Consumer Search and Firm Strategy with Multi-Attribute Products

Jacopo Gambato
Universität Mannheim, ZEW Mannheim, MaCCI

August 29, 2023

Shopping for a shirt

- Searching for variants is costly and time consuming
- Menu composition affects how consumers investigate options
- Correlation in products affects search process

Shopping for a shirt

- Searching for variants is costly and time consuming
- Menu composition affects how consumers investigate options
- Correlation in products affects search process
- Shirts have multiple attributes: color, fabric, cut...
- After trying a red, cotton shirt:
- consumer likes red and dislike cotton: focus on red, non cotton shirts
- otherwise: consumer focus on different products

Shopping for a shirt

- Searching for variants is costly and time consuming
- Menu composition affects how consumers investigate options
- Correlation in products affects search process
- Shirts have multiple attributes: color, fabric, cut...
- After trying a red, cotton shirt:
- consumer likes red and dislike cotton: focus on red, non cotton shirts
- otherwise: consumer focus on different products
- RQ1: Optimal menu selection and pricing strategy of a multiproduct monopolist when search is costly
- RQ2: Optimal search process with correlated products \rightarrow role of learning through shopping

The tools of a multiproduct firm

- Multiproduct firms are endemic, and complex to study
- Multiple relevant strategic dimensions, and interactions in between

The tools of a multiproduct firm

- Multiproduct firms are endemic, and complex to study
- Multiple relevant strategic dimensions, and interactions in between
- Literature: much on pricing strategies, less on menu selection
- Even less on interaction between the two

The tools of a multiproduct firm

- Multiproduct firms are endemic, and complex to study
- Multiple relevant strategic dimensions, and interactions in between
- Literature: much on pricing strategies, less on menu selection
- Even less on interaction between the two
- In this paper: interaction arises due to correlation of products; menu determines value of inspecting individual products, prices reflect it

A different kind on search

- Standard search models ill-equipped for this kind of questions
- Products (usually) as random draws from match value distribution \rightarrow difficult to introduce correlation

A different kind on search

- Standard search models ill-equipped for this kind of questions
- Products (usually) as random draws from match value distribution \rightarrow difficult to introduce correlation
- Instead: products as collection of attributes
- Products with attributes in common: perfectly correlated in that part of their match value

A different kind on search

- Standard search models ill-equipped for this kind of questions
- Products (usually) as random draws from match value distribution \rightarrow difficult to introduce correlation
- Instead: products as collection of attributes
- Products with attributes in common: perfectly correlated in that part of their match value
- Allows for realizations to dictate direction of search as it unfolds

Results preview

- Optimal search strategy:
- forward looking: implied search paths matter
- non-stationary: expectation updating affects stopping rule
- search path "reveals preferences" \rightarrow buyer self-selects towards favored options

Results preview

- Optimal search strategy:
- forward looking: implied search paths matter
- non-stationary: expectation updating affects stopping rule
- search path "reveals preferences" \rightarrow buyer self-selects towards favored options
- Monopolist optimal strategy:
- possibly different prices for ex ante identical products
- possibly restriction of supply
- coordinating menu and prices, monopolist can induce specific order of search for consumer

Products

- Horizontally differentiated products defined by attributes: A, B (e.g.: A : color, B : fabric)
- Restriction:
- $A \in\left\{A_{1}, A_{2}\right\}$ (e.g. "red", "blue"), $B \in\left\{B_{1}, B_{2}\right\}$ (e.g. "cotton", "polyester")
- $N=4$ distinct product: $(i, j), i, j \in\{1,2\} \rightarrow$ correlation through shared attributes

Products

- Horizontally differentiated products defined by attributes: A, B (e.g.: A : color, B : fabric)
- Restriction:
- $A \in\left\{A_{1}, A_{2}\right\}$ (e.g. "red", "blue"), $B \in\left\{B_{1}, B_{2}\right\}$ (e.g. "cotton", "polyester")
- $N=4$ distinct product: $(i, j), i, j \in\{1,2\} \rightarrow$ correlation through shared attributes

Monopoly seller

- Menu and prices selection before search starts - no adjustments mid-search
- Affects search process through:
- menu $\tilde{N} \subseteq N$ - products available and their relation
- posted prices $\mathbf{p}(\tilde{N})$ of all products (separately)
- Production costs set at 0

Representative consumer

- Unit demand: wants to find the best match in \tilde{N}
- consumer observes products' correlation and prices, not his preferences
- i.i.d. attributes: each is a "match" $(V=1)$ with probability α-ex post utility 0 otherwise
- No synergy between attributes: product (i, j) generates utility:

$$
u_{i, j}=A_{i}+B_{j}
$$

- search cost $s>0$; sequential search with free recall

Timing

(1) Consumer and monopolist observe α, s,
(2) Monopolist selects $\tilde{N}, \mathbf{p}(A)$,
(3) Consumer observes $\tilde{N}, \mathbf{p}(A)$, makes searching and purchasing decisions

Timing

(1) Consumer and monopolist observe α, s,
(2) Monopolist selects $\tilde{N}, \mathbf{p}(A)$,
(3) Consumer observes $\tilde{N}, \mathbf{p}(A)$, makes searching and purchasing decisions

- Equilibrium concept: SPNE

Timing

(1) Consumer and monopolist observe α, s,
(2) Monopolist selects $\tilde{N}, \mathbf{p}(A)$,
(3) Consumer observes $\tilde{N}, \mathbf{p}(A)$, makes searching and purchasing decisions

- Equilibrium concept: SPNE
- Returns: Unique equilibrium in terms of outcome given parameters

Optimal search paths

- Correlation of products allows to trace optimal search paths:
- after positive realization, consumer wants to keep match
- after negative one, consumer wants to drop attribute
- Paths found by backward induction: find products optimally inspected given possible realization, then optimal starting point
- All products available $(\tilde{N} \equiv N)$, uniform prices normalized at zero \rightarrow straightforward pathing, any starting point W.L.O.G.

Graphically

Search dynamic

- Searching $(1,1)$ (WLOG) lets buyer discover $A_{1} \in\{0,1\}$, $B_{1} \in\{0,1\}$:

$$
\begin{gathered}
\left.E\left[u_{1,2}\right]\right|_{I=\{(1,1)\}}=A_{1}+\left.\alpha \quad E\left[u_{2,1}\right]\right|_{I=\{(1,1)\}}=\alpha+B_{1} \\
\left.E\left[u_{2,2}\right]\right|_{I=\{(1,1)\}}=\alpha+\alpha
\end{gathered}
$$

Search dynamic

- Searching $(1,1)$ (WLOG) lets buyer discover $A_{1} \in\{0,1\}$, $B_{1} \in\{0,1\}$:

$$
\begin{gathered}
\left.E\left[u_{1,2}\right]\right|_{I=\{(1,1)\}}=A_{1}+\left.\alpha \quad E\left[u_{2,1}\right]\right|_{I=\{(1,1)\}}=\alpha+B_{1} \\
\left.E\left[u_{2,2}\right]\right|_{I=\{(1,1)\}}=\alpha+\alpha
\end{gathered}
$$

- Next searched product maximizes: $\left.E\left[u_{i, j}\right]\right|_{I=\{(1,1)\}}-s \geqslant u_{1,1}$

Search dynamic

- Searching $(1,1)$ (WLOG) lets buyer discover $A_{1} \in\{0,1\}$, $B_{1} \in\{0,1\}$:

$$
\begin{gathered}
\left.E\left[u_{1,2}\right]\right|_{I=\{(1,1)\}}=A_{1}+\left.\alpha \quad E\left[u_{2,1}\right]\right|_{I=\{(1,1)\}}=\alpha+B_{1} \\
\left.E\left[u_{2,2}\right]\right|_{I=\{(1,1)\}}=\alpha+\alpha
\end{gathered}
$$

- Next searched product maximizes: $\left.E\left[u_{i, j}\right]\right|_{I=\{(1,1)\}}-s \geqslant u_{1,1}$
- Going backwards:

$$
\begin{aligned}
&\left.E\left[u_{1,1}\right]\right|_{I \equiv \varnothing}=\underbrace{2 \alpha^{2}}_{A_{1}=B_{1}=1}+\underbrace{(1-\alpha)^{2}(2 \alpha-s)}_{A_{1}=B_{1}=0} \\
&+\underbrace{2 \alpha(1-\alpha)[1+\max (\alpha-s, 0)]}_{A_{1} \neq B_{1}}-s
\end{aligned}
$$

Uniform prices trade-off

- Consider uniform price p for all products in $\tilde{N} \equiv N$:

$$
\begin{aligned}
& E\left[u_{1,1}\right]_{I \equiv \varnothing}=\alpha^{2} \max (2-p, 0)-s \\
& +2 \alpha(1-\alpha) \max (1-p, \alpha \max (2-p, 0)+(1-\alpha) \max (1-p, 0)-s, 0) \\
& +(1-\alpha)^{2} \max \left(\alpha^{2} \max (2-p, 0)+2 \alpha(1-\alpha) \max (1-p, 0)-s, 0\right)
\end{aligned}
$$

Uniform prices trade-off

- Consider uniform price p for all products in $\tilde{N} \equiv N$:

$$
\begin{aligned}
& \left.E\left[u_{1,1}\right]\right|_{I \equiv \varnothing}=\alpha^{2} \max (2-p, 0)-s \\
& +2 \alpha(1-\alpha) \max (1-p, \alpha \max (2-p, 0)+(1-\alpha) \max (1-p, 0)-s, 0) \\
& +(1-\alpha)^{2} \max \left(\alpha^{2} \max (2-p, 0)+2 \alpha(1-\alpha) \max (1-p, 0)-s, 0\right)
\end{aligned}
$$

- As p grows, last component is the first to go to zero \rightarrow determines if $(2,2)$ is ever searched. Threshold price that encourages search: p^{E}

Uniform prices trade-off

- Consider uniform price p for all products in $\tilde{N} \equiv N$:

$$
\begin{aligned}
& \left.E\left[u_{1,1}\right]\right|_{I \equiv \varnothing}=\alpha^{2} \max (2-p, 0)-s \\
& +2 \alpha(1-\alpha) \max (1-p, \alpha \max (2-p, 0)+(1-\alpha) \max (1-p, 0)-s, 0) \\
& +(1-\alpha)^{2} \max \left(\alpha^{2} \max (2-p, 0)+2 \alpha(1-\alpha) \max (1-p, 0)-s, 0\right)
\end{aligned}
$$

- As p grows, last component is the first to go to zero \rightarrow determines if $(2,2)$ is ever searched. Threshold price that encourages search: p^{E}
- Higher price: higher revenue if sale takes place, but discourages inspection of $(2,2)$ after bad first realization: $p^{D}>p^{E}$

Encouraging or discouraging search?

- If p^{E} is selected:
- Higher probability of trade (first search either leads to sale or second search)
- Lower revenue conditional on sale

Encouraging or discouraging search?

- If p^{E} is selected:
- Higher probability of trade (first search either leads to sale or second search)
- Lower revenue conditional on sale
- If p^{D} is selected:
- Lower probability of trade (first search can make consumer leave)
- Higher revenue conditional on sale

Encouraging or discouraging search?

- If p^{E} is selected:
- Higher probability of trade (first search either leads to sale or second search)
- Lower revenue conditional on sale
- If p^{D} is selected:
- Lower probability of trade (first search can make consumer leave)
- Higher revenue conditional on sale
- p^{E} VS p^{D} determines menu:
- $p^{E} \rightarrow$ all products introduced
- $p^{D} \rightarrow$ only three products needed

Encouraging or discouraging search?

- If p^{E} is selected:
- Higher probability of trade (first search either leads to sale or second search)
- Lower revenue conditional on sale
- If p^{D} is selected:
- Lower probability of trade (first search can make consumer leave)
- Higher revenue conditional on sale
- p^{E} VS p^{D} determines menu:
- $p^{E} \rightarrow$ all products introduced
- $p^{D} \rightarrow$ only three products needed
- p^{E} and p^{D} better for different outcomes of the first search; both can be optimal: high probability of trade vs high per-sale revenue

Equilibrium Menu and Prices

Proposition

Consider a multi-product monopolist selecting optimal menu $\tilde{N} \subseteq N$ and pricing $\mathbf{p}(\tilde{N})$ of multi-attribute products. In equilibrium:

- Encouraging prices are set for high search costs,
- Discouraging prices are set for low search costs and high probability of a match,
- All products are introduced if and only if prices are not set uniformly.

Consumer is always steered towards specific search paths through strategic pricing.

The best of both worlds

- Suppose $p^{E} \leqslant 1$ is selected; after bad first realization, second search takes place
- If consumer likes an attribute (say, A_{1}), she searches $(1,2)$ if:

$$
E\left[u_{1,2}\right]=1+\alpha-s-p^{E}>1-p^{E}=u_{1,1}
$$

The best of both worlds

- Suppose $p^{E} \leqslant 1$ is selected; after bad first realization, second search takes place
- If consumer likes an attribute (say, A_{1}), she searches $(1,2)$ if:

$$
E\left[u_{1,2}\right]=1+\alpha-s-p^{E}>1-p^{E}=u_{1,1}
$$

- Incentive to increase price of some products to profit off learning of consumer:

$$
p_{1,1}=p_{2,2}=p^{*}=p^{E} \quad p_{1,2}=p_{2,1}=p^{* *}>p^{*}
$$

The best of both worlds

- Suppose $p^{E} \leqslant 1$ is selected; after bad first realization, second search takes place
- If consumer likes an attribute (say, A_{1}), she searches $(1,2)$ if:

$$
E\left[u_{1,2}\right]=1+\alpha-s-p^{E}>1-p^{E}=u_{1,1}
$$

- Incentive to increase price of some products to profit off learning of consumer:

$$
p_{1,1}=p_{2,2}=p^{*}=p^{E} \quad p_{1,2}=p_{2,1}=p^{* *}>p^{*}
$$

- Consumer would not start from $(1,2)$ (or $(2,1)$), but could inspect it depending on realizations A_{1}, B_{1} :

$$
\pi=\left(1-(1-\alpha)^{4}\right) p^{*}+2 \alpha^{2}(1-\alpha)\left(p^{* *}-p^{*}\right)
$$

Graphical representation of candidate prices

Encouraging prices High prob. trade

Discouraging prices
Low prob. trade

Graphical representation of candidate prices

Encouraging prices High prob. trade

Discouraging prices Low prob. trade

Differential prices High prob. trade

Consumer adaptation and monopolist response

- For some α, s, consumer can adapt search by ignoring expensive product and gathering more information: from $(1,1)$ to $(2,2)$ instead of e.g. $(1,2)$

Consumer adaptation and monopolist response

- For some α, s, consumer can adapt search by ignoring expensive product and gathering more information: from $(1,1)$ to $(2,2)$ instead of e.g. $(1,2)$
- Lower probability of selling more expensive product with adaptation; monopolist can:

Consumer adaptation and monopolist response

- For some α, s, consumer can adapt search by ignoring expensive product and gathering more information: from $(1,1)$ to $(2,2)$ instead of e.g. $(1,2)$
- Lower probability of selling more expensive product with adaptation; monopolist can:
- allow deviation: $\bar{\pi}=\left(1-(1-\alpha)^{4}\right) p^{*}+2 \alpha^{2}(1-\alpha)^{2}\left(\bar{p}-p^{*}\right)$

Consumer adaptation and monopolist response

- For some α, s, consumer can adapt search by ignoring expensive product and gathering more information: from $(1,1)$ to $(2,2)$ instead of e.g. $(1,2)$
- Lower probability of selling more expensive product with adaptation; monopolist can:
- allow deviation: $\bar{\pi}=\left(1-(1-\alpha)^{4}\right) p^{*}+2 \alpha^{2}(1-\alpha)^{2}\left(\bar{p}-p^{*}\right)$
- reduce $p^{* *}: \quad \underline{\pi}=\left(1-(1-\alpha)^{4}\right) p^{*}+2 \alpha^{2}(1-\alpha)\left(\underline{p}-p^{*}\right)$

Consumer adaptation and monopolist response

- For some α, s, consumer can adapt search by ignoring expensive product and gathering more information: from $(1,1)$ to $(2,2)$ instead of e.g. $(1,2)$
- Lower probability of selling more expensive product with adaptation; monopolist can:
- allow deviation: $\bar{\pi}=\left(1-(1-\alpha)^{4}\right) p^{*}+2 \alpha^{2}(1-\alpha)^{2}\left(\bar{p}-p^{*}\right)$
- reduce $p^{* *}: \quad \underline{\pi}=\left(1-(1-\alpha)^{4}\right) p^{*}+2 \alpha^{2}(1-\alpha)\left(\underline{p}-p^{*}\right)$
- remove $(2,2): \quad \hat{\pi}=\left(1-(1-\alpha)^{2}\right) p^{*}+2 \alpha^{2}(1-\alpha)\left(p^{* *}-p^{*}\right)$

Consumer adaptation and monopolist response

- For some α, s, consumer can adapt search by ignoring expensive product and gathering more information: from $(1,1)$ to $(2,2)$ instead of e.g. $(1,2)$
- Lower probability of selling more expensive product with adaptation; monopolist can:
- allow deviation: $\bar{\pi}=\left(1-(1-\alpha)^{4}\right) p^{*}+2 \alpha^{2}(1-\alpha)^{2}\left(\bar{p}-p^{*}\right)$
- reduce $p^{* *}: \quad \underline{\pi}=\left(1-(1-\alpha)^{4}\right) p^{*}+2 \alpha^{2}(1-\alpha)\left(\underline{p}-p^{*}\right)$
- remove $(2,2): \quad \hat{\pi}=\left(1-(1-\alpha)^{2}\right) p^{*}+2 \alpha^{2}(1-\alpha)\left(p^{* *}-p^{*}\right)$
- All can be the best response for different values of α, s; supply restriction if α high, s low; $\hat{\pi}$ dominated by uniform p^{D}

Equilibrium menu and prices, graphically

Discussion

- Search dynamic matches well recent evidence of "spatial learning" in search
- Learning component creates novel interaction between search order and pricing
- Prices can be used to steer consumers: cheap products displayed more prominently to let consumer learn about their taste; monopolist profits off adjustment

Discussion

- Search dynamic matches well recent evidence of "spatial learning" in search
- Learning component creates novel interaction between search order and pricing
- Prices can be used to steer consumers: cheap products displayed more prominently to let consumer learn about their taste; monopolist profits off adjustment
- Implications for:
- Free samples: positive experience increases wtp for novelty, allows higher prices
- Recommendation systems: incentive not to recommend best match but sub-par match at low price and let consumers self-select towards more expensive products
- "Dynamic" price discrimination: conditioning prices on search history based on correlation of products inspected in sequence

Conclusion

- Correlation and learning: expected value of searching a product depends on whole menu, not just products in isolation
- Menu restriction viable if monopolist cannot induce more profitable search path with prices only
- Learning component makes monopolist encourage search - no incentive to obfuscate products made available

Conclusion

- Correlation and learning: expected value of searching a product depends on whole menu, not just products in isolation
- Menu restriction viable if monopolist cannot induce more profitable search path with prices only
- Learning component makes monopolist encourage search - no incentive to obfuscate products made available
- Model can be generalized - core intuition behind search process unaffected...

Conclusion

- Correlation and learning: expected value of searching a product depends on whole menu, not just products in isolation
- Menu restriction viable if monopolist cannot induce more profitable search path with prices only
- Learning component makes monopolist encourage search - no incentive to obfuscate products made available
- Model can be generalized - core intuition behind search process unaffected...
- ...only uniform prices if attribute spaces large enough

Conclusion

- Correlation and learning: expected value of searching a product depends on whole menu, not just products in isolation
- Menu restriction viable if monopolist cannot induce more profitable search path with prices only
- Learning component makes monopolist encourage search - no incentive to obfuscate products made available
- Model can be generalized - core intuition behind search process unaffected...
- ...only uniform prices if attribute spaces large enough

Predictability of search process allows monopolist to make buyers self-select based on taste, drives rent extraction

Thank you for your attention

