Welfare Analysis of Changing Notches: Evidence from Bolsa Família

Katy Bergstrom¹, William Dodds², and Juan Rios³

August 30, 2023

¹Tulane University ²Tulane University ³PUC Rio

Bergstrom, Dodds, and Rios

Welfare of Changing Notches

• Over 130 countries with at least one transfer program

- Over 130 countries with at least one transfer program
- Typically targeted to poor households and often present notches (e.g., Medicaid)

- Over 130 countries with at least one transfer program
- Typically targeted to poor households and often present notches (e.g., Medicaid)
- \rightarrow Potential disincentive effects, e.g., misreporting, shifting to informal employment, \downarrow labor supply

- Over 130 countries with at least one transfer program
- Typically targeted to poor households and often present notches (e.g., Medicaid)
- \rightarrow Potential disincentive effects, e.g., misreporting, shifting to informal employment, \downarrow labor supply
- Despite some evidence of such behaviors, little is known about the equity-efficiency trade-off of transfer programs

- Over 130 countries with at least one transfer program
- Typically targeted to poor households and often present notches (e.g., Medicaid)
- \rightarrow Potential disincentive effects, e.g., misreporting, shifting to informal employment, \downarrow labor supply
- Despite some evidence of such behaviors, little is known about the equity-efficiency trade-off of transfer programs
- Usual bunching approach relies on strong assumptions and typically informs optimal schedules

This Paper

- Develop a novel sufficient statistics framework to *bound* welfare impacts of reforms to transfer programs featuring notches
 - B: # hhs bunching at old notch who move toward new notch
 - J: # hhs who jump down to new notch
 - Allow for different behavioral margins, biases, dynamics, frictions, and arbitrarily large notch reforms

This Paper

- Oevelop a novel sufficient statistics framework to *bound* welfare impacts of reforms to transfer programs featuring notches
 - B: # hhs bunching at old notch who move toward new notch
 - J: # hhs who jump down to new notch
 - Allow for different behavioral margins, biases, dynamics, frictions, and arbitrarily large notch reforms
- Analyze the welfare impacts of a reform to one of the Bolsa Família (self reported income based transfers)
 - Pre June 2014: eligible for R\$70 per-month if report income below R\$70 per-month
 - June 2014 reform: eligible for R\$77 per-month if report income below R\$77 per-month

This Paper

- Oevelop a novel sufficient statistics framework to *bound* welfare impacts of reforms to transfer programs featuring notches
 - B: # hhs bunching at old notch who move toward new notch
 - J: # hhs who jump down to new notch
 - Allow for different behavioral margins, biases, dynamics, frictions, and arbitrarily large notch reforms
- Analyze the welfare impacts of a reform to one of the Bolsa Família (self reported income based transfers)
 - Pre June 2014: eligible for R\$70 per-month if report income below R\$70 per-month
 - \bullet June 2014 reform: eligible for R\$77 per-month if report income below R\$77 per-month
- Estimate statistics for 2014 BF reform
 - $B \approx 27K$, $J \approx 22K \rightarrow \text{MVPF} \in [0.9, 1.12]$
 - $\bullet\,$ Welfare of spending R\$1 on reform > R\$1.50 on non-distortionary UBI
 - Even in a setting with a prominent eligibility notch based on reported income, unlikely that efficiency cost outweighs equity benefit

Lit Review

Derive welfare bounds in simple misreporting model (bounds hold in a much more general model)

HH Problem

Bergstrom, Dodds, and Rios

Baseline Model

Derive welfare bounds in simple misreporting model (bounds hold in a much more general model)

- Govt offers policy $\mathbf{p} = \{b, \tau\} = \{benefit, threshold\}$
 - Hh receives benefit b if reported income $\hat{y} \leq \tau$

HH Problem

Baseline Model

Derive welfare bounds in simple misreporting model (bounds hold in a much more general model)

- Govt offers policy $\mathbf{p} = \{b, \tau\} = \{\text{benefit, threshold}\}$
 - Hh receives benefit b if reported income $\hat{y} \leq \tau$
- Hhs endowed with income y and choose \hat{y} s.t. misreporting costs
 - $\bullet\,$ Some hhs misreport and bunch at $\tau\,$
 - Some hhs always report their true income

HH Problem

Derive welfare bounds in simple misreporting model (bounds hold in a much more general model)

- Govt offers policy $\mathbf{p} = \{b, \tau\} = \{\text{benefit, threshold}\}$
 - Hh receives benefit b if reported income $\hat{y} \leq \tau$
- Hhs endowed with income y and choose \hat{y} s.t. misreporting costs
 - $\bullet\,$ Some hhs misreport and bunch at $\tau\,$
 - Some hhs always report their true income
- Determine welfare impact of reform from ${\bf p}=\{b,\tau\}$ to ${\bf p}'=\{b',\tau'\}$ for ${\bf p}'>{\bf p}$

HH Problem

Derive welfare bounds in simple misreporting model (bounds hold in a much more general model)

- Govt offers policy $\mathbf{p} = \{b, \tau\} = \{\text{benefit, threshold}\}$
 - Hh receives benefit b if reported income $\hat{y} \leq \tau$
- Hhs endowed with income y and choose \hat{y} s.t. misreporting costs
 - $\bullet\,$ Some hhs misreport and bunch at $\tau\,$
 - Some hhs always report their true income
- Determine welfare impact of reform from ${\bf p}=\{b,\tau\}$ to ${\bf p}'=\{b',\tau'\}$ for ${\bf p}'>{\bf p}$
- Determine willingness-to-pay for reform, WTP

HH Problem

Model Solution: Density of Reported Incomes

Behavioral Responses to Reform

Bunchers spread to $(\tau, \tau']$ while "close-to-indifferent" hhs jump to τ'

• B: # of bunching households who move toward au' formula

- B: # of bunching households who move toward au' formula
- \uparrow benefit of b' b

Bergstrom, Dodds, and Rios

- B: # of bunching households who move toward au' formula
- \uparrow benefit of b' b
- \downarrow misreporting cost

- B: # of bunching households who move toward au' formula
- \uparrow benefit of b' b
- \downarrow misreporting cost
- WTP for \uparrow benefit = b' b

- B: # of bunching households who move toward au' formula
- \uparrow benefit of b' b
- \downarrow misreporting cost
- WTP for \uparrow benefit = b' b
- WTP for \downarrow misreporting cost \in [0, *b*]
 - If > b, couldn't have been optimal to bunch

Bergstrom, Dodds, and Rios

- B: # of bunching households who move toward au' formula
- \uparrow benefit of b' b
- \downarrow misreporting cost
- WTP for \uparrow benefit = b' b
- WTP for \downarrow misreporting cost \in [0, *b*]
 - If > b, couldn't have been optimal to bunch

 $\rightarrow \mathsf{WTP} \in [b' - b, b']$

• J: # of jumping hhs formula

Bergstrom, Dodds, and Rios

- J: # of jumping hhs formula
- \uparrow benefit of b'

Bergstrom, Dodds, and Rios

- J: # of jumping hhs formula
- \uparrow benefit of b'
- $\bullet \uparrow$ misreporting cost

- J: # of jumping hhs formula
- \uparrow benefit of b'
- WTP for \uparrow benefit = b'

- J: # of jumping hhs formula
- \uparrow benefit of b'
- WTP for \uparrow benefit = b'
- WTP for \uparrow misreporting cost $\in [-b', 0]$
 - If < -b', couldn't have been optimal to jump

- J: # of jumping hhs formula
- \uparrow benefit of b'
- WTP for \uparrow benefit = b'
- WTP for \uparrow misreporting cost $\in [-b', 0]$
 - If < -b', couldn't have been optimal to jump

 $\rightarrow \mathsf{WTP} \in [0, b']$

Groups Impacted by Reform

Four groups impacted by reform:

Reported income, \hat{y}

Bounds on MVPF

$\mathsf{MVPF} = \frac{\mathsf{Total} \; \mathsf{WTP}}{\mathsf{Total} \; \mathsf{Cost} \; \mathsf{of} \; \mathsf{Reform}}$

math LB math UB welfare bounds model robustness

Proposition 1

Using our bounds on WTP, we can bound the MVPF provided we can observe B and J:

$$\underbrace{\frac{1 - b'\frac{J}{\text{Total Cost}}}_{\text{MVPF}_{L}} \leq \text{MVPF} \leq \underbrace{1 + b\frac{B}{\text{Total Cost}}}_{\text{MVPF}_{U}}$$

Proposition 1

Using our bounds on WTP, we can bound the MVPF provided we can observe B and J:

$$\underbrace{\frac{1 - b'\frac{J}{\text{Total Cost}}}_{\text{MVPF}_{L}} \leq \text{MVPF} \leq \underbrace{1 + b\frac{B}{\text{Total Cost}}}_{\text{MVPF}_{U}}$$

• Total Cost = (b' - b)(M + B) + b'(T + J)

math UB welfare bounds model robustness

Proposition 1

Using our bounds on WTP, we can bound the MVPF provided we can observe B and J:

$$\underbrace{\frac{1 - b'\frac{J}{\text{Total Cost}}}_{\text{MVPF}_{L}} \leq \text{MVPF} \leq \underbrace{1 + b\frac{B}{\text{Total Cost}}}_{\text{MVPF}_{U}}$$

• Total Cost =
$$(b' - b)(M + B) + b'(T + J)$$

welfare bounds

• $MVPF_L$: jumpers $WTP_L = 0$ but cost b' each

Bergstrom, Dodds, and Rios

math UB

Welfare of Changing Notches

Proposition 1

Using our bounds on WTP, we can bound the MVPF provided we can observe B and J:

$$\underbrace{\frac{1 - b'\frac{J}{\text{Total Cost}}}_{\text{MVPF}_{L}} \leq \text{MVPF} \leq \underbrace{1 + b\frac{B}{\text{Total Cost}}}_{\text{MVPF}_{U}}$$

- Total Cost = (b' b)(M + B) + b'(T + J)
- MVPF_L: jumpers WTP_L = 0 but cost b' each
- MVPF_U: bunchers WTP_U = b' but only cost b' b each

 math LB
 math UB
 welfare bounds
 model robustness

 Bergstrom, Dodds, and Rios
 Welfare of Changing Notches
 August 30, 2023

Bolsa Família Schedule: Pre June 2014

- Data for 2012-2016
- Focus on households with 1 adult
- If reported monthly income $\leq R$ \$70, receive R\$70 per month

June 2014 Reform

- \bullet June 2014 Reform: benefit and threshold both increased by 10%
- Reform announced by president on national TV in April 2014

(a) Number in R\$(63,70]

(b) Number in R\$(70,77]

Sufficient Statistics 2 adult graphs

 $\bullet~\#s$ reporting just below old & new notch changing prior to reform

Sufficient Statistics 2 adult graphs

- $\bullet~\#s$ reporting just below old & new notch changing prior to reform
- ullet \to Need control groups

Sufficient Statistics 2 adult graphs

Bergstrom, Dodds, and Rios

13/17

- $\bullet~\#s$ reporting just below old & new notch changing prior to reform
- \rightarrow Need control groups
- Use portions of distribution unaffected by reform as controls

Sufficient Statistics 2 adult graphs

Identification Assumptions

Density of reported incomes below 70 is unaffected by reform so that (0,7],..., (54,63] serve as controls for (63,70] and (70,77] (A1)

Identification Assumptions

Density of reported incomes below 70 is unaffected by reform so that (0,7],...,(54,63] serve as controls for (63,70] and (70,77] (A1)

Reported income, \hat{y}

Oiff btw treated and control bins evolves according to a stable polynomial (M2)

• Treated bins present a break from the polynomial trend:

$$log(N_{(x-7,x],t}) = \underbrace{\delta_t}_{\text{time trend}} + \underbrace{\alpha_{0,x} + \alpha_{1,x}t + \alpha_{2,x}t^2 + \alpha_{3,x}t^3}_{\text{bin-specific polynomial time trends}} +$$

$$[\underbrace{b_1 post_t + b_2 post_t \times t}] \mathbb{1}(x = 70) + [\underbrace{\beta_1 post_t + \beta_2 post_t \times t}] \mathbb{1}(x = 77) + \epsilon_{xt}$$

treatment effect for $N_{(63,70]}$

treatment effect for $N_{(70,77]}$

• Treated bins present a break from the polynomial trend:

$$log(N_{(x-7,x],t}) = \underbrace{\delta_t}_{\text{time trend}} + \underbrace{\alpha_{0,x} + \alpha_{1,x}t + \alpha_{2,x}t^2 + \alpha_{3,x}t^3}_{\text{bin-specific polynomial time trends}} +$$

$$[\underline{b_1 post_t + b_2 post_t \times t}] \,\mathbb{1}(x = 70) + [\underline{\beta_1 post_t + \beta_2 post_t \times t}] \,\mathbb{1}(x = 77) + \epsilon_{xt}$$

treatment effect for $N_{(63,70]}$

treatment effect for $N_{(70,77]}$

• Parallel trends:
$$\alpha_{i1} = \alpha_{i2} = \alpha_{i3} = 0$$

• Treated bins present a break from the polynomial trend:

$$log(N_{(x-7,x],t}) = \underbrace{\delta_t}_{\text{time trend}} + \underbrace{\alpha_{0,x} + \alpha_{1,x}t + \alpha_{2,x}t^2 + \alpha_{3,x}t^3}_{\text{bin-specific polynomial time trends}} +$$

$$\underbrace{\left[b_1 post_t + b_2 post_t \times t\right] \mathbb{1}(x = 70)}_{t \to t} + \underbrace{\left[\beta_1 post_t + \beta_2 post_t \times t\right] \mathbb{1}(x = 77)}_{t \to t} + \epsilon_{xt}$$

treatment effect for $N_{(63,70]}$

treatment effect for $N_{(70,77]}$

- Parallel trends: $\alpha_{i1} = \alpha_{i2} = \alpha_{i3} = 0$
- Show robustness to higher- and lower-order polynomials

15 / 17

• Treated bins present a break from the polynomial trend:

$$log(N_{(x-7,x],t}) = \underbrace{\delta_t}_{\text{time trend}} + \underbrace{\alpha_{0,x} + \alpha_{1,x}t + \alpha_{2,x}t^2 + \alpha_{3,x}t^3}_{\text{bin-specific polynomial time trends}} +$$

$$\underbrace{\left[b_1 post_t + b_2 post_t \times t\right] \mathbb{1}(x = 70)}_{t \to t} + \underbrace{\left[\beta_1 post_t + \beta_2 post_t \times t\right] \mathbb{1}(x = 77)}_{t \to t} + \epsilon_{xt}$$

treatment effect for $N_{(63,70]}$

treatment effect for $N_{(70,77]}$

- Parallel trends: $\alpha_{i1} = \alpha_{i2} = \alpha_{i3} = 0$
- Show robustness to higher- and lower-order polynomials
- Key assumption: stable bin-specific polynomial trends that would persist in absence of reform (show placebos)

Main DID Results

(a) R\$(63,70]

(b) R\$(70,77]

Main DID Results

(a) R\$(63,70]

(b) R\$(70,77]

16 / 17

• \downarrow of $\approx 27K$ in (63,70] $\Rightarrow B = 27k$ • \uparrow of $\approx 49K$ in (70,77] $\Rightarrow J = 22k$

- *MVPF* ∈ [0.9, 1.12]
 - \uparrow welfare if value R\$0.90 to BF hhs > R\$1 to best alternative
 - \downarrow welfare if value R\$1.12 to BF hhs < R\$1 to best alternative
- What is the best alternative
 - Hard to say but let's consider UBI
 - Conservative back-of-envelope calculation: spending R\$1 on reform \equiv welfare gain of spending R\$1.50 on UBI details
- Why? Strong coverage of extreme poor + misreporters fall in bottom half of income distribution (Lindert et al, 2007)
- Even in setting with prominent eligibility notch based on *reported* income, unlikely that efficiency cost outweighs equity benefit
- Given ubiquity of notches, hope method useful in other contexts, e.g., Medicaid reforms, reforms to tax schedules with notches

- $MVPF \in [0.9, 1.12]$
 - \uparrow welfare if value R\$0.90 to BF hhs > R\$1 to best alternative
 - $\bullet \downarrow$ welfare if value R\$1.12 to BF hhs < R\$1 to best alternative
- What is the best alternative
 - Hard to say but let's consider UBI
 - Conservative back-of-envelope calculation: spending R\$1 on reform \equiv welfare gain of spending R\$1.50 on UBI details
- Why? Strong coverage of extreme poor + misreporters fall in bottom half of income distribution (Lindert et al, 2007)
- Even in setting with prominent eligibility notch based on *reported* income, unlikely that efficiency cost outweighs equity benefit
- Given ubiquity of notches, hope method useful in other contexts, e.g., Medicaid reforms, reforms to tax schedules with notches
- Thank you

Appendix Slides

Relationship to the Literature

Sufficient Statistics for Welfare Analysis: e.g., Chetty (2009), Kleven (2021),...

- Show *B* and *J* sufficient to bound welfare effect of arbitrarily large reforms
- Analyze welfare impacts even when cannot apply envelope theorem (notches)

Back to This Paper

Relationship to the Literature

Sufficient Statistics for Welfare Analysis: e.g., Chetty (2009), Kleven (2021),...

- Show *B* and *J* sufficient to bound welfare effect of arbitrarily large reforms
- Analyze welfare impacts even when cannot apply envelope theorem (notches)

Bunching Methods: e.g., Kleven and Waseem (2013), Best and Kleven (2017), Bachas & Soto (2020),...

- Use bunching evidence to inform welfare in fairly model-free way
- \bullet Estimate changes in bunching as opposed to bunching at a notch/kink \rightarrow different empirical strategy

Back to This Paper

Relationship to the Literature

Sufficient Statistics for Welfare Analysis: e.g., Chetty (2009), Kleven (2021),...

- Show *B* and *J* sufficient to bound welfare effect of arbitrarily large reforms
- Analyze welfare impacts even when cannot apply envelope theorem (notches)

Bunching Methods: e.g., Kleven and Waseem (2013), Best and Kleven (2017), Bachas & Soto (2020),...

- Use bunching evidence to inform welfare in fairly model-free way
- \bullet Estimate changes in bunching as opposed to bunching at a notch/kink \rightarrow different empirical strategy

Welfare Analysis of CT programs: e.g., Bergolo and Cruces (2021), Bergstrom and Dodds (2021), Hanna and Olken (2018)

- Few papers analyze welfare impacts of CT programs
- Evidence against belief that programs targeted on self-reported income will have substantial efficiency costs in high-informality settings

Back to This Paper

Household Problem

$$\max_{\hat{y}} \quad c - \underbrace{v(y - \hat{y}) \mathbb{1}(y > \hat{y})}_{\text{misreporting cost}}$$
s.t. $c = y + b\mathbb{1}(\hat{y} \le \tau)$

•
$$y = \text{income}, \ \hat{y} = \text{reported income}$$

•
$$\mathbf{p} = \{b, \tau\} = \{\text{benefit, threshold}\}$$

• Also assume some distribution of individuals who always report truthfully

WTP: Bunchers

WTP(Δb) is the WTP for the increase in benefit

$$y + b - v(y - \tau) = y + b' - WTP(\Delta b) - v(y - \tau)$$

 \implies WTP(Δb) = b' - b

WTP(Δŷ) is the WTP for the decrease in misreporting

 $0 < WTP(\Delta \hat{y})$ since the cost of misreporting is increasing = $v(y - \tau) - v(y - \tau')$ < $v(y - \tau)$ since $v(\cdot) > 0$ < b otherwise, hh would not bunch

$$\implies WTP = WTP(\Delta b) + WTP(\Delta \hat{y}) \in [b' - b, b')$$

back

• One of world's largest cash transfer programs, started in 2003

• 14 million families benefited from BF in 2014

⁴Show in paper that results very similar for 2 adult households

- One of world's largest cash transfer programs, started in 2003
 - 14 million families benefited from BF in 2014
- Targeted to families living in poverty
 - Unconditional transfer for those in extreme poverty: monthly per-capita income $\leq R$ \$70 (\approx US\$30 in 2014)
 - Conditional, per-child transfer for those in poverty: monthly per-capita income $\leq R$ \$140

⁴Show in paper that results very similar for 2 adult households

- One of world's largest cash transfer programs, started in 2003
 - 14 million families benefited from BF in 2014
- Targeted to families living in poverty
 - Unconditional transfer for those in extreme poverty: monthly per-capita income $\leq R$ \$70 (\approx US\$30 in 2014)
 - Conditional, per-child transfer for those in poverty: monthly per-capita income $\leq R$ \$140
- $\bullet\,$ Main analysis: single adult household without kids $\to\,$ can only receive unconditional transfer^4 $\,$

⁴Show in paper that results very similar for 2 adult households

- Eligibility: hh must be registered in Cadastro Único system
 - Cadastro Único: govt's single registry for all social programs

Back to BF Schedule

- Eligibility: hh must be registered in Cadastro Único system
 - Cadastro Único: govt's single registry for all social programs
- Information on hh income and family characteristics: self-reported & must be updated at least every 2 years
 - Reminded of penalty of losing eligibility for all govt. programs if lying
 - Conduct audits

Back to BF Schedule

- Eligibility: hh must be registered in Cadastro Único system
 - Cadastro Único: govt's single registry for all social programs
- Information on hh income and family characteristics: self-reported & must be updated at least every 2 years
 - Reminded of penalty of losing eligibility for all govt. programs if lying
 - Conduct audits
- Access to universe of data from Cadastro Único registry from 2012-16

Back to BF Schedule

Number of Bunchers

Let $G(x; \mathbf{p})$ denote # reporting income $\leq x$ under \mathbf{p}

$$B = \mathit{G}(au; \mathbf{p}) - \mathit{G}(au; \mathbf{p}')$$

WTP: Jumping Households

$$y = y + b' - WTP - v(y - \tau')$$
$$\implies WTP = b' - v(y - \tau')$$

• Since misreporting cost is positive,

$$v(y- au') \geq 0 \implies WTP \leq b'$$

• By revealed preference, for any jumping hh:

$$y \le y + b' - v(y - \tau') \\ \implies WTP \ge 0$$

$$\implies$$
 WTP \in [0, b']

back

Number of Jumpers

Let $G(x; \mathbf{p})$ denote # reporting income $\leq x$ under \mathbf{p}

$$J = \mathit{G}(au'; \mathbf{p}') - \mathit{G}(au'; \mathbf{p})$$

MVPF_L

MVPF_U

Proposition 2

Welfare gain from reform:

$$\omega MVPF_L - \lambda \leq \frac{\Delta Welfare}{Total \ Cost} \leq \omega MVPF_U - \lambda$$

- $\omega = \text{welfare weight on beneficiaries}^5$
- $\lambda =$ shadow value of public funds (opportunity cost)
- ullet o J and B relevant statistics to bound welfare

⁵Technically, have ω_L and ω_U . For ease of exposition, ignored for today's talk

back to mvpf bounds 📜 welfare weights

Welfare Weights

$$\omega_{L} = \frac{\sum_{g} N_{g} \times \text{WTP}_{g,L} \times \eta_{g}}{\sum_{g} N_{g} \times \text{WTP}_{g,L}}$$

- N_g denotes number of hhs in group g impacted by reform
- η_g = welfare gain of splitting \$1 evenly among group g hhs
- $\omega_L (\omega_U)$: welfare gain of splitting \$1 among all BF recipients, where dollar split is determined by lower (upper) bounds on WTP

Robustness to Model Specification

Proposition 1 still holds for far more general hh problem:

 Back to Bounds
 general problem
 intuition
 labor ss
 adj costs
 dynamics
 FE
 eligible --+ entitlement

 Bergstrom, Dodds, and Rios
 Welfare of Changing Notches
 August 30, 2023
 14/44

Robustness to Model Specification

Proposition 1 still holds for far more general hh problem:

- Allow for:
 - responding on different margins (e.g., labor supply),
 - frictions (adjustment costs, limited choice sets),
 - misperceptions
 - heterogeneity in preferences
 - multi-agent household

Robustness to Model Specification

Proposition 1 still holds for far more general hh problem:

- Allow for:
 - responding on different margins (e.g., labor supply),
 - frictions (adjustment costs, limited choice sets),
 - misperceptions
 - heterogeneity in preferences
 - multi-agent household
- Bounds for general dynamic model:
 - Need (expected) J and B for all periods post-reform

Robustness to Model Specification

Proposition 1 still holds for far more general hh problem:

- Allow for:
 - responding on different margins (e.g., labor supply),
 - frictions (adjustment costs, limited choice sets),
 - misperceptions
 - heterogeneity in preferences
 - multi-agent household
- Bounds for general dynamic model:
 - Need (expected) J and B for all periods post-reform
- Augment to allow for other fiscal externalities
 - But need to measure size of externalities

 Back to Bounds
 general problem
 intuition
 labor ss
 adj costs
 dynamics
 FE
 eligible --+ entitlement

 Bergstrom, Dodds, and Rios
 Welfare of Changing Notches
 August 30, 2023
 14 / 44

Robustness to Model Specification

Proposition 1 still holds for far more general hh problem:

- Allow for:
 - responding on different margins (e.g., labor supply),
 - frictions (adjustment costs, limited choice sets),
 - misperceptions
 - heterogeneity in preferences
 - multi-agent household
- Bounds for general dynamic model:
 - Need (expected) J and B for all periods post-reform
- Augment to allow for other fiscal externalities
 - But need to measure size of externalities
- J and B are no longer the number of jumpers and bunchers
 - *J* (*B*) becomes the increase (decrease) in the number of hhlds eligible under the new (old) schedule *because* of the reform

 Back to Bounds
 general problem
 intuition
 labor ss
 adj costs
 dynamics
 FE
 eligible → entitlement

 Bergstrom, Dodds, and Rios
 Welfare of Changing Notches
 August 30, 2023
 14/44

$$\max_{x \in X} u(c, x; \theta)$$

s.t. $c = y(x, \theta) + b\mathbb{1}(\hat{y}(x, \theta) \le \tau)$

Calculate bounds on $\mathcal{W}(x(\mathbf{p}');\mathbf{p}') - \mathcal{W}(x(\mathbf{p});\mathbf{p})$ via revealed preference:

• UB:
$$\mathcal{W}(x(\mathbf{p}');\mathbf{p}') - \underbrace{\mathcal{W}(x(\mathbf{p}');\mathbf{p})}_{<\mathcal{W}(x(\mathbf{p});\mathbf{p})}$$

• LB:
$$\underbrace{\mathcal{W}(x(\mathbf{p});\mathbf{p}')}_{<\mathcal{W}(x(\mathbf{p}');\mathbf{p}')} - \mathcal{W}(x(\mathbf{p});\mathbf{p})$$

- \bullet Note: for each bound, decisions held fixed under p or p'
- $\bullet \rightarrow$ Bounds not impacted by changes in behavior
- \rightarrow Not impacted by whether behavior change incurred adjustment cost, or whether responded via labor supply or misreporting, or whether faced frictions in choice sets

$$\max_{x} u(c, x; \theta)$$

s.t. $c = y(x, \theta) + b \mathbb{1}(\hat{y}(x, \theta) \le \tau)$

- $\theta = n$
- $y(x,\theta) = y$
- $\hat{y}(x,\theta) = y$

•
$$u(c,x;\theta) = c - v(y/n)$$

$$\max_{y} y + b\mathbb{1} (y \leq \tau) - v (y/n)$$

$$\max_{x} u(c, x; \theta)$$

s.t. $c = y(x, \theta) + b \mathbb{1}(\hat{y}(x, \theta) \le \tau)$

• $\hat{y}(x,\theta) = \hat{y}_t$

$$\max_{\hat{y}_t} y_t + b\mathbb{1}\left(\hat{y}_t \leq \tau\right) - v\left(y_t - \hat{y}_t\right) - k\mathbb{1}\left(\hat{y}_t \neq \hat{y}_{t-1}\right)$$

Dynamics

Households solve very general dynamic problem:

$$V(\theta_t) = \max_{x_t} u(c_t, x_t; \theta_t) + \beta \mathbb{E}_{\theta_{t+1}|\theta_t, x_t} [V(\theta_{t+1})]$$

s.t. $c_t = y_t(x_t, \theta_t) + b \mathbb{1}(\hat{y}_t(x_t, \theta_t) \le \tau)$
$$\mathsf{MVPF}_\mathsf{L} = 1 - b' \frac{\sum_{t=0}^T \beta^t J_t}{\sum_{t=0}^T \beta^t \mathsf{Total Cost}_t}$$

$$\mathsf{MVPF}_\mathsf{U} = 1 + b \frac{\sum_{t=0}^T \beta^t B_t}{\sum_{t=0}^T \beta^t \mathsf{Total Cost}_t}$$

- Assumes value of public funds in period $t: \beta^t \lambda$
- *B_t*, *J_t*, Total Cost_t denote expected bunchers, jumpers, and cost in period *t* (from perspective of period 0 when reform happens)

back

- Let $R(\mathbf{p})$ equal govt spending under policy \mathbf{p} excl. spending on BF
- Fiscal externality of reform: $\Delta R = R(\mathbf{p}') R(\mathbf{p})$
- Adjust MVPF bounds as total cost of reform now includes ΔR

$$\begin{split} \mathsf{MVPF}_\mathsf{L} &= 1 - b' \frac{J}{\mathsf{Total Cost}} - \frac{\Delta R}{\mathsf{Total Cost}} \\ \mathsf{MVPF}_\mathsf{U} &= 1 + b \frac{B}{\mathsf{Total Cost}} - \frac{\Delta R}{\mathsf{Total Cost}} \end{split}$$

20 / 44

- BF: not all eligible hhs receive the BF grant
- Why? Quota (cap) on number of beneficiaries per municipality (equal to $1.18 \times \text{predicted } \# \text{ below poverty threshold})$
- \implies Those reporting below threshold receive benefit with some probability
- Bounds are robust to this scenario
 - Need constant probability across reform and across reported incomes below the threshold
 - This is the case with BF: 78% of those reporting below R\$70 get benefit; prob doesn't vary
- Intuition: multiply both numerator (WTP) and denominator (total cost) by probability → probability cancels out

back

Histogram Pre- and Post-Reform

Caution: distribution changing over time \rightarrow can't interpret changes in histogram solely due to reform

back

$$1 - b' rac{J}{ extsf{Total Cost}} \leq extsf{MVPF} \leq 1 + b rac{B}{ extsf{Total Cost}}$$

Back to Evidence B formula J formula histogram

Welfare of Changing Notches

23 / 44

$$1 - b' \frac{J}{\text{Total Cost}} \leq \text{MVPF} \leq 1 + b \frac{B}{\text{Total Cost}}$$

• Number of bunchers who moved with the notch:

- $B = \downarrow$ in mass reporting below R\$70
- Why not just ↓ mass *at* R\$70? Bunching isn't perfect

ack to Evidence 🜔 B formula 🔵 J formula 🔵 histogram

$$1 - b' rac{J}{\text{Total Cost}} \leq \text{MVPF} \leq 1 + b rac{B}{\text{Total Cost}}$$

• Number of bunchers who moved with the notch:

- $B = \downarrow$ in mass reporting below R\$70
- Why not just ↓ mass at R\$70? Bunching isn't perfect
- Number of hhs who jumped down into the program:
 - $J = \uparrow$ in mass reporting at & below R\$77
 - Or ↑ in (70,77] B
 - Why subtract $B? \uparrow$ in (70,77] consists of both bunchers & jumpers

ck to Evidence B formula J formula hist

Raw Data: 2 Adult Households

(a) Number in R\$(63,70]

(b) Number in R\$(70,77]

Assumption 1

Reported income density below 70 - ϵ is unaffected by the reform

Back to IAs control bins over time all bins over time

Assumption 1

Reported income density below 70 - ϵ is unaffected by the reform

• If
$$\epsilon = 7$$
 (show robustness to different ϵ)

- $B = \downarrow$ in (63,70] due to reform
- $J = \uparrow$ in (70,77] due to reform -B

Back to IAs control bins over time all bins over time

Assumption 1

Reported income density below $70 - \epsilon$ is unaffected by the reform

- If $\epsilon = 7$ (show robustness to different ϵ)
 - $B = \downarrow$ in (63,70] due to reform
 - $J = \uparrow$ in (70,77] due to reform B
- Need counterfactual of (63, 70] and (70, 77] post-reform under old policy

Assumption 1

Reported income density below $70 - \epsilon$ is unaffected by the reform

- If $\epsilon = 7$ (show robustness to different ϵ)
 - $B = \downarrow$ in (63,70] due to reform
 - $J = \uparrow$ in (70,77] due to reform B
- Need counterfactual of (63, 70] and (70, 77] post-reform under old policy
- Use bins \leq 63 to predict how (63,70], (70,77] would've evolved
 - Control bins: (0, 7], ..., (56, 63]
 - Treatment bins: (63, 70], (70, 77]

Back to IAs 🚺 control bins over time 🔪 all bins over time

• Standard DID: diff btw treat and control bins is constant over time

Back to IAs Trend Breaks

- Standard DID: diff btw treat and control bins is constant over time
- Pre-reform: diff btw log number in treat and control bins evolve according to low-order polynomials (70,77] diff (63,70] diff

- Standard DID: diff btw treat and control bins is constant over time
- Pre-reform: diff btw log number in treat and control bins evolve according to low-order polynomials (70,77] diff (63,70] diff
- Flexible DID: diff btw treat and control bins evolves according to a stable polynomial

- Standard DID: diff btw treat and control bins is constant over time
- Pre-reform: diff btw log number in treat and control bins evolve according to low-order polynomials (70,77] diff (63,70] diff
- Flexible DID: diff btw treat and control bins evolves according to a stable polynomial

Assumption 2

In absence of the reform, the log number in each bin evolves according to:

$$log(N_{(x-7,x],t}) = h(t) + \sum_{j=0}^{J} \alpha_{j,x} t^j + \epsilon_{x,t} \text{ for } x \in \{7, 14, ..., 77\}$$

- Standard DID: diff btw treat and control bins is constant over time
- Pre-reform: diff btw log number in treat and control bins evolve according to low-order polynomials (70,77] diff (63,70] diff
- Flexible DID: diff btw treat and control bins evolves according to a stable polynomial

Assumption 2

In absence of the reform, the log number in each bin evolves according to:

$$log(N_{(x-7,x],t}) = h(t) + \sum_{j=0}^{J} \alpha_{j,x} t^j + \epsilon_{x,t} \text{ for } x \in \{7, 14, ..., 77\}$$

• $J = 0 \rightarrow$ standard DID

Trend Breaks

Back to IAs

26 / 44

Control Bins Over Time

back

All Bins Over Time

back

$log(N_{(70,77],t}) - log(N_{(x-7,x],t})$: Pre-Reform

$log(N_{(63,70],t}) - log(N_{(x-7,x],t})$: Pre-Reform

	(1)	(2)	(3)	(4)	(5)	(6)
Polynomial Degree	$\Delta(63,70]_{\overline{t}}$	$\Delta(70,77]_{\overline{t}}$	$B_{\overline{t}}$	$J_{\overline{t}}$	$MVPF_{L,\overline{t}}$	$MVPF_{U,\overline{t}}$
Quadratic	-26,279	51,759	26,279	25,480	0.88	1.11
	(6, 163)	(2, 160)	(6, 163)	(6, 659)	(0.03)	(0.03)
Cubic	-27,452	49,247	27,452	21,794	0.90	1.12
	(4,357)	(234)	(4, 357)	(4, 592)	(0.02)	(0.02)
Quartic	-29,338	50,873	29,338	21,535	0.90	1.13
	(6,257)	(1, 345)	(6,257)	(6,503)	(0.03)	(0.03)
Quintic	-29,240	50,559	29,240	21,318	0.90	1.13
	(5,912)	(1,184)	(5,912)	(6,141)	(0.03)	(0.03)

Back to Results

• Pretend x out of 9 control bins are treated

Back to Results 🔪 more placeb

- Pretend x out of 9 control bins are treated
- Use remaining 9 x bins as controls to predict "treatment effects"

Back to Results) more placeb

- Pretend x out of 9 control bins are treated
- Use remaining 9 x bins as controls to predict "treatment effects"
- 255 "treatment effects" for each bin

Back to Results more place

- Pretend x out of 9 control bins are treated
- Use remaining 9 x bins as controls to predict "treatment effects"
- 255 "treatment effects" for each bin

3ack to Results 🔪 more placeb

Trend Breaks

• Sppse each bin evolves according to cubic + divergence post-reform

Back to Results

Predicting $N_{(63,70]}$ and $N_{(70,77]}$ w Quadratic Trends

Predicting $N_{(63,70]}$ and $N_{(70,77]}$ w Quartic Trends

Predicting $N_{(63,70]}$ and $N_{(70,77]}$ w Quintic Trends

Using Each Bin Below 63 Individually

back

Predicting $N_{(63,70]}$ and $N_{(70,77]}$, 2 Adults Hhs

Predicting $N_{(63,70]}$ and $N_{(70,77]}$, Constant Composition

back

Excluding (56, 63] as Control Bin w Quartic Trends

Figure 4: Predicting $N_{(56,63]}$, $N_{(63,70]}$, and $N_{(70,77]}$ using all bins below 56

back

Smaller Bin Sizes: (x - 3.5, x]

Figure 5: Predicting $N_{(63,66.5]}$, $N_{(66.5,70]}$, $N_{(70,73.5]}$ and $N_{(73.5,77]}$

Excluding (56, 63] as Control Bin

Figure 6: Predicting $N_{(56,63]}$, $N_{(63,70]}$, and $N_{(70,77]}$ using bins below 56 as controls

quartic trend

Placebo: Predicting $N_{(49,56]}$ and $N_{(56,63]}$

Figure 7: Predicting $N_{(49,56]}$ and $N_{(56,63]}$ using bins below 49 as controls

back

- Assume: true income dist. of BF recipients \equiv bottom half of Brazil's true income dist. (PovCalNet 2016)
 - Conservative assumption: bottom 20% receive 73% of BF transfers (Lindert et al, 2007)
- Govt is utilitarian and households have log utility over consumption
- Spending \$x on UBI: $\Delta W = \int_0^\infty [log(y + x) log(y)] f(y) dy$
- Spending \$1 on BF (or \$2 for the bottom half valued at \$1.8): $\Delta W = \int_0^{y_{median}} \left[log(y + 1.8) - log(y) \right] f(y) dy$
- Can calculate how much to spend on UBI to generate same welfare as spending \$1 on BF

back