing carbon from the atmosphere to be stored in suitable sinks. The cost of carbon

absorption relative to output is d1,iqin + d2,iq
d3
in where the first (linear) component prevents

the exploitation of this technology in case of a low carbon tax and the second progressively

increasing component limits the availability35. Figure B.7 (right) displays abatement and
34IEA estimates 1 Gt/yr capture by DAC in 2050.
35The DAC cost parameters are calibrated to envisioned carbon absorption cost for DAC: we use d1,i = 0.08
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DAC cost functions. DAC becomes competitive when its marginal cost in $ per ton of carbon

falls below the one for abatement.36

Similarly as for abatement hin, an endogenous parameter qin defines the level of removal in

proportion to emissions σi0y0in based on the initial emissions/output ration σi0; i.e., the quan-

tity of carbon captured to the sink is qinσ̂iy0in where parameters σ̂i are constants. Thereby,

(81) is replaced by

yin = y0in
(1−b1,ih

b2
in)(1−d1,iqin−d2,iq

d3
in )

1+a1,i exp[β(Ta,n−T0)]
. (82)

Finally, the annual output is then yin = yin(kin,lin,hin,qin,xn).

Figure B.7: Cost assumptions.
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Notes. Left panel: Three damage cost functions; the function in RICE (green), the revised function (blue) and

Weitzman’s exponential function (orange). Right: Abatement and DAC cost functions; the abatement cost (red), the

DAC cost (green) and the linear component the DAC (yellow). All costs are relative to output.

Emissions. In RICE, the annual emissions ein of region i in node n are determined by exoge-

nous emissions output ratios σin, annual output, the level hin of abatement, and exogenous

for high income regions i, and d1,i = 0.10 for all other regions; for the other cost parameters, d2,i = 0.5 · b1,i
and d3 = b2.

36Note that equal slopes in the two curves in Figure B.7 do not reveal the brak-even point directly because

the fractions (levels) in horizontal axis refer to different quantities of CO2: σiny
0
in for abatement and σ̂iy

0
in

for DAC.
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annual emissions e0in of land and forests; global emissions en are the sum over regions:

ein = (1− hin)σiny
0
in + e0in ∀ i, n (83)

en =
∑

i ein ∀ n (84)

The emissions/output ratios σin range from 0.05 to 0.15 in 2015 and from 0.02 to 0.06 in

2100 (all ratios are in Gt/T$). When we account for the artificial carbon absorption qinσ̂iy0in,

we use σ̂i = 0.1, for all i, and (83) is replaced by

ein = [(1− hin)σin − qinσ̂i]y
0
in + e0in. (85)

As mentioned, the ratios σin are exogenous in RICE. However, the choice of abatement

level hin needs an investment in production technology and we assume such technology stays

available in subsequent periods as well. Therefore, we consider endogenous emissions/output

ratios controlled by the abatement levels hin as follows;

σin = (1− hi,n−)σi,n− . (86)

For simplicity, we exclude depreciation and assume the maintenance cost of the improved

technology is included in the cost of adopting the abatement level hin.

Environmental dynamics. In RICE, the equation (2) for the environmental state vector

xn defines the carbon cycle and temperature dynamics as follows. For carbon cycle, there

are three stocks of carbon in xn at each node n: CA
n is the carbon concentration in the

atmosphere (Gt), CL
n is the carbon concentration in lower oceans (Gt), and CU

n is the carbon

concentration in shallow oceans (Gt). Denoting Cn = (CA
n ,C

L
n ,C

U
n ), the carbon cycle model

is

Cn = Cn−M + (∆ · en− , 0, 0) (87)

where M is a given transition matrix and ∆ · en− is the increment by emissions en− of CO2

in the atmosphere in ∆ years. The initial stock levels in the base year 2015 are CA
0 = 851

Gt, CL
0 = 1740 Gt, CU

0 = 460 Gt.

The other two endogenous components in the environmental state vector xn are the

atmospheric temperature Ta,n and the ocean temperature To,n (both in oC above the historical

6
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level). The level of radiative forcing Fn (Arrhenius, 1896) is

Fn = κ log(CA
n /C̄) + Fo,n (88)

where κ = 5.92 W/m2 in RICE, CA
n is as above (the quantity of CO2 in the atmosphere), C̄ =

596 Gt is the pre-industrial CO2 concentration, and Fo,n is an exogenous forcing component.

The temperature dynamics is given by a linear system of equations:

Ta,n = H0Fn− +H1Ta,n− −Ha(Ta,n− − To,n−) ∀ n > 0 (89)

To,n = To,n− +Ho(Ta,n− − To,n−) ∀ n > 0 (90)

where the exogenous parameters are H0 = 0.050 (oC m2/W), H1 = 0.934, Ha = 0.00126 and

Ho = 0.0125. The initial values in the base year 2015 are Ta,0 = 0.85 oC and To,0 = 0.0068
oC.

We reformulate (89)–(90) to account for the more recent scientific take on climate sensi-

tivity. From Geoffroy et al. (2013), the temperature dynamics for atmospheric temperature

Ta and ocean temperature To follow the differential equations

Ca
dTa
dt

= F − λTa − γ(Ta − To) (91)

Co
dTo
dt

= γ(Ta − To) (92)

Integrating (91)–(92), and assuming the forcing F is constant from node n− to n, (89)–(90)

are replaced by

Ta,n = Aa,0Fn− + Aa,1Ta,n− + Aa,2To,n− ∀ n > 0 (93)

To,n = Ao,0Fn− + Ao,1Ta,n− + Ao,2To,n− ∀ n > 0 (94)

For parameters Ca, Co, λ and γ we use averages over 16 studies as reported by Geoffroy

et al. (2013). Parameters Aa,0, . . . Ao,2 in (93) and (94) are independent of time and state

of node n. Figure B.8 show the increase in atmospheric temperature over a hundred years

as a response to an increase of the initial CO2 stock CA
0 by 1 teraton and omitting all

other subsequent emissions, including forest, land and industrial emissions. The short term

increase in temperature is about 2.4 oC, a results which is in line with those reported in

other studies; see e.g., Hansen et al. (2022). Figure B.8 shows also the response assuming a

7
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30% increase or decrease in the forcing parameter κ in (88); such variations are used in our

scenarios of Section 4 to study the uncertainty on climate warming.

Figure B.8: Climate response.
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Notes. Climate response (oC) due to 1 teraton increase in the initial CO2 concentration in the atmosphere. The middle

line is the base case; in the two other cases, the forcing is changed by -30% and +30% relative to the base case.
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