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Abstract

This paper investigates the local average treatment effect (LATE) with high-dimensional co-

variates, irrespective of the strength of identification. We propose a novel test statistic for the

high-dimensional LATE, and demonstrate that our test has uniformly correct asymptotic size. By

employing the double/debiased machine learning (DML) method to estimate nuisance parameters,

we develop easy-to-implement algorithms for inference and confidence interval calculation of the

high-dimensional LATE. Simulations indicate that our test is robust against both weak identifica-

tion and high-dimensional setting concerning size control and power performance, outperforming

other conventional tests. Applying the proposed method to railroad and population data to study

the effect of railroad access on urban population growth, we observe shorter length of confidence

intervals and smaller point estimates for the railroad access coefficients compared to the conven-

tional results.
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1 Introduction

In models where certain explanatory variables are correlated with the error term, least squares esti-

mators yield inconsistent coefficient estimates. Instrumental variables (IV) are often employed as a

solution, as they are uncorrelated with the error term but correlated with the endogenous explanatory

variables. However, when the correlation between the instruments and endogenous variables is weak,

IV estimation becomes imprecise, leading to unreliable tests and confidence intervals. This is the

weak-instrument problem which remains a significant concern in empirical practice.

Empirical researchers often seek to make inferences about the coefficients of endogenous variables

in IV regression. An example is the influential study by Angrist and Krueger (1991), using quarter of

birth as an IV to estimate returns from schooling. However, Bound et al. (1995) argue that Angrist

and Krueger’s results may be unreliable due to the weak correlation between one’s quarter of birth

and their education attainment. Moreover, the common practice of pretesting, with a rule-of-thumb

F-statistic threshold of 10 proposed by Staiger and Stock (1994), is challenged by Lee et al. (2022).

In their paper, they introduce the tF critical value function and reveal that achieving a true 5 percent

test with critical value of 1.96 instead requires an F exceeding 104.7. Applying this criterion to their

sample of 61 American Economic Review papers published between 2013 and 2019, they find that

one-quarter of the initially presumed statistically significant specifications turn out to be insignificant.

Angrist and Imbens (1995a) develop a framework for estimating the local average treatment effect

(LATE). This type of estimate represents the treatment effect for a group of compliers who decide

to take the treatment if and only if assigned to the treatment group. Using the IV method to

estimate LATE has garnered considerable attention in the literature. In the LATE framework, weak

identification arises when instruments are only weakly correlated with endogenous regressors or when

the share of compliers is relatively small. Our interest lies in studying and addressing the issue of

weak identification in the LATE framework.

The issue of weak instruments has been extensively studied in the literature, leading to the de-

velopment of various econometric techniques for estimating and making inference about a structure

parameter θ based on moment equailities. In particular, many models imply that certain function

of the data and model parameters has mean zero when evalueted at the true parameter value θ0.
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Our focus is on testing the hypothesis that the mean function is equal to zero at θ0. The existing

literature proposes numerous tests for this hypothesis, such as Stock and Wright (2000), Kleibergen

(2002), and Andrews and Mikusheva (2016). While these papers develop methods aimed at making

inference about target parameters in the presence of weak identification, they do not consider models

with high-dimensional covariates, which have become increasingly prevalent in today’s big-data envi-

ronment. We differ from the previous work by developing an identification-robust test that employs

machine-learning methods, which enable us to explore a wider range of controls than what has been

previously considered.

Based on our simulation results, we find that our proposed method outperforms the conventional

identification-robust test. While the conventional test shows robustness against weak identification,

it suffers from severe size distortion in high-dimensional scenarios. In contrast, our proposed method

demonstrates robustness to both weak identification and high dimensionality. Additionally, our pro-

posed method outperforms existing machine-learning methods. Although the conventional machine-

learning methods exhibit robustness in high-dimensional settings, they encounter significant size dis-

tortion and power loss under weak identification scenarios. Overall, our proposed method exhibits

robustness to both weak identification and high-dimensionality in terms of size control and power per-

formance. We demonstrate that our proposed test maintains uniform size control across a broad range

of data-generating processes, accommodating both low-dimensional and high-dimensional scenarios,

as well as weakly and strongly identified cases. Additionally, in situations where the dimensionality

of the covariates in the LATE framework is small, our proposed method coincides with the conven-

tional identification-robust test in terms of size control, but with a slight trade-off only under weakly

identified scenarios.

In our empirical illustrations, we employ our proposed method to examine two impacts: (1) the ef-

fect of railroad access on city growth, and (2) the effect of cholera-related deaths on rental price. For the

first application, our findings demonstrate that, when compared with the conventional identification-

robust test, our proposed method tends to yield smaller estimates in magnitude. Moreover, the initial

significant results obtained through the conventional identification-robust test tend to lose significance

after applying our proposed method. Additionally, when compared with the conventional machine-

learning methods, our proposed method yields narrower confidence intervals. In the second application,
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we observe identical results, further reinforcing the reliability and consistency of our proposed method.

This paper contributes to the rapidly growing literature on weak identification by providing

procedures for inference and the estimation of confidence intervals of LATE parameters in high-

dimensional models. To the best of our knowledge, this is the first paper to make inferences about

the high-dimensional LATE model, irrespective of the strength of identification. We construct a high-

dimensional conditional test statistic with uniformly correct asymptotic size. Furthermore, we provide

a practical guideline containing step-by-step algorithms for inference and confidence interval of the

high-dimensional LATE using machine learning methods, specifically based on the lasso technique.

1.1 Relations to the Literature

This paper contributes to the literature on weak identification and high-dimensional models by pro-

viding a test that can be used to make inferences for the LATE with high-dimensional covariates.

Since the 1990s, weak identification in the IV context has received considerable attention in the

literature.1 To test the mean function is equal to zero at the true parameter value θ0, Stock and

Wright (2000) propose the concepts of weakly identified Generalized Mothod of Moments (GMM) and

introduce the S statistic in the quadratic form of the objective function, which is a generalized form of

the Anderson-Rubin test statistic and follows a χ2 asymptotic distribution under the null hypothesis.

Kleibergen (2005) proposes the K statistic, using the asymptotic independence between the Jacobian

estimator of the objective function and the sample average of the moment. However, these tests have

low power under weak identification settings, as they only study the process local to the point θ0 and

ignore a significant amount of information.

To address this issue, Moreira (2003) proposes the conditional likelihood ratio test for weakly

identified linear IV models based on the conditional distribution of nonpivotal statistics. This test of

structural coefficients has improved power relative to previous tests when identification is weak. More

recently, Andrews and Mikusheva (2016) have developed conditional test statistics to test the hypoth-

1See Staiger and Stock (1994), Bound et al. (1995), Stock and Wright (2000), Kleibergen (2002), Stock and Yogo

(2002), Moreira (2003), Kleibergen (2005), Andrews et al. (2006), Moreira (2009), Andrews and Mikusheva (2016),

Andrews and Guggenberger (2019), Moreira and Moreira (2019), and Mikusheva and Sun (2022). See Stock et al.

(2002), Andrews and Stock (2005), and Andrews et al. (2019) for surveys of weak identification literature.
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esis that θ0 satisfies the moment condition without making any assumptions about point identification

or the strength of identification. Their approach has desirable power properties since the test depends

on the full path of the observed process without losing information. However, none of these papers

considers models with high-dimensional covariates typically found in today’s big-data environment.

In the past decade, there has been a surge in the literature on machine learning-based econometric

methods for high-dimensional models, in which the dimensionality of parameters is potentially much

larger than the sample size of available data (p � N). Belloni et al. (2015) propose a Neyman

orthogonal score for a class of Z-estimation framework in the presence of high-dimensional nuisance

parameters. Belloni et al. (2018) construct a confidence interval using the Neyman orthogonality

condition in the high-dimensional setting. Chernozhukov et al. (2013,2016,2017) derive the Central

Limit Theorem (CLT) for the high-dimensional model using the Gaussian approximation approach.

Belloni et al. (2014) provide an overview of the methods to estimate and make inferences for high-

dimensional data. Chernozhukov et al. (2018) introduces the double/debiased machine learning (DML)

method under the i.i.d setting. They combine the Neyman orthogonality condition 2 and cross-fitting

methods. More recently, Chernozhukov et al. (2022) provide a general construction of doubly robust

moment function with robustness to nonparametric or high-dimensional first steps. However, none of

these papers on high-dimensional models consider weak identification issues.

This paper also relates to the literature on IV estimation of LATE. Angrist and Imbens (1995a)

first introduce the simple IV estimand for the average treatment effect for compliers. Motivated

by Angrist and Krueger (1991), Angrist and Imbens (1995b) extend LATE to ordered treatments,

such as years of schooling. Subsequent researchers start to incorporate covariates for estimating

LATE, including Angrist et al. (2000), Hirano et al. (2000), Yau and Little (2001), and Abadie

(2003), employing either parametric or semiparametric estimation approaches. Tan (2006) proposes

an LATE estimator with robustness against the misspecification of either propensity score model or the

outcome regression model. Frölich (2007) provides a fully nonparametric
√
N -consistent and efficient

estimator for the LATE with confounding covariates. More recently, Belloni et al. (2017) introduces an

efficient estimator and reliable confidence bands for the LATE with nonparametric/high-dimensional

2We refer readers to Pfanzagl and Wefelmeyer (1985), Bickel et al. (1993), Newey (1994), and Tsiatis (2006) for the

development of the Neyman orthogonal score.

5



components using the orthogonal moment condition and machine-learning method. Angrist (2022)

employs empirical examples to illustrate the importance of the LATE framework for causal inference.3

In this paper, we use the doubly robust estimand of LATE as our target parameter. To the best

of our knowledge, this paper is the first to develop a method for the LATE with high-dimensional

covariates without any assumption about identification.

1.2 Outline

The rest of the paper is structured as follows. In Section 2, a practice guideline of the proposed method

and algorithm is given. In Section 3, we present the theoretical framework, including a justification

explanation of our proposed method in Section 3.1, followed by the presentation of the general weak

convergence result in Section 3.2. Section 3.3 contains the low-level sufficient conditions for the LATE

framework. In Section 4, we showcase our Monte Carlo simulation results. In Section 5, two empirical

illustrations are given. We conclude in Section 6. The appendix includes all proofs of the theorems

and lemmas.

2 Overview

In this section, we provide a brief overview of our proposed method without theories. This overview

serves as a concise guideline in practice. In Section 3, we will formally introduce the theoretical

rationale for our method.

2.1 Notation

Consider the standard IV setup, the researcher observes a dataset of N iid observations, denoted as

{Wi = (Yi, Di, Zi, X
′
i)}Ni=1. The outcome of interest for unit i is denoted by Yi. Let Di ∈ {0, 1} be

a binary indicator of the receipt of treatment. We define Xi as a set of p-dimensional controls with

the dimensionality p potentially much larger than the available sample size, N . Additionally, there

3See, e.g., Card (1993), Kane and Rouse (1993), Acemoglu and Angrist (2000) Kling (2006), Oreopoulos (2006),

Angrist et al. (2010), Galiani et al. (2011), Maestas et al. (2013), French and Song (2014), Dahl et al. (2014), Moser et al.

(2014), Aizer and Doyle Jr (2015), Bisbee et al. (2017), Benzell and Cooke (2021) for empirical literature that employ

IV for LATE estimation.
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exists an instrument variable Zi, which is also a binary indicator, such as the offer of treatment. This

instrument is randomly assigned conditional on the covariates.

Let {PN}N be a sequence of sets of probability law of {Wi}i. The analysis allows for an increasing

dimensionality of Wi as the sample size N grows. We denote P = PN ∈ PN as the law with respect

to sample size N , and EP represents the expectation for law P . For any set B, its complement set is

denoted as Bc = {1, · · · , N} \B, and |B| represents the cardinality of the set B. Finally, we introduce

the subsample expectation operator by EB[·] := 1
|B|
∑

i∈B[·].

2.2 Anderson-Rubin-Type Neyman Orthogonal Score for the LATE

We model the random vector W = (Y,D,Z,X ′)′ as follows,

D = m0(Z,X) + v, EP [v|Z,X] = 0, (First stage) (2.1)

Y = g0(Z,X) + u, EP [u|Z,X] = 0, (Reduced form) (2.2)

Z = p0(X) + e, EP [e|X] = 0, (Propensity score) (2.3)

where the function m0 maps the support of (Z,X) to (ε, 1− ε), the function g0 maps the support of

(Z,X) to R, and the function p0 maps the support of X to (ε, 1− ε) for some ε ∈ (0, 1/2).

The LATE proposed by Tan (2006)4 is given by

LATE =
EP [g0(1, X)− g0(0, X)] + EP

[
Z(Y−g0(1,X))

p0(X)

]
− EP

[
(1−Z)(Y−g0(0,X))

1−p0(X)

]
EP [m0(1, X)−m0(0, X)] + EP

[
Z(D−m0(1,X))

p0(X)

]
− EP

[
(1−Z)(D−m0(0,X))

1−p0(X)

] :=
α01

α02
,

where α01 and α02 correspond to the numerator and denominator, respectively. The numerator is

the intent-to-treat (ITT) effect, while the denominator is the compliance probability or the share of

compliers. The usual normal distribution of the LATE estimator can be obtained using the delta

method, which linearizes the LATE estimator with respect to the estimators (α̂01, α̂02). Following

the weak IV literature, we model weak identification by allowing the denominator α02 to be close to

zero, which corresponds to the case where the share of the compliers is small. Notably, in section

4This LATE estimand, termed doubly robust LATE in Tan (2006), is robust against the misspecification of either

propensity score or the outcome regression model. The Newman orthogonal score ψ in (2.4) coincides with the double

robust score in the context of LATE. However, in this paper, we only focus on Newman orthogonality, excluding double

robustness exploration.

7



3, we also accommodate the denominator α02 being exactly zero, which corresponds to completely

unidentified case. Then, the normal approximation fails in the weak identification setting because the

LATE estimator is highly nonlinear in α̂02 when α̂02 is very close to zero. In order to construct valid

hypothesis tests and confidence sets for LATE without considering the strength of identification, we

construct the function ψ by

ψ(W ; θ, η) = g(1, X)− g(0, X) +
Z(Y − g(1, X))

p(X)
− (1− Z)(Y − g(0, X))

1− p(X)
(2.4)

− θ ×
(
m(1, X)−m(0, X) +

Z(D −m(1, X))

p(X)
− (1− Z)(D −m(0, X))

1− p(X)

)
,

where W = (Y,D,Z,X ′)′, θ ∈ Θ is the LATE, and η = (g,m, p) ∈ T ⊂ Rdη are the nuisance parame-

ters. Note that this function ψ is an Anderson-Rubin-type Neyman orthogonal (beriefly mention why

is orthogonal, not mention target parameter here) score function for the model (2.1)-(2.3). Note that

the score ψ satisfies the moment condition EP [ψ(W ; θ0, η0)] = 0, where θ0 and η0 represent the true

values of θ and η, respectively.

2.3 Inference Procedure

We next introduce how to make inferences about the make sure target have been mentionedtarget

parameter θ in practice. We are interested in testing the null hypothesis θ = θ0. We first estimate the

first-stage nuisance parameters η by some machine learning methods. With a fixed positive integer

K > 1, we randomly partition {1, · · · , N} into K parts {Ik}Kk=1. For each k ∈ {1, · · · ,K}, the nuisance

parameter estimate η̂k is computed using the subsample of those observations with index i ∈ Ick. After

that, we apply the cross-fitting (data-splitting) method proposed by Chernozhukov et al. (2018) to

calculate the covariance estimator of the process
√
Nψ(Wi; ·, η0), which is expressed as

Ω̂(θ1, θ2) =
1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)− 1

N2

K∑
k=1

K∑
k′=1

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′), (2.5)

for θ1, θ2 ∈ Θ. Note that Ω̂(θ1, θ2) is computed using the sample of those observations with index

i ∈ Ik. This computation is repeated K times. Following this procedure, we take random draws

ξ ∼ N(0, Ω̂(θ0, θ0)) under the null. Then under the null, we calculate a conditional test statistic
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R(ξ, h, Ω̂) given h = hN (θ), where

R(ξ, h,Ω) = ξ2Ω(θ0, θ0)−1 − inf
θ

(V (θ)ξ + h)2Ω(θ, θ)−1, and (2.6)

hN (θ) = q̂N (θ)− Ω̂(θ, θ0)Ω̂(θ0, θ0)−1q̂N (θ0), (2.7)

with V (θ) = Ω(θ, θ0)Ω(θ0, θ0)−1 and q̂N (θ) = 1√
N

∑K
k=1

∑
i∈Ik ψ(Wi; θ, η̂k). After that, the conditional

critical value cα(h̃) is defined as

cα(h̃) = min{c : P (R(ξ, hN , Ω̂) > c|hN = h̃) ≤ α}. (2.8)

Note that given any realization of hN (·), the critical value cα(·) can be easily calculated.

We specifically examine a logit model class in which a binary outcome Di, denoting an individual

i’s receipt of treatment, is determined by the treatment offer, Zi, and a set of p-dimensional covariates,

Xi. Additionally, we employ the logit model to estimate the propensity score and estimate the outcome

regression through linear regression analysis. We present the models as follows,

EP [Di|Zi, Xi] = Λ(Ziβ
0
11 +X ′iβ

0
12),

EP [Zi|Xi] = Λ(X ′iγ
0),

EP [Yi|Zi, Xi] = Ziβ
0
21 +X ′iβ

0
22,

where Λ denotes the logistic CDF defined by Λ(t) = exp(t)/(1 + exp(t)) for all t ∈ R, and the

true nuisance parameters vector η0 = (β0
11, β

0
12, β

0
21, β

0
22, γ

0). The log-likelihood functions of the logit

model are L1(β11, β12) = EN [L1(Wi;β11, β12)] and L2(γ) = EN [L2(Wi; γ)], where L1(Wi;β11, β12) =

Di(Ziβ11 + X ′iβ12) − log(1 + exp(Ziβ11 + X ′iβ12)) and L2(Wi; γ) = ZiX
′
iγ − log(1 + exp(X ′iγ)). The

score for LATE is then specified as

ψ(Wi; θ, η) = β21 +
Zi(Yi − β21 −X ′

iβ22)

Λ(X ′
iγ)

− (1− Zi)(Yi −X ′
iβ22)

1− Λ(X ′
iγ)

(2.9)

− θ ×
[
Λ(β11 +X ′

iβ12)− Λ(X ′
iβ12) +

Zi(Di − Λ(β11 +X ′
iβ12))

Λ(X ′
iγ)

− (1− Zi)(Di − Λ(X ′
iβ12))

1− Λ(X ′
iγ)

]
.

It is essential to highlight that in the score, the logit model can be easily substituted with other

models like probit model or linear regression. We present a concrete inference procedure as the

following algorithm. While we specifically base our algorithm on lasso, for the sake of clarity, it is
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worth noting that other machine learning methods can also be used as a substitute for lasso. Suppose

that we have some generic penalty tuning parameter λ1, λ2, and λ3. Formal and theoretical justified

choice of these items are delayed to Lemma 2 and 3 in Appendix A.

Algorithm 1. (K-fold DML for high-dimensional LATE with Lasso)

Step 1. Randomly split the sample with size N into K folds (Ik)
K
k=1.

Step 2. For each k ∈ {1, · · · ,K}, obtain the nuisance parameter estimate by lasso:

(a) obtain an lasso logistic estimate (β̂11, β̂12) of the nuisance parameter by using only the subsample

of those observations with indices i ∈ {1, · · · , N} \ Ik,

(β̂11,k, β̂12,k) ∈ arg min
β11,β12

EIck [L1(Wi;β11, β12)] +
λ1

|Ick|
‖(β11, β12)‖1.

(b) obtain an lasso logistic estimate γ̂ of the nuisance parameter by using only the subsample of those

observations with indices i ∈ {1, · · · , N} \ Ik,

γ̂k ∈ arg min
γ

EIck [L2(Wi; γ)] +
λ2

|Ick|
‖γ‖1.

(c) obtain an lasso OLS estimate (β̂21, β̂22) of the nuisance parameter by using only the subsample of

those observations with indices i ∈ {1, · · · , N} \ Ik,

(β̂21,k, β̂22,k) ∈ arg min
β21,β22

EIck [(Yi − Ziβ21 −X ′iβ22)2] +
λ3

|Ick|
‖(β21, β22)‖1.

Step 3. Compute Ω̂(θ0, θ0) where Ω̂ is defined in equation (2.5) with η̂k = (β̂11,k, β̂12,k, β̂21,k, β̂22,k, γ̂k)

and ψ(W ; θ, η) is defined in equation (2.9).

Step 4. We take independent draws ξ∗ ∼ N(0, Ω̂(θ0, θ0)) and calculate R∗ = R(ξ∗, hN , Ω̂) by the defi-

nition in equation (2.6), which represents a random draw from the conditional distribution of R given

hN under the null.

Step 5. Given the critical value defined in equation (2.8), we reject the null hypothesis H0 : θ = θ0

when R(ξ∗, hN , Ω̂) exceeds the (1 − α) quantiles cα(hN ) and report the (1 − α) confidence interval

CIα = {θ : R(ξ∗, hN , Ω̂) ≤ cα(hN )}.
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Remark 1. Andrews and Mikusheva (2016) develop a conditional inference approach for moment

condition models that does not reply on any assumptions about identification. Their proposed con-

ditional quasi-likelihood ratio (QLR) tests possess uniformly correct size for a wide range of models.

Nonetheless, their test statistic may not be applied to certain high-dimensional research designs, such

as the LATE model with high-dimenisonal covariates. To address this limitation, we employ machine

learning methods to handle the high-dimensional covariates in the possible models, and specify the

score in Andrews and Mikusheva (2016) as our score for LATE. To the best of our knowledge, our

method is the first to provide inference for the LATE model with high-dimensional covariates, without

imposing any assumptions regarding the strength of identification. Furthermore, our method can be

easily extended to enable inferences for other high-dimensional models, without replying on any point

identification assumption.

3 Theory

3.1 Definition of the High-dimensional QLR test

In this section, we provide a precise definition of our proposed method, termed the high-dimensional

QLR test. To begin with, we formulate the score function ψ(W ; θ, η) that satisfies the moment

restriction,

EP [ψ(W ; θ0, η0)] = 0, (3.1)

where θ0 and η0 denote the true values of the target parameter θ and the nuisance parameter η,

respectively. The nuisance parameter η may be finite-, high-, or infinite-dimensional.

Let us define the Gateaux derivative by Dr[η−η0] := ∂r{Ep[ψ(W ; θ0, η0 +r(η−η0))]} for r ∈ [0, 1).

We say that the score ψ satisfies the Newman orthogonality condition if the pathwise derivative

Dr[η − η0] exists for all r ∈ [0, 1) and η ∈ TN , where TN is a nuisance realization set with TN ⊂ T ,

and the Gateaux derivative operator with respect to η vanishes when evaluated at the true parameter

values:

∂ηEPψ(W ; θ0, η0)[η − η0] = 0, (3.2)
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for all η ∈ TN . The Newman orthogonality condition in (3.2) implies that the moment condition

EP [ψ(W ; θ0, η0)] = 0 remains insensitive to local perturbations of η in a neighborhood of η0. It is

worth noting that the score for LATE, as given in equation (2.4), satisfies both the moment condition

(3.1) and the Neyman orthogonality condition (3.2). Newman orthogonality condition has a long

history in statistics and econometrics. Newey (1990,1994), Andrews (1994), Robins and Rotnitzky

(1995), Linton (1996) make use of this condition in semiparametric models.

Let us define qN (θ) = N−1/2
∑N

i=1 ψ(Wi; θ, η0) and SN (·) = EP [qN (·)]. Under no assumption of

identification for the parameter θ, the null hypothesis H0 : θ = θ0 can be reformulated as testing

SN (θ) = 0. Here, SN (θ) represents an infinite-dimensional nuisance function for θ 6= θ0. Let SN be

the set of functions SN (·) that may arise in our model, and let S0 be the subset of SN that contains

functions satisfying SN (θ0) = 0. hence, H0 : θ = θ0 implies our new null hypothesis H ′0 : SN ∈ S0,

which we refer to from now on as our null hypothesis. With these notations, let us construct an

empirical process GN (·) as

GN (·) = qN (·)− SN (·) =
1√
N

N∑
i=1

{ψ(Wi; ·, η0)− EP [ψ(W ; ·, η0)]} . (3.3)

In Section 3, we will show that under mild conditions, the process GN (·) weakly converges to G(·)

as N → ∞ under the null, where G(·) is a mean-zero Gaussian process with covariance function

Ω(θ1, θ2) = EP [G(θ1)G(θ2)]. Consider the process

hN (θ) = qN (θ)− Ω̂(θ, θ0)Ω̂(θ0, θ0)−1qN (θ0), (3.4)

where Ω̂(·, ·) is a consistent estimator of Ω(·, ·). By rearranging equation (3.4), we obtain

qN (θ) = hN (θ) + Ω̂(θ, θ0)Ω̂(θ0, θ0)−1qN (θ0). (3.5)

Note that the process qN (·) can be decomposed into two independent random components, the process

hN (·) and qN (θ0). As the distribution of qN (θ0) follows N(0,Ω(θ0, θ0)) and does not depend on the

nuisance function SN , the conditional distribution of any functions of qN (·) given hN (·), under the

null hypothesis, remains independent of SN . To test the null hypothesis SN ∈ S0, a statistic R =

R(qN (θ),Ω) can be employed. Importantly, the conditional distribution of the statistic R(qN (·),Ω)

given hN (·) does not depend on SN (·). Therefore, this approach is applicable to both strongly and
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weakly identified cases, as it does not require any assumption about their behavior. The test statistic

R is akin to the conditional QLR test statistic proposed by Andrews and Mikusheva (2016). However,

it is worth noting that their test cannot to be applied to high-dimensional models. In our paper, we

specify the score in Andrews and Mikusheva (2016) as the score for LATE in equation (2.9).

In light of the non-applicability of the conditional QLR test under the high-dimensional model,

we now propose a novel test that utilizes the DML method. After obtaining the nuisance parameter

estimates η̂k using lasso with observations indexed by i ∈ {1, · · · , N} \ Ik, we compute certain trans-

formations of the score using observations indexed by i ∈ Ik. In the rest of this section, we will specify

several estimators and the confidence interval specifically designed for the high-dimensional LATE.

We propose an estimator of GN (θ) as

ĜN (θ) =
√
N

 1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ, η̂k)− EP [ψ(Wi; θ, η̂k)]

 . (3.6)

Note that ĜN (θ) is computed using the sample of those observations with index i ∈ Ik. This computa-

tion is repeated K times. An estimator of qN (θ) is given by q̂N (θ) = N−1/2
∑K

k=1

∑
i∈Ik ψ(Wi; θ, η̂k).

We propose a uniformly consistent estimator of Ω(θ1, θ2) for any θ1, θ2 ∈ Θ as

Ω̂(θ1, θ2) =
1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)− 1

N2

K∑
k=1

K∑
k′=1

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′). (3.7)

Subsequently, we propose a test statistic R(q̂N (θ0), hN , Ω̂), where

R(ξ, h,Ω) = ξ2Ω(θ0, θ0)−1 − inf
θ

(V (θ)ξ + h)2Ω(θ, θ)−1, (3.8)

with V (θ) = Ω(θ, θ0)Ω(θ0, θ0)−1. Then we define the conditional critical value cα(h̃) by

cα(h̃) = min{c : P (R(q̂N , hN , Ω̂) > c|hN = h̃) ≤ α}.

Finally, the (1− α) confidence interval is

CIα = {θ : R(q̂N (θ0), hN , Ω̂) ≤ cα(h)}.

3.2 General Weak Convergence Result

In this section, we present formal theory supporting the process in Section 2 works. We show that our

test has uniformly correct asymptotic size.
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To simplify the notation, let us first fix some terms. For any finite-dimensional vector δ, we define

the l1-norm by ‖δ‖1, l2-norm by ‖δ‖, l∞-norm by ‖δ‖∞, and l0-seminorm by ‖δ‖0, which represents the

number of non-zero components of δ. The sample expectation operator is written as EN [·] = 1
N

∑N
i=1[·].

We use ‖x′ijδ‖2,N to indicate the prediction norm of δ, namely, ‖x′ijδ‖2,N =
√

EN [(x′ijδ)
2]. For any

matrix A, ‖A‖ denotes the `2-norm of the matrix. Let c0 > 0, c1 > 0, q ≥ 4 be some finite constants

with c0 ≤ c1. Let K ≥ 2 be a fixed integer. Let {δN}∞N=1 be a sequence of positive constants

approaching 0, such that δN ≥ N−1/2. Let {aN}N≥1, {vN}N≥1, and {KN}N≥1 be some sequences of

positive constants, possibly growing to infinity, where vN ≥ 1 for all N ≥ 1. We use a . b to mean

a ≤ cb for some c > 0 that does not depend on N .

We focus on the cases with linear Neyman orthogonal score ψ of the form

ψ(w; θ, η) = ψa(w; η)θ + ψb(w; η), for all w ∈ supp(W ). (3.9)

Assume that θ ∈ Θ, where Θ is a compact set in R, and that η ∈ T , a convex set in the norm space

equipped with a norm ‖ · ‖e. With these notations, we consider the following two assumptions.

Assumption 1. For N ≥ 3 and P ∈ PN , the following conditions hold.

(i) The true parameter θ0 satisfies equation (3.1).

(ii) The map η 7→ EP [ψ(W ; θ, η)] is twice continuously Gateaux-differentiable on the realization set

TN .

(iii) ψ satisfies the Newman orthogonality condition (3.2).

(iv) The score ψ is linear in the sense of (3.9).

(v) Θ is a compact set.

Assumption 2. For all N ≥ 3 and P ∈ PN , the following conditions hold.

(i) Given a random subset I of {1, · · · , N} with size n = N/K, the nuisance parameter estimator

η̂ = η̂ ((Wi)i∈Ic) belongs to the realization set TN with probability at least ∆N , where TN contains

η0 and satisfies the following conditions.
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(ii) The following conditions on the rates mN ,m
′
N , r

′
N hold:

(a) mN := sup
η∈TN ,θ∈Θ

(EP [(ψ(W ; θ, η))q])1/q ≤ c1,

(b) m′N := sup
η∈TN

(EP [(ψa(W ; η))q])1/q ≤ c1,

(c) r′N := sup
η∈TN ,θ∈Θ

(EP [(ψ(W ; θ, η)− ψ(W ; θ, η0))2])1/2 ≤ δN .

(iii) supθ∈Θ EP [ψ(W ; θ, η0)2] ≥ c0.

Remark 2. Assumptions 1, 2 are related to Assumptions 3.1, 3.2 in Chernozhukov et al. (2018). We

emphasize that Assumption 3.1 (e) in Chernozhukov et al. (2018) serves as the identification condition

in their paper, ensuring that the denominator in the LATE is always greater than zero. However, in

our paper, we intentionally remove this assumption to accommodate the weak identification issue,

allowing for the possibility of a zero denominator, corresponding to a completely unidentified case.

In order to derive the uniform convergence of the Gaussian process ĜN , we impose restrictions over

θ ∈ Θ in Assumption 2 (ii)-(iii).

Assumption 1 stipulates that the score satisfies the moment condition, Neyman orthogonality

condition, and a mild smoothness condition. Assumption 2 is a mild regularity condition. Assumption

2(i)(ii) assert that the estimator of the nuisance parameter η̂ belongs to a shrinking neighbourhood of

the true nuisance parameter η0 and contracts around η0 at a rate of r′N for all θ ∈ Θ. Assumption 2

(iii) ensures a non-degenerate limit distribution. While these conditions are high-level, we will provide

more specific low-level conditions in the context of LATE in section 3.3.

Theorem 1. Suppose Assumptions 1 and 2 hold. For θ ∈ Θ, we have

ĜN (θ) = GN (θ) +OP (N−1/2r′N ), (3.10)

where recall that

GN (θ) =
1√
N

N∑
i=1

{ψ(Wi; θ, η0)− EP [ψ(W ; θ, η0)]} , and

ĜN (θ) =
1√
N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ, η̂k)−
√
NEP [ψ(Wi; θ, η̂k)] .
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The process ĜN (·) weakly converges to a centered Gaussian process G(·) over Θ with covariance func-

tion Ω(θ1, θ2) = EP [(ψ(W ; θ1, η0)− EP [ψ(W ; θ1, η0)]) (ψ(W ; θ2, η0) − EP [ψ(W ; θ2, η0)])] as N goes to

infinity. Moreover, Ω(θ1, θ2) can be consistently estimated by

Ω̂(θ1, θ2) =
1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)−
1

N2

K∑
k=1

K∑
k′=1

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′),

and Ω̂(θ1, θ2) = Ω(θ1, θ2) +OP (ρN ) uniformly over θ1, θ2 ∈ Θ with ρN . δN .

Remark 3. Theorem 1 serves as an extension of Chernozhukov et al. (2018). They propose the point-

wise convergence of the target parameter estimator θ̂ and variance estimator for the DML estimator.

We extend their result and show that our proposed empirical process uniformly converges to a Gaussian

process over Θ, and our variance estimator Ω̂(θ1, θ2) is a uniformly consistent estimator of Ω over Θ.

The weak convergence result enables us to handle the weak identification issues effectively.

3.3 Lower-level Sufficient Conditions in the LATE framework

In this subsection, we provide lower-level sufficient conditions that guarantee Theorem 1 in the applica-

tion to the LATE. Let us define TN(i) as the parameter space of the i-th parameter in η = (η1, η2, η3)

with i ∈ {1, 2, 3}. Let sN ≥ 1 be a sequence of integers. Let q, c, C1 be some finite and positive

constants with q > 4. Let aN = p ∨ N . Let MN be a sequence of positive constants such that

MN ≥ (EP [(Zi ∨ ‖Xi‖∞)2q])1/2q. Let {∆N}N≥1 be sequences of positive constants that converges to

zero. For any T ⊂ [p + 1], δ = (δ1, · · · , δp+1)′ ∈ Rp+1 with δT,j = δj if j ∈ T and δT,j = 0 if j /∈ T .

Define the minimum and maximum sparse eigenvalue by

φmin(m) = inf
‖δ‖0≤m

‖(Zi, X ′i)δ‖2,N
‖δT ‖1

, φmax(m) = sup
‖δ‖0≤m

‖(Zi, X ′i)δ‖2,N
‖δT ‖1

.

Assumption 3. (Regularity conditions for LATE) For P ∈ PN , the following conditions hold.

(i) Equations (2.1)-(2.3) are satisfied with binary D and Z.

(ii) ‖Y ‖P,q ≤ c1.

(iii) For some ε > 0, ε ≤ P (Z = 1|X) ≤ 1− ε almost surely.

(iv) ‖u‖P,2 ≥ c0.

16



(v) ‖EP [u2|X]‖P,∞ ≤ c1.

(vi) Θ is compact.

(vii) EP [D|Z = 1, X] ≥ EP [D|Z = 0, X].

Remark 4. Chernozhukov et al. (2018) also specializes their results for the LATE framework and pro-

vide regularity conditions for LATE estimation. However, their Assumption 5.2 (d) imposes that the

denominator is bounded from below by a positive number, which restricts their method from handling

weakly identified or unidentified cases. In contrast, our approach does not require a strictly positive de-

nominator for LATE. Our Assumption 3 (vii) allows for the possibility of EP [D|Z = 1, X]−EP [D|Z =

0, X] approaching zero or even equating zero, thus encompassing weakly identified or unidentified cases.

Assumption 3 introduces some low-level conditions specifically for the LATE. Assumption 3 (i)

emphasizes that both the treatment and instrument are binary. Equations (2.1) and (2.2) play a

pivotal role in establishing the Instrument Independence condition, ensuring that given the covariates

X, the joint distribution of the outcome Y and the endogenous variable D remains independent of

Z. This implies that the instrument Z is “as good as randomly assigned” once we condition on X.

Equation (2.3) enforces the Exclusion Restriction condition, ensuring that variations in the instrument

Z exclusively affect potential outcomes through its impact on D. Assumption 3 (ii) requires the lq-

norm of the outcome variable is bounded. Assumption 3 (iii) is a standard overlap condition that

states for every value of the covariates X, there is at least a small probability that the unit is not

treated and at least a small fraction of the population is treated. Assumption 3 (iv) (v) impose

constrains on the error term u of the reduce form. Assumption 3 (iv) imposes a lower bound on the

l2-norm of u and (v) restricts the upper bound of the uniform norm of u. Importantly, (vii) allows for

the application of the proposed method to weakly or unidentified cases.

Next, we impose the following conditions to guarantee the convergence rate of the nuisance parame-

ter estimators. Recall that the true nuisance parameters vector are denoted as η0 = (β0
11, β

0
12, β

0
21, β

0
22, γ

0).

Assumption 4. (Sparse eigenvalue conditions) The sparse eigenvalue conditions hold with probability

1− o(1), namely, for some lN →∞ slow enough, we have

1 . φmin(lNsN ) ≤ φmax(lNsN ) . 1.
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Assumption 5. (Sparsity) ‖β0
12‖0 + ‖β0

22‖0 + ‖γ0‖0 ≤ sN .

Assumption 6. (Parameters) ‖β0
12‖+ ‖β0

22‖+ ‖γ0‖ ≤ C1.

Assumption 7. (Covariates) For q > 4, the following condition hold:

(i) inf‖ξ‖=1 EP [((Zi, X
′
i)ξ)

2] ≥ c.

(ii) sup‖ξ‖=1 EP [((Zi, X
′
i)ξ)

2] ≤ C1.

(iii) N−1/2+2/qM2
NsN log2 aN ≤ ∆N .

Assumption 4 is the sparse eigenvalue condition which is similar to Assumption RE in Bickel et al.

(2009). In Assumption 5, we impose the number of non-zero components in the high-dimensional

nuisance parameter vector by sN , which in introduced in Assumption 7 (iii). Assumption 6 requires

the l2-norms of the true nuisance parameter vector β2
12, β0

22, and γ0 are bounded, which is a standard

condition. Assumption 7 (i) imposes a lower bound on the second moments of the covariates. As-

sumption 7 (ii) imposes the second moments of the covariates to be bounded in a uniform manner.

Assumption 7 (iii) impose some restriction the rate that the sparsity index sN , the bound of 2q-th

moments of the covariates, and the dimensionality can grow.

These conditions are sufficient for the high-level conditions invoked in Theorem 1, as formally

stated in the following lemma.

Lemma 1. Suppose Assumptions 3-7 hold. Then Assumptions 1 and 2 hold for the score function

ψ(W ; θ, η) in equation (2.4) in the LATE framework.

By lemma 1 and Theorem 1, we obtain the following Theorem 2 about the weak convergence of

the Gaussian process defined by the score function of the LATE with high-dimensional covariates.

Theorem 2. Suppose Assumption 3-7 hold. With ψ(W ; θ, η) defined as equation (2.4), the process

ĜN (·) weakly converges to a centered Gaussian process G(·) under the null with covariance function

Ω(θ1, θ2) = EP [(ψ(W ; θ1, η0) − EP [ψ(W ; θ1, η0)])(ψ(W ; θ2, η0) − EP [ψ(W ; θ2, η)]] as N goes to infin-

ity. The covariance function estimator Ω̂(θ1, θ2) defined in (2.5) concentrates around the covariance

function Ω(θ1, θ2) uniformly over Θ,

Ω̂(θ1, θ2) = Ω(θ1, θ2) +OP (ρN ), with ρN . δN , and θ1, θ2 ∈ Θ.
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Remark 5. We show that our variance estimator is a uniformly consistent estimator of Ω(θ1, θ2) over

θ1, θ2 ∈ Θ in Theorem 2. Therefore, our proposed high-dimensional quasi-likelihood test has uniformly

correct asymptotic size in the context of LATE, as formally stated in the following theorem.

Theorem 3. Suppose that Assumptions 3-7 hold. The test that rejects the null hypothesis H0 : θ = θ0

when R(qN (θ0), hN ,Ω) exceeds the (1− α) quantile cα(hN ) of its conditional distribution given hN (·)

has correct size. Under the null, we have

lim
N→∞

P (R(q̂N (θ0), hN , Ω̂) > cα(hN )) = α.

4 Simulation Studies

4.1 Simulation Setup

We generate data with sample size N = 500. We construct the high-dimensional covariates X by

Xi ∼ N


0,



U0 U1 · · · Udim(X)−2 Udim(X)−1

U1 U0 · · · Udim(X)−3 Udim(X)−2

...
...

. . .
...

...

Udim(X)−2 Udim(X)−3 · · · U0 U1

Udim(X)−1 Udim(X)−2 · · · U1 U0




,

where U = 0.25, and dim(X) = 5, 100, 300, and 500, respectively. Let Q represent the latent compli-

ance class which took values 0 for never-taker, 1 for always-taker, and 2 for compliers. The compliance

score is generated by the logistic function δ(x) = P (Q = 2|X = x) = Λ(β0 + β1x) and the probability

of being a never-taker or always-taker is (1 − δ(x))/2, where β1 = (0.5, 0.52, · · · , 0.5dim(X))′ and β0

is chosen such that P (Q = 2) = 0.1 and 0.5, respectively. The instrument variable Z is constructed

by P (Z = 1|X = x) = Λ(γ0 + γ1x) with γ1 = 1 and γ0 is set such that P (Z = 1) = 0.5. Then the

treatment D is constructed by D = Z · 1{Q = 2}+Q · 1{Q 6= 2}, where 1{·} represents the indicator

function. We generate the outcome variable by Yi = Di + Xi + εi where εi draws from a standard

normal distribution. In this setup, the average treatment effect is equal to 1 for all individuals. Thus

we have θ0 = 1. It is worth noting that P (Q = 2) = 0.1 and 0.5 represent the weakly identified and

strongly identified cases, respectively. The number of folds in cross fitting is set to be K = 3.
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4.2 Results

We provide results for four different approaches in our study. These include: (1) the conditional QLR

test (AM16) proposed in Andrews and Mikusheva (2016), which is robust against weak identification

but not robust to high dimensionality, (2) two conventional machine-learning (ML) methods, which

are not robust against weak identifications, and (3) the proposed high-dimensional QLR test (HD-

QLR), which is robust against both weak identification and high dimensionality. The first ML method

(CCDDHNR18) we employ follows the DML algorithm proposed in Chernozhukov et al. (2018), em-

ploying the same Neyman orthogonal score ψ(W ; θ, η) and the cross-fitting technique as our proposed

inference procedure. However, they employ a different variance estimator and inference method com-

pared to our proposed test, rendering it non-robust to weak identification. The second ML method

(BCFH17) we consider is derived from Belloni et al. (2017). It removes the cross-fitting technique used

in the algorithm of Chernozhukov et al. (2018) while keeping the other steps the same. For notation

simplicity, we refer to these four approaches as AM16, CCDDHNR18, BCFH17, and HD-QLR.

Figures 1 and 2 plot the power curves for nominal 5% tests in the strongly identified and weakly

identified simulation designs, respectively. We conduct 2500 iterations of Monte Carlo simulation

for both strongly identified and weakly identified settings, comparing the power curves of the four

approaches. We consider four scenarios with different numbers of covariates, namely dim(X)= 5, 100,

300, and 500.

Figure 1 represents strongly identified design, with P (Q = 2) = 0.5. The upper left figure represents

the power curves for the “low-dimensional” LATE framework with dim(X) = 5. We can easily see

that all tests maintain satisfactory size control, while our proposed method exhibits better power

performance. In the remaining three figures with dim(X) =100, 300, and 500, our proposed method

performs quite competitively with CCDDHNR18 and BCFH17, as all three methods are specifically

designed for high-dimensional settings. While CCDDHNR18 and BCFH17 have good power close to

the null, their power performance is slightly weaker than that of the proposed method as more distant

alternatives. On the other hand, AM16 suffers from significant size distortion and substantial power

loss, as the conditional QLR method is not robust against high-dimensional setting.

Figure 2 depicts the power curves in the context of weak identification, with P (Q = 2) = 0.1. In
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Figure 1: Power curves for HD-QLR (solid blue), AM16 (dash-dot black), BCFH17 (vertical marker

red), and CCDDHNR18 (dashed green). Power of nominal 5% tests in strongly identified LATE

design with P (Q = 2) = 0.5, and N = 500 observations. Based on 2,500 replications, and for HD-

QLR and AM16, 1,000 draws of conditional critical values were conducted. Upper left panel, number

of covariates dim(X) = 5 ; upper right panel, dim(X) = 100; lower left panel, dim(X) = 300; lower

right panel, dim(X) = 500.
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Figure 2: Power curves for HD-QLR (solid blue), AM16 (dash-dot black), BCFH17 (vertical marker

red), and CCDDHNR18 (dashed green). Power of nominal 5% tests in weakly identified LATE design

with P (Q = 2) = 0.1, and N = 500 observations. Based on 2,500 replications, and for HD-QLR

and AM16, 1,000 draws of conditional critical values were conducted. Upper left panel, number of

covariates dim(X) = 5 ; upper right panel, dim(X) = 100; lower left panel, dim(X) = 300; lower right

panel, dim(X) = 500.
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the “low-dimensional” LATE model, both our proposed method and AM16 control size well, while

AM16 exhibits significantly better power performance compared to the proposed method, since AM16

is specifically designed for weakly identified models with low-dimensional nuisance parameters. In

contrast, in the remaining designs, our proposed method outperforms AM16 in terms of both size

control and power performance. This is due to the non-robust nature of AM16 in high-dimensional

settings. Moreover, both CCDDHNR18 and BCFH17 suffer from severe size distort and significant

power loss across all settings, as both methods are not robust against weak identification. Furthermore,

upon observing the two upper-left plots in Figure 1 and 2, it becomes evident that our proposed method

not only effectively controls size under high-dimensional settings, but also demonstrates excellent size

control under low-dimensional scenarios.

Based on our findings, we confirm that the proposed method demonstrates robustness to both

weak identification and high dimensionality. On the other hand, CCDDHNR18 and BCFH17 exhibit

robustness to high-dimensional settings but are not robust against weak identification. Similarly,

AM16 shows robustness to weak identification but lacks robustness to high dimensionality.

5 Empirical Illustrations

5.1 The Impact of Railroad Access on City Growth

To demonstrate the methods outlined in the preceding sections, we re-examine the IV estimation

by Hornung (2015) of the impact of railroad access on city growth in 19th-century Prussia. In this

study, straight-line corridors between important cities (nodes) are constructed and whether the city

is located in this line is used as an instrument for the analysis. We compare our proposed method of

high-dimensional QLR test to the other three conventional tests, that is, AM16, CCDDHNR18, and

BCFH17, for analyzing the effect of railroad access. Our objective is to enhance our comprehension of

the conclusions presented in the literature by conducting a new empirical analysis with the following

econometric considerations in mind: 1. we incorporate high-dimensional covariates in order to mitigate

unobserved confoundedness; and 2. we account for the weak identification issue in the data and, for

the first time, report confidence intervals robust to this source of misleading inference.
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Consider the empirical model

Yit = Diθ0 +X ′iβ1 + εit,

Di =
exp(Ziη0 +X ′iβ2)

1 + exp(Ziη0 +X ′iβ2)
+ vi,

for estimation of θ0, where Yit denotes the urban population growth rate in city i at time period t,

Di is a dummy variable if there is a railroad access by 1848 in city i, Zi denotes whether the city i

was located within a straight-line corridor between junction stations (nodes) in 1848, the explanatory

variables Xi includes a lagged dependent variable, as well as the distance to the closest node of railroad

lines, age composition, the primary education of the urban population, county-level concentration of

large landholdings, access to the main roads, rivers, and ports, pre-railroad city growth 1831-1837,

and the size of the civilian and military population in 1849.

In the context of the study, it is important to note that the adoption of railroad technology by cities

located on a straight line between two important cities is based on random assignment. This random

assignment occurs because the placement of these cities along the straight line is not intentionally

controlled by any entity. In 19th-century Prussia, the decision to construct railroads was not made by

the government due to financial limitations, but rather through negotiations between each city council

and private railroad enterprises. Hence, each city had the autonomy to determine whether or not to

proceed with railroad construction. In this study, the “compliers” refer to (1) cities that are on the

straight line between two important cities AND eventually got a railroad station, and (2) cities that

are NOT on the straight line between two important cities AND didn’t get a train station.

We apply the proposed method to the city-level railroad data of Hornung (2015). According to

Table 5 of Hornung (2015), the first-stage F-statistics range from 26.46 to 38.29, indicating instrument

weakness based on the tF critical value function proposed by Lee et al. (2022). We conducted a re-

analysis by incorporating the polynomial and interaction terms of the original covariates and present

the results in Table 1. The sample sizes range from N = 898 cities with the dimensionality of covariates

dim(X) = 204 to N = 926 cities with dim(X) = 212.

Table 1 summarizes the results. In order to highlight the efficiency of the proposed method in

the high-dimensional context, we report LATE estimates along with their corresponding confidence

intervals and the lengths of the confidence intervals. In Panel A, we report the results obtained
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Yit: population Main periods Subperiods

growth rate 1831-37 49-71 49-52 52-55 55-58 58-61 61-64 64-67 67-71

Panel A: AM16

LATE 0.007 0.039 0.010 0.020 0.063 0.030 0.037 0.056 0.044

CI [-0.002, [0.022, [-0.017, [0.004, [0.030, [0.011, [0.019, [0.012, [0.018,

0.020] 0.05] 0.05] 0.039] 0.063] 0.050] 0.050] 0.420] 0.155]

length of CI 0.022 0.028 0.067 0.035 0.033 0.039 0.031 0.408 0.137

Panel B: CCDDHNR18

LATE 0.001 0.014 0.012 0.011 0.007 0.000 0.020 0.012 0.011

CI [-0.026, [-0.004, [-0.019, [-0.014, [-0.009, [-0.016, [-0.019, [-0.014, [-0.016,

0.021] 0.033] 0.039] 0.035] 0.044] 0.030] 0.052] 0.039] 0.036]

length of CI 0.047 0.037 0.058 0.048 0.053 0.046 0.070 0.052 0.052

Panel C: BCFH17

LATE 0.000 0.012 0.009 0.009 0.012 0.006 0.015 0.012 0.013

CI [-0.017, [-0.003, [-0.009, [-0.006, [-0.007, [-0.008, [-0.009, [-0.018, [-0.008,

0.017] 0.026] 0.026] 0.023] 0.031] 0.020] 0.040] 0.041] 0.034]

length of CI 0.034 0.029 0.035 0.029 0.038 0.028 0.049 0.059 0.042

Panel D: HD-QLR with the number of folds K=4

LATE 0.001 0.013 0.010 0.011 0.014 0.004 0.018 0.014 0.011

CI [-0.012, [0.005, [0.000, [0.002, [0.003, [-0.001, [0.003, [-0.004, [-0.002,

0.012] 0.020] 0.021] 0.018] 0.027] 0.016] 0.029] 0.032] 0.023]

length of CI 0.024 0.015 0.021 0.016 0.024 0.017 0.026 0.033 0.024

Size N 898 906 929 924 914 926 924 919 919

dim(X) 204 212 212 212 212 212 212 212 212

Table 1: Displayed are estimates, confidence intervals (CI) and the length of confidence intervals for

the coefficient of the railroad access. Panel A displays the results of AM16. Panel B presents the

results obtained from CCDDHNR18. Panel C shows the results derived from BCFH17. Panel D

showcases the results of the proposed HD-QLR test with the number K = 4 folds for cross fitting.

Estimation and inference results in panel B and D are based on 10 iterations of resampled cross fitting.
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Yit: population Main periods Subperiods

growth rate 1831-37 49-71 49-52 52-55 55-58 58-61 61-64 64-67 67-71

Panel A: HD-QLR with the number of folds K=3

LATE 0.008 0.012 0.010 0.011 0.014 0.004 0.018 0.014 0.011

CI [-0.013, [0.005, [0.001, [0.002, [0.003, [-0.002, [0.003, [-0.005, [-0.003,

0.011] 0.021] 0.023] 0.030] 0.026] 0.016] 0.030] 0.032] 0.022]

length of CI 0.024 0.016 0.023 0.018 0.023 0.018 0.027 0.037 0.025

Panel B: HD-QLR with the number of folds K=4

LATE 0.001 0.013 0.010 0.011 0.014 0.004 0.018 0.014 0.011

CI [-0.012, [0.005, [0.000, [0.002, [0.003, [-0.001, [0.003, [-0.004, [-0.002,

0.012] 0.020] 0.021] 0.018] 0.027] 0.016] 0.029] 0.032] 0.023]

length of CI 0.024 0.015 0.021 0.016 0.024 0.017 0.026 0.033 0.024

Size N 898 906 929 924 914 926 924 919 919

dim(X) 204 212 212 212 212 212 212 212 212

Table 2: Displayed are estimates, CI and the length of CI for the coefficient of the railroad access.

Panel A showcases the results of the proposed HD-QLR test with the number K = 3 folds for cross

fitting. Panel B demonstrates the results of the proposed test with the number K = 4 folds for cross

fitting. Estimation and inference are based on 10 iterations of resampled cross fitting.
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from AM16, which is not robust in high-dimensional setting. Additionally, we present results by

CCDDHNR18 in Panel B and results by BCFH17 in panel C. Furthermore, Panel D displays results

from the proposed method with K = 4 folds of cross-fitting. Different columns report the results for

several dependent variables across various time periods. Specifically, Columns (II) and (III) report

results in two main periods: 1831-37 , and 1849-1871. Columns (IV)-(X) represent results in seven

subperiods. To mitigate the uncertainty induced by sample splitting, we compute estimates and

confidence intervals based on the average of ten randomized DML following Chernozhukov et al.

(2018).

Upon comparing the results from Panel A and Panel D, we observe that the point estimates

from the conventional test AM16, which does not account for the high-dimensional controls, are

consistently larger than those obtained by the proposed method. Additionally, the confidence intervals

derived from AM16 are consistently wider than those obtained from the proposed test. Another

notable finding is that several effects that were deemed significant in AM16, without considering

high-dimensional covariates, become insignificant after accounting for these covariates in the proposed

method. Specifically, the incorporation of high-dimensional covariates results in the loss of statistical

significance for three out of the seven coefficients.

Comparing the results from Panel B, Panel C, and Panel D, we observe a similarity in the LATE

estimates across these panels. However, it is important to note that the lengths of confidence inter-

vals derived from CCDDHNR18 and BCFH17, which lack robustness against weak identification, are

significantly larger than that obtained from our proposed method.

To examine the impact of the number of folds on the results, we present the outcomes obtained

from our proposed method with varying number of folds in Table 2. Upon observation, we find that the

point estimates and confidence intervals exhibit similarity across Panel A and B, despite the variation

in the number of folds used.

To robustly account for the weak identification issue in the high-dimensional context, we recom-

mend researcher employ our proposed high-dimensional conditional QLR test.
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5.2 The Boundary Effects on Rental Prices

In this subsection, we reexamine the IV estimation performed by Ambrus et al. (2020) concerning the

impact on housing prices of a cholera epidemic. The authors present estimates of the epidemic’s effect

on property values a decade later, following the unexpected cholera outbreak of 1954, using a fuzzy

regression discontinuity (RD) design. In their design, Yi is defined as the log rental price of house i in

1864. The variable Di is an indicator equal to 1 if house i experiences at least one cholera death. The

variable Zi is an indicator equal to 1 if property i falls inside the Broad Street pump (BSP) catchment

areas, which are the contaminated areas affected by the cholera outbreak. The control variable Xi

comprises all house characteristic variables listed in Table 1 of Ambrus et al. (2020), such as distance

to the closest pump, distance to the fire station, distance to the urinal, sewer access, and a total of 23

variables.

As discussed in Hahn et al. (2001) regarding RD design, when Di is binary and certain alternative

conditions are met, allowing for dependence between Di and θ, the RD effect captures the LATE for

compliers at the cutoff point. Compliers refer to observations where the variable Zi switches from

zero to one. In this context, the estimated effect of cholera-related deaths on housing prices can be

considered as a LATE within the fuzzy RD framework. The “compliers” refer to (1) houses located

within the contaminated areas affected by the cholera AND experience at least one cholera death, and

(2) houses located outside the contaminated areas affected by the cholera AND do not experience any

cholera death.

Table B2 in Ambrus et al. (2020) presents fuzzy RD and IV estimates of the effect of cholera-

related death on rental prices in 1864. Notably, the first-stage F-statistics in the IV estimation are

around 10, indicating weak identification according to the tF critical value function proposed by Lee

et al. (2022). In light of this observation, we preceed with a reanalysis by incorporating all the house

characteristic variables listed in Table 1 in Ambrus et al. (2020). The sample size for this reanalysis

is N = 467 and the dimensionality of the covariates dim(X) = 23.

Table 3 presents the results of LATE estimates, CIs, and the lengths of CI by comparing the four ap-

proaches: AM16, CCDDHNR18, BCFH17, and the proposed HD-QLR. When comparing AM16, which

does not consider high-dimensional covariates, with the other three high-dimensional approaches, we
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AM16 CCDDHNR18 BCFH17 HD-QLR

LATE -1.205 -0.413 -0.357 -0.421

CI [-2.230, [-3.565, [-1.291, [-1.080,

-0.650] 2.670] 0.576] 0.035

length of CI 1.580 6.235 1.866 1.115

Table 3: Displayed are LATE estimates, CIs and the length of CI for the coefficient of the cholera-

related deaths using four different approaches: AM16, CCDDHNR18, BCFH17, and the proposed

HD-QLR. Estimation and inference results in CCDDHNR18 and HD-QLR are based on 10 iterations

of resampled cross fitting with K = 4 folds for cross fitting.

observe that AM16 yields the smallest point estimate. This suggests that AM16 tends to overestimate

the effect under high-dimensional scenarios. However, the significant results obtained in AM16 be-

come insignificant after accounting for these high-dimensional covariates in the other three methods.

Furthermore, among CCDDHNR18, BCFH17, and the proposed HD-QLR test, although the point

estimates are similar, our proposed method achieves the smallest length of CI. On the other hand,

the other two conventional ML methods, which do not account for weak identification, yield relatively

large lengths of CIs.

We strongly recommend researchers to utilize the proposed HD-QLR test when dealing with high-

dimensional models that may potentially encounter weak identification issues.

6 Conclusion

In this paper, we study the issue of weak identification in the LATE framework with high-dimensional

covariates. Our primary contribution is the development of an identification-robust test, accompa-

nied by an easily implementable algorithm for inference and confidence interval construction for the

LATE estimate. We demonstrate that our proposed method maintains uniformly correct asymptotic

size. Simulation studies demonstrate that, in finite sample, our proposed method outperforms the

convention identification-robust test and the conventional ML tests in terms of size control and power

performance under the high-dimensional LATE with weak identification. Furthermore, we apply the
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proposed method to revisit the study conducted by Hornung (2015) concerning the effect of railroad

access on urban population growth. Our method yields estimates that are generally smaller than those

obtained using conventional identification-robust test, while the confidence intervals are substantially

shorter compared to ML-based approaches. Similarly, when revisiting the study by Ambrus et al.

(2020) on boundary effects in rental price, we obtain exactly the same results as previously reported.

Overall, our approach provides robustness against both weak identification and high-dimensional set-

ting, showcasing its potential applicability in various empirical studies.
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Appendix

A Useful Lemmas

Here, for the convenience of readers, we provide the convergence rate for Lasso with logistoc model

and OLS model in Lemma 2 and 3. Lemma 2 relies on Lemma 1 in Belloni et al. (2016). Lemma 3

relies on Theorem 1 in Belloni and Chernozhukov (2013).

Lemma 2. (Convergence rate for Lasso with logistic model) Suppose that Assumption 4-7 hold. In

addition, suppose that the penalty choice λ1 = K1

√
N log(pN) and λ2 = K2

√
N log(pN) for K1,K2 >

0. Then with probability 1− o(1),

‖(β̂11, β̂12)− (β0
11, β

0
12)‖ ∨ ‖γ̂ − γ0‖ .

√
sN log(pN)

N
.

Lemma 3. (Convergence rate for Lasso with OLS) Suppose that Assumption 4-7 hold. Moreover,

suppose that the penalty choice λ3 = K3

√
N log(pN) for K3 > 0. Then with probability 1− o(1),

‖(β̂21, β̂22)− (β0
21, β

0
22)‖ .

√
sN log(pN)

N
.

B Proofs of the Main Results

B.1 Proof of Theorem 1

Proof. Without loss of generality, we define the size of each fold Ik as n = N/K. For notation

simplicity, we introduce the notation [r] = {1, · · · , r} for any r ∈ N. We divide the proof into three

steps. In Step 1, we prove the equation (3.10) and the asymptotic normality of ĜN (θ) over Θ, that is,

the asymptotic normality of (ĜN (θ1), · · · , ĜN (θL)) for any (θ1, · · · , θL) ∈ Θ× · · · × Θ. In step 2, we

establish the asymptotic equicontinuity of ĜN over Θ. Roughly speaking, this means that whenever

θ1 ∈ Θ and θ2 ∈ Θ are close to each other, ĜN (θ1) − ĜN (θ2) is close to zero. Since Θ is a compact

set, the proof of the weak convergence result is done. In Step 3, we prove that Ω̂(θ1, θ2) is a uniformly

consistent estimator of the covariance function Ω(θ1, θ2) over Θ.

Step 1. In this step, we first establish equation (3.10). Becasue K is a fixed integer and independent
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of N , it suffices to show that for any k ∈ [K],

En,k[ψ(W ; θ, η̂k)]− EP [ψ(W ; θ, η̂k)]− (En,k[ψ(Wi, θ, η0)]− EP [ψ(W ; θ, η0)]) = Op(N
−1/2r′N ). (B.1)

For notation simplicity, we define En,k[f(W )] = n−1
∑

i∈Ik f(Wi). In order to show this, let us fix

k ∈ [K] and introduce an empirical process notation,

Gn,k[φ(W )] =
1√
n

∑
i∈Ik

(φ(Wi)− EP [φ(W )]),

where φ is any PN -integrable function of W . Then by triangle inequality, we have

‖En,k[ψ(W ; θ, η̂k)]− EP [ψ(W ; θ, η̂k)]− (En,k[ψ(Wi, θ, η0)]− EP [ψ(W ; θ, η0)])‖ (B.2)

= n−1/2‖Gn,k[ψ(W ; θ, η̂k)]−Gn,k[ψ(W ; θ, η0)]‖ := n−1/2Ik3. (B.3)

Notice that, conditional on (Wi)i∈Ick , the estimator η̂k is non-stochastic. Then we have,

EP [I2
k3|(Wi)i∈Ick ] = EP

[
(ψ(W ; θ, η̂k)− ψ(W ; θ0, η0))2|(Wi)i∈Ick

]
≤ sup

η∈TN
EP
[
(ψ(W ; θ, η)− ψ(W ; θ0, η0))2|(Wi)i∈Ick

]
≤ sup

η∈TN
EP [(ψ(W ; θ, η)− ψ(W ; θ0, η0))2] ≤ (r′N )2.

This completes the proof of equation (3.10). Combining (3.10) with the Lindeberg-Feller central limit

theorem (CLT) and the Cramer-Wold device yields the asymptotic normality of ĜN (θ) for any θ ∈ Θ.

Step 2. In this step, we prove the asymptotic equicontinuity of ĜN on Θ. The asymptotic equicon-

tinuity of ĜN can be stated as, for any ε1 > 0, and any θ1, θ2 ∈ Θ such that |θ1 − θ2| ≤ δ,

lim
δ→0

lim sup
N→∞

P
(
|ĜN (θ1)− ĜN (θ2)| > ε1

)
= 0. (B.4)

By Markov’s inequity, for any ε1 > 0,

P
(∣∣∣ĜN (θ1)− ĜN (θ2)

∣∣∣ > ε1

)
≤ 1

ε1
EP

[∣∣∣ĜN (θ1)− ĜN (θ2)
∣∣∣] .

Thus, it suffices to show that for each k ∈ [K].

lim
δ→0

lim sup
N→∞

√
NEP [|En,k[(θ1 − θ2)ψa(W ; η̂k)]− EP [(θ1 − θ2)ψa(W ; η̂k)]|] = 0. (B.5)
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Note that

EP

[∣∣∣En,k[(θ1 − θ2)ψa(W ; η̂k)]− EP [(θ1 − θ2)ψa(W ; η̂k)]
∣∣∣2] ≤ n−1δ2EP

[
ψa(W ; η̂k)

2
]
≤ n−1δ2c2

1,

which implies the equation (B.5). Thus, we complete the proof of the asymptotic equicontinuity of

ĜN over Θ.

Step 3. In this step, we first show Ω̂(θ1, θ2) = Ω(θ1, θ2)+OP (ρN ), and then we show Ω̂ is a uniformly

consistent estimator for Ω over Θ. To prove the first part, it suffices to show that for any pair

(θ1, θ2) ∈ Θ and each k ∈ [K],

Ik = |En,k[ψ(W ; θ1, η̂k)ψ(W ; θ2, η̂k)]− EP [ψ(W ; θ1, η0)ψ(W ; θ2, η0)]| = Op(ρN ), and

I ′k = |En,k[ψ(W ; θ, η̂k)]− EP [ψ(W ; θ, η0)]| = Op(ρN ).

Note that by triangle inequality, we have Ik ≤ Ik1 + Ik2, and I ′k ≤ Ik4 + Ik5, where

Ik1 = |En,k[ψ(W ; θ1, η̂k)ψ(W ; θ2, η̂k)]− En,k[ψ(W ; θ1, η0)ψ(W ; θ2, η0)]| ,

Ik2 = |En,k[ψ(W ; θ1, η0)ψ(W ; θ2, η0)]− EP [ψ(W ; θ1, η0)ψ(W ; θ2, η0)]| ,

Ik4 = |En,k[ψ(W ; θ, η̂k)]− En,k[ψ(W ; θ, η0)]| , Ik5 = |En,k[ψ(W ; θ, η0)]− EP [ψ(W ; θ, η0)]| .

First, we bound Ik2 and Ik5. Note that for q ≥ 4, we have

EP [I2
k2] ≤ sup

θ∈Θ
n−1EP [ψ(W ; θ, η0)4] ≤ n−1c4

1,

EP [I2
k5] ≤ sup

θ∈Θ
n−1EP [ψ(W ; θ, η0)2] ≤ n−1c2

1,

where the last inequality follows from Assumption 2 (ii) and Jensen’s inequality. Next, we try to

bound Ik1.

Ik1 =

∣∣∣∣∣∣ 1n
∑
i∈Ik

[ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)− ψ(Wi; θ1, η0)ψ(Wi; θ2, η0)]

∣∣∣∣∣∣
≤ 1

n

∑
i∈Ik

∣∣ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)− ψ(Wi; θ1, η0)ψ(Wi; θ2, η0)
∣∣

≤ 2

n

∑
i∈Ik

sup
θ∈Θ

sup
η∈TN

(
|ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0)| × |ψ(Wi; θ, η)|

)
≤ 2

n

∑
i∈Ik

(
sup
θ∈Θ

(ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0))2
)1/2

×
(

sup
θ∈Θ

sup
η∈TN

2

n

∑
i∈Ik

ψ(Wi; θ, η)2
)1/2
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and the conditional expectation of the first term given (Wi)i∈Ick on the event that η̂k ∈ TN is equal to

sup
θ∈Θ

EP
[
‖ψ(W ; θ, η̂k)− ψ(W ; θ, η0)‖2|(Wi)i∈Ick

]
≤ sup

η∈TN ,θ∈Θ
EP
[
‖ψ(W ; θ, η)− ψ(W ; θ, η0)‖2|(Wi)i∈Ick

]
= r′2N ,

Because the event that η̂k ∈ TN holds with probability 1 − ∆N = 1 − o(1), it follows that Ik1 =

OP (r′N ) = OP (δN ). Since Ik2 = OP (N−1/2) and δN ≥ N−1/2, we have Ik = Op(ρN ) with ρN . δN .

Then we try to bound Ik4.

Ik4 =

∣∣∣∣∣∣ 1n
∑
i∈Ik

[ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0)]

∣∣∣∣∣∣ ≤ 1

n

∑
i∈Ik

|ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0)|

≤ sup
θ∈Θ

 1

n

∑
i∈Ik

‖ψ(Wi; θ, η̂k)− ψ(Wi; θ, η0)‖2
1/2

.

By using the similar argument that we use to bound Ik1, we obtain Ik4 = OP (r′N ). Therefore, we

have I ′k = OP (ρN ) with ρN . δN . This completes the proof of Ω̂(θ1, θ2) = Ω(θ1, θ2) + OP (ρN ). To

prove Ω̂ is a uniformly consistent estimator of Ω over Θ, we need to show that for any ε2 > 0, and

any θ1, θ2, θ
′
1, θ
′
2 ∈ Θ such that |θ1 − θ′1| ≤ δ1 and |θ2 − θ′2| ≤ δ2, we have

lim
δ1,δ2→0

lim sup
N→∞

P
(
|Ω̂(θ1, θ2)− Ω̂(θ′1, θ

′
2)| > ε2

)
= 0.

By Markov’s inequality, for any ε2 > 0,

P
(
|Ω̂(θ1, θ2)− Ω̂(θ′1, θ

′
2)| > ε2

)
≤ 1

ε2
EP

[∣∣∣Ω̂(θ1, θ2)− Ω̂(θ′1, θ
′
2)
∣∣∣] .

Thus, it suffices to show that for each k ∈ [K],

Ik6 = EP
[∣∣En,k[ψ(W ; θ1, η̂k)ψ(W ; θ2, η̂k)]− En,k[ψ(W ; θ′1, η̂k)ψ(W ; θ′2, η̂k)]

∣∣] = 0,

as n→∞, δ1, δ2 → 0. Note that

Ik6 ≤ EP [En [|ψ(W ; θ1, η̂k)− ψ(W ; θ′1, η̂k)| · |ψ(W ; θ2, η̂k)|] + En [|ψ(W ; θ2, η̂k)− ψ(W ; θ′2, η̂k)| · |ψ(W ; θ′1, η̂k)|]]

= EP [En [|ψa(W ; η̂k) · (θ1 − θ′1)| · |ψ(W ; θ2, η̂k)|]] + EP [En [|ψa(W ; η̂k) · (θ2 − θ′2)| · |ψ(W ; θ′1, η̂k)|]]

≤ (EP

[
ψa(W ; η̂k)2 · (θ1 − θ′1)2

]
)1/2 ·

(
EP

[
ψ(W ; θ2, η̂k)2

])1/2
+ (EP

[
ψa(W ; η̂k)2 · (θ2 − θ′2)2

]
)1/2 ·

(
EP

[
ψ(W ; θ′1, η̂k)2

])1/2
≤ δ1 · (EP

[
ψa(W ; η̂k)4

]
)1/4 ·

(
EP

[
ψ(W ; θ2, η̂k)4

])1/4
+ δ2 · (EP

[
ψa(W ; η̂k)4

]
)1/4 ·

(
EP

[
ψ(W ; θ′1, η̂k)4

])1/4
≤ (δ1 + δ2)c21,
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where the second inequality follows from Cauchy-Schwarz inequality, the third inequality follows from

Jensen’s inequality, and the last one is from Assumption 2 (ii). It is obvious that limδ1,δ2→0 Ik6 = 0.

Therefore, Ω̂ is a uniformly consistent estimator of Ω over Θ. This completes the whole proof of

Theorem 1.

B.2 Proof of Theorem 2

Proof. As long as we show Lemma 1 holds, the proof of Theorem 2 is done. Let us define TN as the

set of all η = (g,m, p) consisting of P -square-integrable function g,m and p such that

‖η − η0‖P,q ≤ c1, ‖η − η0‖P,2 ≤ δN .

We proceed in four steps.

Step 1. We first verify the Assumption 1 that the score of the LATE in (2.4) satisfies the moment

condition (3.1) and the Newman orthogonality condition (3.2). It can be easily verified that moment

condition is satisfied by the construction of the score. The Gateaux derivative in the direction η−η0 =

(g − g0,m−m0, p− p0) is given by

∂ηEP [ψ(W ; θ0, η)]
∣∣∣
η=η0

(η − η0)

= EP

[(
1 − Z

p0(X)

)
(g(1, X) − g0(1, X))

]
− EP

[(
1 − 1 − Z

1 − p0(X)

)
(g(0, X) − g0(0, X))

]
− θ0EP

[(
1 − Z

p0(X)

)
(m(1, X) −m0(1, X))

]
+ θ0EP

[(
1 − 1 − Z

1 − p0(X)

)
(m(0, X) −m0(0, X))

]
+ EP

[(
θ0Z(D −m(1, X)) − Z(Y − g0(1, X))

p0(X)2
+
θ0(1 − Z)(D −m(0, X)) − (1 − Z)(Y − g0(0, X))

(1 − p0(X))2

)
× (p(X) − p0(X))

]
= 0,

where the last equality follows from the law of iterated expectations and

EP [Z|X] = p0(X), EP [Z(Y − g0(1, X))|X,Z] = 0, EP [Z(D −m0(1, X))|X,Z] = 0, (B.6)

EP [1− Z|X] = 1− p0(X), EP [(1− Z)(Y − g0(0, X))|X,Z] = 0, EP [(1− Z)(D −m0(0, X))|X,Z] = 0.

Referring to the definitions of the score for the LATE in (2.4) and linear orthogonal score in (3.9), we
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have

ψb(W ; η) = g(1, X)− g(0, X) +
Z(Y − g(1, X))

p(X)
− (1− Z)(Y − g(0, X))

1− p(X)
,

ψa(W ; η) = −m(1, X) +m(0, X)− Z(D −m(1, X))

p(X)
+

(1− Z)(D −m(0, X))

1− p(X)
.

Then we have ψ(W ; θ, η) = ψb(W ; η) + θ × ψa(W ; η). Therefore, all the conditions in Assumption 1

hold.

Step 2. Next, let us verify Assumption 2 (iii). Note that

EP
[
ψ(W ; θ, η0)2

]
= EP

[
(g0(1, X)− g0(0, X)− θ(m0(1, X)−m0(0, X)))2 ]

+ EP

[(Z(Y − g0(1, X))

p0(X)
− (1− Z)(Y − g0(0, X))

1− p0(X)
− θ
(Z(D −m0(1, X))

p0(X)
− (1− Z)(D −m0(0, X))

1− p0(X)

))2]
≥ EP

[(Z(Y − g0(1, X))

p0(X)
− (1− Z)(Y − g0(0, X))

1− p0(X)

)2]
− θ2EP

[(Z(D −m0(1, X))

p0(X)
− (1− Z)(D −m0(0, X))

1− p0(X)

)2]
≥ EP

[
Z2(Y − g0(1, X))2

p0(X)2

]
+ EP

[
(1− Z)2(Y − g0(0, X))2

(1− p0(X))2

]
≥

EP
[
Z(Y − g0(1, X))2 + (1− Z)(Y − g0(0, X))2

]
(1− ε)2

=
EP [u2]

(1− ε)2
≥ c2

0

(1− ε)2
,

where the first equality holds since the interaction term equals to zero by the equations in (B.6), the

third inequality follows from the facts that ε ≤ p0(X) ≤ 1 − ε, and the last equality follows from

Assumption 3 (iv). Thus the Assumption 2 (iii) is satisfied.

Step 3. Next, we verify Assumption 2 (i). By Lemmas 2 and 3 invoked by Assumption 3-7, with

probability 1− o(1),

‖(β̂11, β̂12)− (β0
11, β

0
12)‖ ∨ ‖(β̂21, β̂22)− (β0

21, β
0
22)‖ ∨ ‖γ̂ − γ0‖ .

√
sN log(pN)

N
.

The proof of Lemmas 2 and 3 are given in Section B.4 and B.5. Thus Assumption 2 (i) is satisfied.
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Step 4. Next, let us verify the condition in Assumption 2 (ii). Note that

‖g0(D,X)‖P,q = (EP [|g0(D,X)|q])1/q

≥ (EP [|g0(1, X)|qP (D = 1|X) + |g0(0, X)|qP (D = 0|X)])1/q

≥ ε1/q(EP [|g0(1, X)|q] + EP [|g0(0, X)|q])1/q

≥ ε1/q(EP [|g0(1, X)|q] ∨ EP [|g0(0, X)|q])1/q

≥ ε1/q(‖g0(1, X)‖P,q ∨ ‖g0(0, X)‖P,q).

Since ‖g0(D,X)‖P,q ≤ ‖Y ‖P,q ≤ c1 by Assumption 3, we have

‖g0(1, X)‖P,q ≤ c1/ε
1/q, and‖g0(0, X)‖P,q ≤ c1/ε

1/q.

By using similar arguments, we obtain

‖g(1, X)− g0(1, X)‖P,q ≤ c1/ε
1/q, ‖g(0, X)− g0(0, X)‖P,q ≤ c1/ε

1/q, (B.7)

‖m0(1, X)‖P,q ≤ 1/ε1/q, ‖m0(0, X)‖P,q ≤ 1/ε1/q,

‖m(1, X)−m0(1, X)‖P,q ≤ c1/ε
1/q, ‖m(0, X)−m0(0, X)‖P,q ≤ c1/ε

1/q,

since ‖m0(D,X)‖P,q ≤ 1, ‖g(D,X) − g0(D,X)‖P,q ≤ c1, and ‖m(Z,X) − m0(Z,X)‖P,q ≤ c1. By

calculation, we obtain

‖ψa(W ; η)‖P,q ≤ (1 + ε−1)(‖m(1, X)‖P,q + ‖m(0, X)‖P,q) + 2/ε

≤ (1 + ε−1)(‖m(1, X)−m0(1, X)‖P,q + ‖m0(1, X)‖P,q + ‖m(0, X)−m0(0, X)‖P,q + ‖m0(0, X)‖P,q) + 2/ε

≤ (1 + ε−1)(2c1ε
−1/q + 2ε−1/q) + 2ε−1 := cε1,

‖ψb(W ; η)‖P,q ≤ (1 + ε−1)(‖g(1, X)‖P,q + ‖g(0, X)‖P,q) + 2‖Y ‖P,q/ε

≤ (1 + ε−1)(2c1ε
−1/q + 2ε−1/q) + 2c1ε

−1 := cε2,

where cε1 and cε2 are constants related with ε instead of N . Note that this completes the verification

of Assumption 2 (b) Therefore, under the null, we have

(EP [‖ψ(W ; θ, η)‖q])1/q = ‖ψ(W ; θ, η)‖P,q ≤ ‖ψ(W ; θ, η)− ψ(W ; θ0, η)‖P,q + ‖ψ(W ; θ0, η)‖P,q

≤ |θ − θ0| × ‖ψa(W ; η)‖P,q + ‖ψb(W ; η)‖P,q + |θ0| × ‖ψa(W ; η)‖P,q

≤ |θ − θ0|cε1 + cε2 + |θ0|cε1 . 1,
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where the last inequality need the assumption that Θ is a compact set by Assumption 3 (vi). This

completes the verification of Assumption 2 (ii) (a).

Next, let us verify the condition in Assumption 2 (ii) (c). For any η = (g,m, p), by the triangle

inequality,

(EP [‖ψ(W ; θ, η)− ψ(W ; θ, η0)‖2])1/2 = ‖ψ(W ; θ, η)− ψ(W ; θ, η0)‖P,2 ≤ I1 + I2 + I3 + I4,

where

I1 := ‖g(1, X)− g0(1, X)‖P,2 + ‖g(0, X)− g0(0, X)‖P,2,

I2 := |θ| × (‖m(1, X)−m0(1, X)‖P,2 + ‖m(0, X)−m0(0, X)‖P,2) ,

I3 :=

∥∥∥∥Z(Y − g(1, X))

p(X)
− Z(Y − g0(1, X))

p0(X)

∥∥∥∥
P,2

+

∥∥∥∥(1− Z)(Y − g(0, X))

1− p(X)
− (1− Z)(Y − g0(0, X))

1− p0(X)

∥∥∥∥
P,2

,

I4 := |θ| ×

(∥∥∥∥Z(D −m(1, X))

p(X)
− Z(D −m0(1, X))

p0(X)

∥∥∥∥
P,2

+

∥∥∥∥(1− Z)(D −m(0, X))

1− p(X)
− (1− Z)(D −m0(0, X))

1− p0(X)

∥∥∥∥
P,2

)
.

By using the similar argument as the one in obtaining equation (B.7), we have

‖g(1, X)− g0(1, X)‖P,2 ≤ δN/ε1/q, ‖g(0, X)− g0(0, X)‖P,2 ≤ δN/ε1/q,

‖m(1, X)−m0(1, X)‖P,2 ≤ δN/ε1/q, ‖m(0, X)−m0(0, X)‖P,2 ≤ δN/ε1/q.

so I1 ≤ 2δN/ε
1/q and I2 . 2δN/ε

1/q. To bound I3, we have

I3 ≤ ε−2 ×
(
‖Zp0(X)(Y − g(1, X))− Zp(X)(Y − g0(1, X))‖P,2

+ ‖(1− Z)(1− p0(X))(Y − g(0, X))− (1− Z)(1− p(X))(Y − g0(0, X))‖P,2
)

≤ ε−2 ×
(
‖p0(X)(u+ g0(1, X)− g(1, X))− p(X)u‖P,2

+ ‖(1− p0(X))(u+ g0(0, X)− g(0, X))− (1− p(X))u‖P,2
)

≤ ε−2 ×
(
‖p0(X)(g0(1, X)− g(1, X))‖P,2 + ‖(p(X)− p0(X))u‖P,2

+ ‖(1− p0(X))(g0(0, X)− g(0, X))‖+ ‖(p(X)− p0(X))u‖P,2
)

≤ ε−2 ×
(
‖(g0(1, X)− g(1, X))‖P,2 +

√
c1‖p(X)− p0(X)‖P,2

+ ‖(g0(0, X)− g(0, X))‖+
√
c1‖p(X)− p0(X)‖P,2

)
≤ ε−2 × (2/ε1/q + 2

√
c1)δN ≤ cε3δN ,
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where cε3 ≥ ε−2 × (2/ε1/q + 2
√
c1), the first inequality follows from ε ≤ p(X) ≤ 1 − ε and ε ≤

1 − p(X) ≤ 1 − ε, and the fourth one follows from Assumption 3 (vi). We use the similar argument

to bound I4 and obtain that I4 . δN . Therefore, we have ‖ψ(W ; θ, η)− ψ(W ; θ, η0)‖P,2 . δN , which

completes the verification of Assumption 2 (ii).

B.3 Proof of Theorem 3

Proof. Theorem 2 shows that under Assumption 3 and H0 : θ ∈ Θ, ĜN (·) weakly converges to a

centered Gaussian process, and the variance estimator Ω̂(θ1, θ2) is a uniformly consistent estimator

for Ω(θ1, θ2). The proof of Theorem 3 follows trivially from equation (3.5) and the fact that the

distribution of qN (θ0) ∼ N(0,Ω(θ0, θ0)) does not depend on SN , the function Ω̂(θ, θ0)Ω̂(θ0, θ0)−1 is

deterministic and known, and the definition of cα(hN ) by equation (2.8).

B.4 Proof of Lemma 2

Proof. We apply Lemma 1 in Belloni et al. (2016). In step 1, we will verify the condition for Lemma

1 in Belloni et al. (2016) holds. In step 2, we obtain a high-probability bound for λ1 and λ2. First,

note that Assumption 4 implies that the restricted eigenvalue condition holds with probability 1−o(1)

by Lemma 2.7 in Lecué and Mendelson (2017): for T = supp(β0
11, β

0
12), |T | ≥ 1, and c ≥ 1, we have

κc0 = infδ∈Dc0
‖(Zi,X′i)δ‖2,N
‖δT ‖1 > 0, where Dc0 = {δ : ‖δT c‖ ≤ c0‖δT ‖1} with c0 = (c+ 1)/(c− 1).

Step 1. For a subset A ⊂ Rp+1, define the nonlinear impact coefficient by

q̄A = inf
δ∈A

EN
[
|(Zi, X ′i)δ|

2
]3/2

EN
[
|(Zi, X ′i)δ|

3
] .

To apply Lemma 1 in Belloni et al. (2016), we verify the condition q̄Dc0 > 3
(
1 + 1

c

)
λ1
√
sN/ (Nκc0)

with probability 1 = o(1). Observe that

q̄Dc0 = inf
δ∈Dc0

EN
[
|(Zi, X ′i)δ|

2
]3/2

EN
[
|(Zi, X ′i)δ|

3
] ≥ inf

δ∈Dc0

EN
[
|(Zi, X ′i)δ|

2
]1/2

maxi∈[N ] ‖(Zi, X ′i)‖∞‖δ‖1
&P inf

δ∈Dc0

EN
[
|(Zi, X ′i)δ|

2
]1/2

N1/qMN‖δ‖1

≥ inf
δ∈Dc0

EN
[
|(Zi, X ′i)δ|

2
]1/2

N1/qMN (1 + c0)
√
sN‖δT ‖

≥ κc0
N1/qMN (1 + c0)

√
sN
≥ 1

∆
1/2
N N1/4

&

√
sN log aN

∆NN
,
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where the fourth inequality follows from the definition of κc0 , and the fifth comes from ∆N ≥

MNsN/N
1/2−2/q and the last one from sN log aN/N

1/2 ≤ ∆N by Assumption 7(iii), ∆N = o(1),

and λ1 =
√
N log aN . Therefore, we obtain,

‖Zi(β̃11 − β0
11) +X ′i(β̃12 − β0

12)‖2,N = O(
λ1
√
sN

N
), ‖(β̃11, β̃12)− (β0

11, β
0
12)‖1 = O(

λ1sN
N

).

Step 2. In this step, we show for some large K > 0, let ζ ∈ (0, 1) and

λ1 = K
√
N log(p/ζ),

then with probability 1− ζ − o(1), for a fixed c > 1, it holds that

P (λ1/N ≥ c‖∇L1(β0
11, β

0
12)‖∞) ≥ 1− ζ − o(1).

The proof relies on Theorem 2.1 and 2.2 in Chernozhukov et al. (2013). We need to verify the

conditions in Chernozhukov et al. (2013). Conditions are directly implied by Assumption 7 (i)(ii).

Now, by Theorem 2.1 and 2.2 in Chernozhukov et al. (2013), we have

sup
t∈R
|P (‖
√
N∇L1(β0

11, β
0
12)‖∞ ≤ t)− P (‖G‖∞ ≤ t)| = o(1),

where G ∼ N(0,Σ), Σ is the asymptotic variance of
√
N∇L1(β0

11, β
0
12). Then the Gaussian concen-

tration inequality implies that with probability 1− ζ − o(1),

P (λ1/N ≥ c‖∇L1(β0
11, β

0
12)‖∞) ≥ 1− ζ − o(1).

Now, combining the result with the bound from Step 1 concludes the convergence rate for (β̂11, β̂12).

Replacing λ1, (Zi, X
′
i), (β11, β12), L1(β11, β12) by λ2, X ′i, γ, L2(γ) respectively, we could obtain the

convergence rate for γ̂.

B.5 Proof of Lemma 3

Proof. The proof replies on Theorem 1 in Belloni and Chernozhukov (2013). We need to verify the

conditions in Theorem 1 in Belloni and Chernozhukov (2013) hold. Note that Assumption 4 directly

implies the restricted eigenvalue condition in Belloni and Chernozhukov (2013). Condition V in Belloni

and Chernozhukov (2013) follows from Assumption 3 (iv) and (v). Therefore, with the choice of

λ3 = K3

√
N log(pN), we have with probability 1− o(1), ‖(β̂21, β̂22)− (β0

21, β
0
22)‖ .

√
sN log(pN)

N .
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