
Consumer Search and Firm Strategy with Multi-Attribute
Products∗

Jacopo Gambato†

August 15, 2023

Abstract
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can exploit: by setting different prices, the monopolist can encourage specific search paths to
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1. Introduction

Consider a consumer who wishes to purchase a shirt in a store. She is aware of the selection
available but does not know what kind of shirt she wants exactly. Looking for specific kinds of
shirts and then trying them on is time-consuming. However, she does not need to try them all:
shirts share certain attributes among each other. For example, once the consumer has tried on a
red, cotton shirt, she learns whether she wants a shirt that is made of cotton or not, or that is
red or not. The next shirt she will try on will change depending on what she has learned. The
process will repeat until nothing worth inspecting is left.

In this paper, I study the features of the optimal search process when products are correlated
through shared attributes. I consider an environment similar to that introduced by Lancaster
(1966) in which consumers value products based on their attributes. This framework allows
consumers to select what to search and to adapt their strategy after each realization. The
dynamic is as follows: different products sharing an attribute are known to be valued identically
with respect to that. Through the search process, consumers learn their preferences for said
attributes rather than for individual products. The result of any given inspection makes the
consumer update her expectations for the remaining products based on which attributes they
share. This, in turn, instructs the next inspection.

To study the implications of learning in directed search when products are correlated through
shared attributes, I embed the framework in an environment in which a multiproduct monopolist
selects product menu and pricing. Multiproduct firms are widespread and, accordingly, have
been object of thorough study. While much has been written about multiproduct firms’ pricing
strategies1, the role of their menu composition has received significantly less attention, and the
strategic interaction between the two even less so. In this paper, I present a framework that
allows to capture the synergy between two similar products borne of consumers’ learning of their
own preferences, and how a firm that can coordinate the menu made available can profit off it.

The consumer in my framework observes, at the beginning of the game, only which products are
made available and how these products are related, but is unaware of her preferences for the
attributes that characterize them. Prices are posted, and contribute to determining the order
in which consumer search for their preferred product2. When two products are identical, in
expectation, in everything but the price, it is clear that the cheaper one would be inspected first.
Since the outcome of each inspection instructs the next, each inspection effectively reveals the
consumer’s learned preferences. The monopolist can then price products differently to encourage
consumers to self-sort based on the preferences they learn about through the search process.

Setting different prices, however, might induce the consumer to deviate from the monopolist’s
preferred order of search. I show that in some cases the monopolist has an incentive to restrict
the supply by removing specific products from the menu. This happens, in particular, when
search is cheap and likelihood of a match is high. Searching off the optimal path is relatively less
punishing in this case, and it can be more rewarding for the consumer, in expectation, because

1Notable, among many others, are the early contributions by Mussa and Rosen (1978) and McAfee et al.
(1989).

2Posted prices also resolve the standard hold-up problem of hidden prices in models of search as understood by
Anderson and Renault (2006); A more in-depth analysis on the matter can be found in Konishi and Sandfort
(2002) and Robert and Stahl (1993).
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of the difference in prices. The monopolist, then, has an incentive to remove these alternative
paths to induce his preferred order of search. Whenever this is the case, the monopolist strictly
prefers a uniform pricing strategy over setting different prices for different products.

The results highlight the ability of multiproduct firms to induce consumers to inspect products in
a specific order when they can coordinate their product menu. By anticipating how a consumer
would react after observing a product, the firm can encourage search towards better suited
products, and profit off the consumer’s incentive to find good matches. The monopolist wants
the consumer to keep searching whenever possible: what is learned through inspection of a
product makes the consumer fine-tune her selection. This fine-tuning implies different search
paths for different realizations. The monopolist can increase profits by setting higher prices
along these paths without discouraging the consumer to search. Strikingly, different prices can
emerge even if products are ex ante identical from the consumer’s perspective.

Differential prices used to encourage search can arise, however, only if the product menu is
relatively small. When the available products are few, a negative outcome of early inspections
reduces the space of products from which the consumer can expect to obtain high utility. The
value of inspecting new products decreases in the number of past inspections if their outcome is
particularly bad, and more so the lower is the number of subsequent possible inspections (that
is, the smaller is the menu of products made available). I show that when the product space
is extended to encompass infinite varieties, setting differential prices can never be the optimal
strategy for the monopolist. Differential prices make cheaper products prominent, which reduces
the probability of selling more expensive alternatives. While with a finite menu this reduction in
expected profits is compensated by a higher overall probability of trade, the same is not true for
an infinitely large menu. The result suggests that the optimal pricing strategy of a multiproduct
monopolist depends not only on his menu composition, but also on the menu’s size.

I further contribute to the existing consumer search literature by allowing inspection of one
product to affect the expected return of inspecting a different one. In many circumstances,
this represents well consumer search behavior: if a consumer learns that she dislikes a certain
attribute in a product, she would rationally try to avoid other products that share that attribute3.
If attributes can be assumed to be valued independently, this dynamic only arises in a world
in which products are defined by multiple attributes. To clarify this distinction, consider the
initial example again. Suppose that all shirts were only defined by their color, and that all shirts’
color was unique4. By trying on a red shirt, the consumer can learn only whether she likes, or
not, the color red. If preference over different colors can be assumed to be independent, the
consumer cannot use this information to decide what she should search next. When products
are defined by multiple attributes the same needs not happen: trying a red, cotton shirt allows
the consumer to restrict her attention to shirts that are red, made of cotton, on neither under
the same assumption of independence.

Most of the existing consumer search literature studies random search processes. A recent wave
3For example, Hodgson and Lewis (2020) shows evidence of “spatial learning” in search: consumers are shown

to inspect more differentiated products early and to get closer to the eventually purchased option as search
progresses.

4This is without loss of generality: if color is the only relevant attribute, two shirts sharing the same color are
effectively the same product
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of contributions, however, have instead focused on ordered search. In some cases5, the order in
which the consumer searches is fixed exogenously; in others6 it is determined by the consumer.
In this last case, often referred to as “directed” search, consumers determine the optimal search
order based on some observable attributes. Recent contributions by Choi et al. (2018) and Haan
et al. (2018), for example, assume that prices of all products are known before inspection by the
consumer. Additionally, they assumes that products have two attributes, one directly observable
and one that needs to be discovered through search.

The features instructing the order of search in these models are, however, never shared between
products. This implies that the order of search cannot be affected by past realizations. A
contribution of this paper is to bring together these two features – observable attributes instructing
the search process, and shared attributes allowing the consumer to adapt as they search. The
resulting optimal search process must accounts for all possible follow-up inspections. I show
that in this environment every inspection is optimally selected accounting for what it can imply
for the other products available. Inspection of a product informs the consumer of her taste
for other options. Inspecting multiple products not sharing any attribute indirectly informs
the consumer of her preference for products that share attributes with them. A tension arises
between the informational value of inspecting unrelated products, and the efficiency implied
by keeping good realizations. I show that in this environment “backtracking” to a previously
inspected and abandoned attribute can be optimal.

With every inspection, expected utility of searching further is updated through the shared
attributes. Available products not yet inspected can then be re-ordered based on the expected
utility of the search paths their inspection induces. When all products are identical before the
search process starts, they carry the same information about other products. They also imply
the same search paths conditional on the possible outcomes. After each inspection, the value
of searching further changes to account for the information learned, which in turn determines
the possible search paths a consumer would take from that point onward. I show that the
multi-attribute structure allows to apply a version of Weitzman (1979)’s optimal search in an
environment with correlated products.

The dynamic studied in this paper has subtle implications for recommendation systems in
environments in which an agent has control over the menu offered to consumers, and price
discrimination based on consumers’ search history. The monopolist I study has no information
about the consumer preferences but can induce self-selection based on taste through strategic
pricing. If he did, however, an implication of the results is that he would optimally choose not to
recommend the best match he could. Instead, he would have an incentive to recommend a subpar
option first, and let the consumer find a better, more expensive match using the information
acquired from the first inspection. Relatedly, if the seller could condition prices on search history,
the same pricing outcome would emerge: consumers who search unrelated products signal that
they obtained a bad realization on the first search, while consumers who search related products
signal a positive early realization. It is clear then that the seller would want to react to the
latter search path being taken by raising prices.

The rest of the paper is structured as follows: after reviewing the related literature, I present the
5Arbatskaya (2007), Zhou (2011)
6Choi et al. (2018), Haan et al. (2018), Anderson et al. (2020)
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framework (Section 2) and characterize the optimal search process with multiple attributes and
the learning process they imply in a simplified version of the model (Section 3). Afterwards, I
solve the problem of a monopolist that selects which products to make available and their price
(Section 4). I present a general version of the search model and provide the equilibrium pricing
for the infinite products case in Section 5. After exploring extensions to the general model in
Section 6, I conclude in Section 7.

Related literature This paper relates to several strands of literature. First, it contributes to
the wide literature on multiproduct firms. Earlier contributions addressed several aspects of
the possible strategies of this kind of firms and the products they offer. Some, like Mussa and
Rosen (1978), focused on price discrimination with vertically differentiated products. Others,
like Eaton and Lipsey (1979), discuss market pre-emption through introduction of horizontally
differentiated options. Other notable example relate to R&D expenditure (Lin, 2004, Lambertini
and Mantovani, 2009) and bundling of products (McAfee et al., 1989).

Fewer are the papers that address the strategic component inherit in selection of the menu
composition. Johnson and Myatt (2002) study menu extension and pruning in response to
entry, and focus on differentiated products; menu selection is, therefore, adaptive to changing
market conditions. More closely related is work by Brander and Eaton (1984), which considers
product introduction of more or less differentiated products. While the authors focus mostly
on the duopoly setting, their multiproduct monopolist values minimizing substitutability of
the products offered to avoid cannibalization. I show that, with learning and search frictions,
this generally is not true: the monopolist I study wants to make available products that share
attributes (and are, therefore, closer substitutes compared to products that don’t) to encourage
the consumer to search at higher prices.

An important result of this paper is the endogenous arising of differential prices for ex ante
identical products. This result is in conflict with that of Amir et al. (2016): the author finds
that a multiproduct monopolist facing linear demand always price his products independently.
This result holds even if products are negatively correlated; I show here that the same is not
true when products are positively correlated through shared attributes because the monopolist
has the incentive to use cheap products to steer consumers towards more expensive ones. To
the best of my knowledge, this paper is the first to study the implications of menu selection for
consumer steering and, therefore, relates to this rapidly growing literature as well7.

The paper also contributes to the ordered search literature pioneered by Weitzman (1979).
Weitzman characterizes the optimal process for a consumer costly searching among n boxes.
Each box is characterized by a reservation value, a score representing the value that would make
the consumer indifferent between opening the box and keeping a sure reward equal to the score.
The optimal search order has the consumer opening boxes from the highest to the lowest score.
The consumer optimally stops when no unopened box has a score higher than the highest past
realization.

Weitzman’s result crucially relies on the assumption that boxes are independently distributed. I
remove this assumption by introducing attributes shared across the available products. When

7In the steering literature, this paper is closest to Ichihashi (2020); other notable contributions, although less
closely related, are De Corniere and Taylor (2019), Teh and Wright (2022), and Heidhues et al. (2023).
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products share attributes, each inspection affects more than just the inspected product. As
more products are inspected, others that share attributes with them end up being fully revealed
as a result. The expected gain from inspecting a different option must account for the optimal
path each realization would lead to. These paths in turn depend on the best past realizations
attribute by attribute. Therefore, ranking products based on their myopic expected value does
not capture the whole value of inspecting them. This implies another difference in the optimal
search process: unsampled products are reordered based on the expected utility of inspecting
them after each search to account for what the consumer has learned. Following the same
intuition detailed in Anderson et al. (2021), I propose a tractable, history-dependent scoring
system that incorporates the value of searching beyond the target of inspection. The score is
determined only by the value of the paths that would be optimally taken after the realization
they refer to and, therefore, reflect the full value of inspecting new attributes. Through this
scoring system, I show that a dynamic version of Weitzman (1979)’s optimal search policy can
be characterized in this environment with correlated products.

Few existing papers incorporate conditional search order. A notable exception is the contribution
by Doval (2018): Doval extends Weitzman’s search process by allowing the consumer to take an
uninspected box. The author shows that this option changes the relative value of the available
boxes, since each unopened box represent a different outside option. In a different spirit, Ke and
Lin (2022) and Bao et al. (2022) study optimal search in a simple framework in which a discrete
number of products share one of their two attributes. Ke and Lin (2022) returns conditions
under which correlation is search leads to complementarity of the products available; Bao et al.
(2022), instead, studies Bayesian updating when the consumer cannot distinguish the role of
each attribute in the ex post utility each product grants.

More closely related to this paper is the aforementioned work by Anderson et al. (2021). The
authors represent the search process on a tree. The nodes of the tree represent information
regarding multiple available products. With this set-up the authors argue that product closer
to each others can be considered complements rather than substitutes. When a product gets
more valuable in expectation, it re-routes search towards itself. Closer products that would not
have been considered before gain prominence as a result. The process is similar to the learning
proposed in my framework, and indeed the mechanical intuition behind the two learning process
is similar. While they motivate the process through sequential information acquisition, however,
my set-up is better suited to represent search for experience goods.

Most of the literature considers search processes that features unchanging order. This is most
obvious when order of search is exogenous, as in Arbatskaya (2007), Zhou (2011), and the
prominence literature (Armstrong et al. (2009), Armstrong and Zhou (2011)). These papers
focus on the effect search order has on equilibrium prices. When search order is predetermined
and products are homogeneous, as in Arbatskaya (2007), equilibrium prices decrease in the
search order. Armstrong et al. (2009) and Zhou (2011) show that the opposite result emerges
when products are heterogeneous: since consumers who keep searching must have been unhappy
with their past realizations, sellers searched later can charge higher prices in equilibrium.

More recently, the opposite relation has been explored: Choi et al. (2018), Haan et al. (2018) and
Shen (2015) study the effect of posted prices on search order. They study different competitive
settings in which sellers costlessly advertise prices. Prices instruct the order of search of
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consumers, who always want to search for cheaper products first all else equal. Since sellers want
to undercut each other to gain prominence in the search order, pinning down an equilibrium
requires consumers to be heterogeneous enough. Choi et al. (2018) introduces heterogeneity in
the form of different mean expected qualities. Haan et al. (2018) introduces multiple attributes,
one of which is known before search starts and, therefore, instructs the optimal order of search.
Anderson et al. (2020) obtains similar results by introducing heterogeneity through the search
cost distribution. Since the multiproduct monopolist I focus on does not have an incentive to
undercut himself, this is not necessary in my setting.

Correlation in products has been incorporated in other ordered search models: Shen (2015), for
example, embeds the search process in a Hotelling framework. Consumers know their location
and observe prices, and can choose to search to visit the firm they are farther from. Armstrong
and Zhou (2011) also embeds the search process in a Hotelling framework to study the effect
of prominence on pricing. In both settings, the available products are perfectly negatively
correlated. This implies that there is no uncertainty left regarding consumer preferences after
one search. When products are correlated through multiple attributes this is not the case, and a
consumer learns about her preferences in a multi-step process.

I further contribute to the growing literature on learning in search. Besides the aforementioned
paper by Anderson et al. (2021), a closely related example is the recent contribution by Preuss
(2021). Preuss studies a random search process in which a consumer is uncertain about how
much she values a certain product. To find out, she must inspect them until she finds a variant
she likes. Alternatively, the consumer can randomly learn how much she would value a variant
she likes after failing to find it.

The difference lies in how products are defined in these two environments. In Preuss (2021),
products are defined by a single attribute, and the consumer can only learn that she should
stop searching before finding a product she likes and before exhausting all possible options.
This is still true in my setting. Additionally, in my setting, the consumer can learn what she
should search next: when products are defined by multiple attributes, not all products need
to be affected by one inspection in the same way. Moreover, adaptation in search comes from
endogenous learning through inspection of products and not as a separate action; this distinction
separates the paper from earlier works, such as Garcia and Shelegia (2018) and Greminger
(2022).

Finally, the paper contributes to the literature of pricing in search. The standard Wolinsky
(1986) model, and most of the literature that followed, focus on competitive settings. A notable
exception is work by Anderson and Renault (2006), which studies monopoly pricing with search
frictions. The authors focus on information disclosure through advertisement of price, product
attributes, or both. Like in my setting, price advertisement is shown to resolve hold-up problems
generated by search frictions. The paper also provides theoretical evidence of the limited interest
of a firm to disclose too much information about his product’s characteristic, since it would
dissuade some valuable costumers from visiting. In the same spirit, Mayzlin and Shin (2011)
shows that firms selling high quality products might choose to withheld information about it to
encourage search. My approach is closer to the latter: differential prices arise to more efficiently
capitalize on consumer taste, making the two strategies substitutes.

Unlike both, however, I study pricing as implemented by a multiproduct monopolist who can
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coordinate prices of horizontally differentiated products. In most papers with the same premise8,
consumers visiting a multiproduct sellers learn pricing and valuation for all the products he
offers at the same time. Instead, I study within-firm directed search. From this point of view,
the paper can be positioned in between recent contributions by Petrikaitė (2018) and Nocke and
Rey (2022).

Petrikaitė (2018) shows that a multiproduct monopolist can manipulate search costs to induce
consumers to stop at the most profitable products. By inducing a certain search order, the
monopolist makes consumers self-sort to maximize profit. In my model, the same happens.
The result is, however, the opposite: different prices emerge when the monopolist encourages,
rather than hinders, search. The difference lies in the learning process. When a consumer learns
what he likes, he has an incentive to search further to find a more suitable product. With
every inspection, the consumer restricts her attention to more valuable options. The monopolist
can profit off this pattern by setting different prices for different products. In particular, the
monopolist can set higher prices on a path that would only be reached by a consumer whose
preference align with it.

Nocke and Rey (2022), instead, studies the incentives of a multiproduct seller to “garble” product
information to induce consumers to search longer. Since search costs are assumed to be fixed,
the firm has no incentive to price discriminate. This is not the case in my setting: different prices
emerge because different search patterns reveal different preferences learned through inspection.
This could not be the case in Nocke and Rey (2022) because, like Preuss (2021), they focus on
single-attribute products: garbling information affects incentives to keep searching, not what
should be optimally searched next.

2. Framework

The products. I consider an industry with products differentiated with respect to two
attributes9. A product (i, j) is identified by attributes Ai ∈ A, Bj ∈ B. In the simplified
framework below, I assume A and B to come in two variants each; in the general model, I assume
A and B to come in infinite variants10, so that the number of products available for purchase is
infinite as well. Each attribute Ai can be found combined with all attributes Bj , i, j ∈ {1, 2, ...},
and vice versa. One can visualize the products as displayed in a grid, with the rows representing
the A attributes, the columns representing the B attributes, and the cells representing products
defined by a specific combination of A and B attributes as depicted in Figure 1. Notice that
products are only differentiated through their attributes and are otherwise identical in quality11.

The consumer. A representative, risk-neutral consumer (she) has unit demand, is aware of
the available products and their attribute composition, and can inspect the products in any order
she likes. The consumer has no prior knowledge of her preferences for the available attributes;
she learns the realization of each attribute separately by inspecting a product characterized by

8Zhou (2014); Rhodes (2015); Rhodes et al. (2021)
9The framework is adapted from Smolin (2020)

10Relaxing this assumption is the topic of one of the extension.
11As an example: shirts differ in their color (attribute A) and their fabric (attribute B).
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it. In line with existing models12 I assume that ex post utility generated by a generic product
(i, j) takes the form:

u(Ai, Bj) = Ai + Bj = ui,j ,

where ui,j represents the realized ex post utility. I assume each attribute to be an i.i.d random
variable distributed according to to a cumulative distribution function F . Defining a generic
attribute as y ∈ A ∪ B, I further assume F (y) to have support [0, ŷ] for some positive ŷ, and to
be twice-differentiable everywhere on it. The assumption that attributes enter ui,j additively
crucially implies that there are no “synergies” between attributes: once an attribute is discovered,
its realized value affects all products that are defined by it in the same way.

A1

A2

...

B1 B2 ...

(1, 1) (1, 2)

...

...(2, 1) (2, 2)

...

...

...

Figure 1: Graphical representation of
products (i, j). Products in the same row
(resp. column) share attribute Ai (resp.

Bj).

In the simplified framework below, I further assume
attributes to follow a Binomial distribution: F (y) ≡
B(1, α), where α ∈ (0, 1) refers to the probability that
the consumer likes any inspected attribute y13. Ex-
pected utility of an unsampled product (i, j) is then:

E[ui,j ] = α + α = 2α.

Expected utility of a product (i, j) sharing an attribute
with a previously sampled product, say Ai, but not the
other, is instead:

E[ui,j ] = Ai + α.

In this environment, I study the optimal sequential
search process with free recall: a consumer can always
go back to a previously inspected product at no additional cost. The cost of inspecting a product
is indexed by the constant s. The consumer knows both distribution F and search costs s,
and learns the value of each attribute separately after each inspection. Finally, the consumer’s
outside option is normalized to u0 = 0.

The seller. A multiproduct monopolist (he) selects which of these products to make available
to the representative consumer (that is, he selects Ñ ⊆ N), and their respective prices. He
is also aware of distribution F and search costs s. The monopolist can influences the search
pattern over available products through prices. Prices are set before the search process starts,
cannot be changed, and are observed costlessly by the consumer before she starts searching. I
assume all production costs to be equal to zero.

Timing and equilibrium concept. The timing of the interaction can be summarized as
follows:

1. Consumer and monopolist observe distribution F and search costs s,
12For example: Choi et al. (2018) and Greminger (2022).
13In this specification, one can think of the search process as an effort to find an attribute that satisfies a need

of the consumer.
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2. The monopolist selects Ñ ⊆ N products to make available and relative price vector p(Ñ),

3. The consumer observes Ñ , p(Ñ), chooses between searching and her outside option, and,
if she searches, what to inspect,

4. After each inspection, the consumer chooses between stopping and keep searching (and
what to inspect next) until she either purchases an inspected product or leaves without
making a purchase.

For the pricing game, I consider Sub-game Perfect Equilibria14; sequential rationality in this
context refers to prices and expected profits to be internally consistent with the optimal search
pattern of the consumer, and viceversa. When the consumer is indifferent between stopping and
searching again, or when she is indifferent between two products to purchase, I assume that
indifference is always resolved in favor of the monopolist – that is, the most profitable outcome
is selected.

3. A Simple Model of Multi-Attribute Search

To fix ideas, I first characterize search in the simplified framework. The exercise highlights the
role of shared attributes in determining the optimal search policy, and provides intuitions useful
for the general model.

Suppose Ai ∈ {A1, A2}, Bj ∈ {B1, B2}; then, the product space N consists of four products:

N = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Further, assume attributes to be i.i.d random variables distributed according to B(1, α), where
α ∈ (0, 1) refers to the probability that the consumer likes any inspected attribute y. In this
specification, the cost of inspecting a product is s ∈ (0, 2α]. Both distributional parameter and s

are known. To illustrate the search dynamic in isolation, I start with the assumption that prices
are exogenously set at zero; this assumption will be relaxed in the next section. The consumer
can inspect any product in Ñ ; for clarity, I start from the simple case in which Ñ ≡ N . At any
given point of the search sequence, the set of available products can be partitioned in the set of
inspected products, I, and uninspected products, Ñ \ I.

Updating expected utilities. Suppose the consumer already inspected one of the products.
Since all products are ex ante identical, inspecting (1, 1) first is without loss of generality15.
More in general: whenever which product to inspect can be chosen randomly without loss of
generality, I assume that products are inspected in increasing order of on their indices. After
the first inspection, the consumer then has learned realizations A1 and B1. We are interested in
finding which of the remaining products should be inspected next, if any.

14Since the monopolist commits to menu and prices before the search process starts, and since prices are posted,
there is no need to model beliefs explicitly in this environment.

15All products share each attribute that characterizes it with another product, and for all products there is one
other product that shares no attributes with it. Therefore, all product are ex ante identical as long as prices are
uniform or, in this case, abstracting from prices
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In this simplified framework, it is straightforward to show that the consumer would want to keep
an attribute she has learned to have positive valuation for (if search costs are low enough), and
ignore one for which she has valuation zero for. Formally, given realization u1,1 = A1 + B1, the
consumer updates her expectations for the remaining product according to:

E[u1,2]|I={(1,1)} = A1 + α, E[u2,1]|I={(1,1)} = α + B1,

E[u2,2]|I={(1,1)} = 2α.

Clearly, the consumer would choose to inspect next the product with the highest updated
expected value as long as:

max
(i,j)∈N\I

E[ui,j ]|I − s > max
(i,j)∈I

ui,j .

Which immediately returns the optimal follow-up search for each possible realization of (1, 1):

• if A1 = B1 = 0, (2, 2) is searched next; no other search can take place since A2 ≥ A1 and
B2 ≥ B1,

• if A1 = B1 = 1, the consumer stops at (1, 1) since A1 ≥ A2 and B1 ≥ B2,

• if A1 > B1, (1, 2) is searched next (if α > s); no other search can take place since A1 ≥ A2

and B2 is shared between (1, 2) and (2, 2),

• if A1 < B1, (2, 1) is searched next (if α > s) ; no other search can take place since B1 ≥ B2

and A2 is shared between (2, 1) and (2, 2).

A1

A2

B1 B2

(1, 1) (1, 2)

(2, 1) (2, 2)

A1 = 1

B1 = 0

A1 = 0
B1 = 1

A1 = 0
B1 = 0

A1 = 1, B1 = 1: Stop

Figure 2: Optimal search with binomial distribution
and all products available, starting from (1, 1).

Expected utility of searching. In this en-
vironment, different realizations lead to dif-
ferent search paths being taken every time a
new product is inspected. These conditional
search paths emerge predictably, and all real-
izations generate unambiguously an optimal
path forward. In turn, this implies that a
rational consumer would account for the like-
lihood of these different paths emerging, and
the expected utility they are associated with,
when deciding whether to start searching or
not. From the above, then, we obtain the ex-
pected utility of searching given the available
products and the optimal search paths that
can emerge:

E[ui,j ]|I≡∅ = 2α2 + 2α(1 − α) max{1, 2α + (1 − α) − s} + (1 − α)2(2α − s) − s.

The first addendum refers to (i, j) being the best possible match (ui,j = 2, with probability
α2). The second addendum refers to the eventuality of the consumer liking only one of the two
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attributes, and the possible second search that outcome would entail, which only takes place if
s ≤ α. The third refers to the case in which ui,j = 0 so that the product sharing no attributes
with it would be inspected next. When all products are available and uniformly priced (and
therefore ex ante identical), inspecting products in increasing order of their index is without
loss of generality. Figure 2 exemplifies. When some products are not available this is generally
not the case: missing products imply that inspecting different products leads to different search
paths for the same outcome. In the next section, I will highlight the effect of restricting the
supply for the optimal order of search only referring to the specific cases and ways in which a
multiproduct monopolist chooses to restrict the product menu.

4. Seller’s Optimal Strategy

I embed the simple framework above in an environment in which a multiproduct monopolist
selects which products to make available to the representative consumer (that is, he selects
Ñ ⊆ N), and their respective prices. I assume prices to be set before the search process starts,
cannot be changed, and are observed costlessly by the consumer before she starts searching. I
further assume distributional parameters and search costs to be known by the firm. Finally, I
assume all production costs to be constant and set to zero. I show that in this environment the
learning component allows the monopolist to optimally set different prices for ex ante identical
products to profit off the learning process inherent to multi-attribute search.

4.1. The firm’s problem

The monopolist’s problem is twofold: he must set up prices to maximize profit, and must select
Ñ to generate trade opportunities. The two decisions are related. The consumer search path
depends on the price she observes, and which prices would deter her from searching depend
on the available products. In particular, the consumer is willing to search a product priced
above its myopic expected value 2α − s as long as the expected utility of searching from that
point onward is non-negative. As shown above, this can be achieved when products that share
attributes with each other are made available. A monopolist can, in principle, price products
above their myopic expected value as long as he made available enough products to justify it.

The two decisions – Ñ and p(Ñ), where the latter represents the vector of prices associated
with all products in Ñ – interact in non obvious ways. Uniform prices, for example, cannot
induce an order of search different from the one characterized above. If these uniform prices
are too high, however, some search paths could end prematurely: even if products are identical
ex ante, the first one searched ((1, 1) in the example above) carries more new information than
every subsequent search that could arise. It follows that the highest price that would make
two products not sharing attributes worth searching is different. If prices are not uniform,
however, the consumer could adapt their optimal order of search in response: between a more
expensive product for which she has positive information and a cheaper one for which she has no
information, that she would inspect the former first is not obvious. In either case, prices must
be such that they optimally reply to the search path they induce in equilibrium; viceversa, the
consumer must search optimally given observed prices.
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To study these different interactions, I solve the menu and pricing game of the monopolist
considering uniform and differential prices separately. I show that the monopolist can always
manipulate prices to induce specific ordering of the consumer search. Moreover, I show that the
monopolist has an incentive to strategically restrict the menu of available products to induce his
preferred order of search to arise when search is cheap.

Uniform prices. Under uniform prices, the monopolist’s trade-off is clear-cut. He wants to
raise prices to capitalize on any positive outcome of the consumer search, and he wants to lower
prices to incentivize inspections after negative outcomes. The monopolist is indifferent regarding
which product is ultimately purchased, as long as one is. For this reason, I start by assuming
that all products are available: Ñ ≡ N . I then show the monopolist’s incentive to restrict the
menu and the effect this choice has on consumer search. Once again, it is assumed throughout
that s < 2α.

Consider a generic uniform price level pu. The monopolist wants to set the highest level pu

conditional on certain constraints implied by the consumer search process not being violated.
Given the optimal search pattern identified in the section above, the expected utility of performing
the first inspection is:

E[u1,1]|I≡∅ = α2 max{2 − pu, 0} − s

+ 2α(1 − α) max{1 − pu, α max{2 − pu, 0} + (1 − α) max{1 − pu, 0} − s, 0}
+ (1 − α)2 max{α2 max{2 − pu, 0} + 2α(1 − α) max{1 − pu, 0} − s, 0}

(1)

that is: the value of inspecting (1, 1)16 is equal to the expected value generated by the search
paths that are induced by the possible different realizations. These in turn depend on the relative
value of s and α, over which the monopolist has no control over, and pu.

At pu = 0, the search problem of the consumer is identical to the one explored in the example
above. As prices grow, however, some search paths become inaccessible. The first search path
to be prevented by high prices is the one that arises conditional on a bad first match. Indeed,
given observation u1,1 = 0, (2, 2) is searched as long as:

E[u2,2]|u1,1=0 = α2 max{2 − pu, 0} + 2α(1 − α) max{1 − pu, 0} − s ≥ 0 (2)

It is straightforward to show that there exists values pu such that this condition is not satisfied
but E[u1,1]|I≡∅ is positive: even if the consumer would not search after a bad realization of (1, 1),
the presence of products sharing attributes with it makes it more likely to find something worth
purchasing. As long pu is such that E[u1,1]|I≡∅ is non negative, the consumer can rationally
start inspecting products. With this inspection, the consumer can discover that she likes both
attributes, after which she always stop searching since she can find no better match. Alternatively,
if the consumer likes only one attribute, she is interested in inspecting the other available product
that shares it. Suppose A1 = 1, B1 = 0, and pu ≤ 1. The consumer would want to perform this

16Once again, searching in increasing order of the indices is without loss of generality when all products are
available and prices are uniform
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additional search if and only if:

u1,1 = 1 − pu ≤ 1 + α − s − pu = E[u1,2]|I={(1,1)]}

which is always satisfied if s ≤ α, that is, if inspecting a single attribute is worth the necessary
search cost. Instead, if s > α, the two conditions are the same. This follows from the fact that if
s is higher than the expected gain of inspecting one attribute in isolation, the consumer would
only ever inspect a product she knows nothing about. In this case, the presence of correlated
products is immaterial: since no product can be reached after inspecting a different product
with which it shares an attribute, the expected gain of inspecting a product is only ever its
expected value. Therefore:

pM = 2α − s

α(2 − α) ,

where the apex M stands for “myopic”, is the only feasible price when s > α17.

Suppose now that s ≤ α. The monopolist can select one of two pricing profiles: on one hand, he
can elect to price products in a way that encourage a follow-up search after a first bad realization.
These prices must make a product just myopically worth searching, or, they must solve equation
2 with equality:

pE =

pE
L = pM if α2 ≤ s ≤ α

pE
H = 2α2−s

α2 if 0 < s < α2

where E stands for “encourage”, L stands for “low”, and H stands for “high”.

Alternatively, the monopolist can select higher prices that discourage search after a bad first
realization. These prices must be strictly higher than the encouraging counterpart and lead to a
lower probability of trade, but a higher return conditional on the consumer finding something to
purchase. These prices are such that E[u1,1]|I≡∅ = 0, since for any higher price the consumer
would not start searching:

pD =

pD
L = 2α(1+(1−α)(α−s))−s

α(2−α) if 3α2−2α3

1+2α−2α2 ≤ s ≤ α

pD
H = 2α(α(3−2s)−(1−α)s)−s

α2(3−2α) if 0 < s < 3α2−2α3

1+2α−2α2

where D stands for “discourage”, and L and H stand for “low” and “high” respectively.

Two observations are in order. First, lower prices are always feasible whenever higher ones
are: when pD

H does not prevent search, all other options are still available to the monopolist.
Second, the monopolist is not interested in his products being inspected, but in his products
being purchased. Trade is maximized for p ≤ 1: any higher price requires the consumer to like
both attributes in a product to purchase it. Notice that it holds:

pE
L > 1 ⇐⇒ 0 < s < α2

Therefore, the price that maximizes search and trade can be identified as the minimum between
17As I show in the next section, that correlation does not affect search when search costs are high enough holds

generally.
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pE
L and 1. To simplify the notation, I define:

pT = min(pE
L , 1)

where T stands for “trade”. pT , then, is the price that maximizes probability of trade. Overall,
when selecting pu∗ among the candidate equilibrium prices displayed above, the monopolist
chooses between maximizing search efforts, maximizing per-sale revenue, and maximizing
probability of trade. Higher prices discourage search and reduce probability of trade for a given
search pattern; lower prices encourage search but lead to lower revenue conditional on trade
taking place.

By plugging in the various (feasible) prices for the various combinations of α and s and following
the search path different prices induce according to Equation 1, one can obtain the expected
profit of the monopolist. These profits can then be directly compared and lead to a unique
equilibrium price for all possible combinations of α and s. In particular, when s > α, expected
profit is always:

pM < 1 → πM = pM

(
1 − (1 − α)4

)
Instead, when s ≤ α, the candidate prices obtained above lead to expected profits:

pT ≤ 1 → πE
L = pT

(
1 − (1 − α)4

)
which maximizes probability of trade and is always valid,

pD
L < 1 → πD

I = pD
L

(
1 − (1 − α)2

)
which prevents any further inspection after a bad first realization if 0 < s < 3α2−2α3

1+2α−2α2 , but
generates trade if any one inspected attribute is appreciated,

pE
H > 1 → πE

H = pE
H

[
α2(1 + 2(1 − α) + (1 − α)2)

]
which always allows for a second inspection if 0 < s < α2, but requires the consumer to find a
product to like in both attributes to lead to a purchase, and

pD
H > 1 → πD

H = pD
H

[
α2(1 + 2(1 − α))

]
which does not allow for another search after a bad first realization. In all cases, expected profit
is calculated as price times the probability of trade generated since production costs are assumed
to be equal to zero.

The candidate prices reflect the relative importance of encouraging search and extracting rent
conditional on search taking place. pT maximizes probability of trade: at this price level, the
consumer is always encouraged to either purchase the first product found or to keep searching,
and trade can take place as long as the consumer finds one attribute she likes. pD

L prevents the
consumer to search again after a bad first realization if s is high enough, but leads to higher
profit conditional on trade taking place. pE

H encourages search in the appropriate segment, but
only generates trade if the consumer finds a product she likes in both attributes. Finally, pD

H

discourages search but leads to the highest profit conditional on trade taking place.
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Intuitively, higher prices are preferable, for the monopolist, for low values of search costs and
high probability of a match α. For such parameters the consumer is easily encouraged to start
searching. If s > α, there is only one candidate price, pM , the lowest of the candidate prices.
For s ≤ α, instead, which of the four candidate prices is selected depends on the relative value
of s: the lower s is, the more aggressive pricing can be.

Given prices, it is straightforward to obtain the optimal product menu selection. When all
products are available, any product can be rationally selected to be the first to inspect by
the consumer. In this case, starting from (1, 1) is without loss of generality. However, for
high enough prices not all products can be inspected after fixing a starting point. From the
above discussion it emerges that if the monopolist optimally selects pu∗ ∈ pD, conditional on
the consumer starting from (1, 1), inspection of (2, 2) could not rationally take place. Indeed,
(2, 2) would only be inspected after a bad first realization, but pu∗ ∈ pD prevents this search
altogether. It follows that when the monopolist selects a price that prevents search after a
bad first realization, introducing three or four products is equivalent from the monopolist’s
perspective. This equivalence, however, is a byproduct of the unrealistic assumption of zero
production costs. It is then sensible to assume that, in this case, only three products would be
introduced.

Notice that this does not affect the expected utility of search if inspection starts from the right
product. If (2, 2) were to be removed, search starting from (1, 1) would be unaffected. Starting
from any other product, however, would generate negative expected utility of search. Suppose
for example that (2, 2) was removed and that the consumer started from (1, 2) or (2, 1). Then,
not only she would not rationally inspect the unrelated product, but she would not be able to
inspect (2, 2) after learning something positive about it. This cannot be optimal.

By removing a product, the monopolist effectively “locks” the consumer into a specific search
path. The values α, s and pu determine which search paths can be taken; given these search
paths, products are introduced. For example: if it s > α, inspection of a single attribute is never
rational. Then, the only feasible search paths affect products that share no attributes. It follows
that, in this case, only products that share no attribute would be introduced. The discussion
motivates the following result:

Proposition 1. Consider a multiproduct monopolist selecting optimal menu Ñ ⊆ N and uniform
pricing pu of multi-attribute products. Define pE the set of prices that encourage search after a
bad realization, and pD the set of prices that discourage it. In equilibrium:

• If s > α: pu∗ = pM , Ñ ⊂ N , and the consumer can start searching from any available
product,

• If s < α and pu∗ ∈ pE: Ñ ≡ N , and the consumer can start searching from any available
product,

• If s < α and pu∗ ∈ pD: Ñ ⊂ N , and the consumer is steered toward a specific search path.

Proof. All calculations and precise cut-offs for α and s can be found in Appendix A. ■

The monopolist values higher probabilities of trade taking place: since prices are uniform, the
monopolist is not concerned with which product is purchased as long as one is. Selecting prices
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that do not hinder the probability of trade is often optimal. Raising prices is only worth it if the
loss of a potential trade is compensated when trade does take place. In particular, α must be
high enough that the chances of not liking the first product inspected are low, and s must be low
enough that search is not discouraged. Whenever this is the case, the monopolist can raise price
and choose not to introduce all possible variants; as a consequence, consumers can be worse off
in expectation. When the supply is restricted, moreover, the monopolist effectively induces a
specific order of search. Strategic menu selection can give rise to endogenous prominence based
on the relative position of the products.

At uniform prices, the consumer retains some positive expected value from search when the
monopolist has an incentive to maximize trade by keeping prices low. Whenever this is the
case, moreover, the consumer is free to start from any of the available products. The restriction
on the monopolist’s pricing structure seems sensible: as all products are ex ante identical for
the consumer, they can be expected to be all priced at the same level. As I will show in the
next section, however, the monopolist generally has a profitable deviation if he is allowed to set
different prices for these products and soften the trade-off between encouraging search after bad
realizations and profiting whenever fine tuning after a good, but not great, match is possible.

Differential prices. The choice of the monopolist when prices are assumed to be uniform
is between keeping prices low to maximize search, and raising them to capitalize on good
realizations. Ideally, the monopolist would want both: low prices to make the consumer keep
searching after bad realizations, and high prices to profit off the consumer learning what she
likes. This can be achieved if the monopolist can price products differently.

The trade-off of the monopolist under uniform prices refers to different search paths. Low
prices encourage further search whenever the consumer finds nothing to like with her first
inspection. High prices generate higher profits when the consumer likes at least partially the
first option inspected. By pricing along these paths differently, the monopolist can achieve both
higher probability of trade compared to the high uniform price case, and higher expected profit
compared to the low uniform price case.

To see why, consider again uniform price pT that generates maximum probability of trade but low
rent extraction. When this price is optimally selected, it allows the consumer to keep searching
after a bad first realization and trade is likely to take place. In particular, what is needed is that
the first product inspected, say (1, 1), and the product that would be searched next conditional
on A1 = B1 = 0, (2, 2), to be priced at pT . On this path, if the other products were priced
higher than pT , nothing would change since (1, 2) and (2, 1) would not be considered even at
uniform prices, as long as the consumer can rationally start searching.

If the consumer, instead, learns that she likes an attribute inspected in the first search, she
would like to search next along that attribute. This is clearly true if prices are uniform. Suppose
however that (1, 2) and (2, 1) were priced slightly higher than (1, 1). If the consumer has learned
that she likes A1 (resp. B1), and if the price difference is not too high, she would still want to
search the more expensive product. Going backwards: the consumer would start her search from
the cheaper option given that products are ex ante identical. As long as the price differential is
not too high, the consumer has no incentives to stop searching early, nor to deviate towards a
different search path. By pricing (1, 1) and (2, 2) at p = pT , and the remaining products at a
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higher price, then, the monopolist can achieve both higher prices and higher probability of trade.
In doing so, the monopolist erodes at the consumer expected utility without preventing search.
When considering the equilibrium strategy of the monopolist, the following result emerges:

Proposition 2. Consider a multiproduct monopolist selecting optimal menu Ñ ⊆ N and pricing
p(A) of multi-attribute products. In equilibrium:

• Encouraging uniform prices are set for high search costs,

• Discouraging uniform prices are set for low search costs and high probability of a match

• All products are introduced if and only if prices are not set uniformly.

Proof. All calculations and precise cut-off values for α and s can be found in Appendix A. ■

Determining the optimal pricing vector with differential prices is challenging in this environment.
In particular, the difference in prices can induce the consumer to adapt their search strategy to
avoid the more expensive product and retain some expected utility. We are interested in finding
out the optimal price spread from the monopolist’s point of view, in which cases this spread
does not affect optimal search order, and, in the cases in which it does, what is the monopolist
optimal reply. Henceforth, I assume that (1, 1) and (2, 2) have lower prices and therefore act as
possible starting points; further, I keep the assumption of products over which the consumer is
indifferent to be searched in increasing order of their indices.

First, consider the optimal price spread. The search rules determine two separate constraints.
Prices must be such that search can start. Moreover, prices must be consistent with the search
process as it unfolds. As the price increase being profitable relies on the consumer learning
about which attribute she likes, a higher price can only arise on a path dictated by the consumer
finding an attribute to keep. Suppose the consumer inspects (1, 1) and observes A1 = 1, B1 = 0.
Suppose moreover that the optimal base price selected by the monopolist is pT ≤ 1. Conditional
on inspecting one attribute being worth the cost of inspection (s < α), the consumer would want
to search (1, 2) if:

u1,1 = 1 − p1,1 ≤ 1 + α − s − p1,2 = E[u1,2]|I={(1,1)}

which implies p1,2 = p1,1 + α − s, where p1,1, p1,2 are the observed prices for (1, 1) and (1, 2)
respectively. The higher price p1,2 effectively captures the expected gain of searching that
product after learning positive information about it by inspecting a different product. As the
monopolist is interested in the highest price that does not dissuade the search, the following
candidate prices profile arises:

p1,1 = p2,2 = p∗ = pT p1,2 = p1,2 = p∗∗ = pT + α − s = pT + δL

if α2 < s < α, and:

p1,1 = p2,2 = p∗ = pE
H > 1 p1,2 = p1,2 = p∗∗ = 2 − s

α
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if 0 < s < α2. The latter can be found following the same exact steps as the former accounting
for the fact that at these prices only a product that the consumer likes in both its attributes can
be purchased.

Given search as characterized above, these pricing structure lead to the same probability of
trade as their uniform counterparts. Compared to them, however, they lead to higher expected
profit since the more expensive products are purchased with positive probability. Notice that
this deviation preserves the internal consistency of the search process since the consumer would
always inspect the cheapest product first if she has no information on any of the available
products. These prices, however, can distort the optimal search order of the consumer after the
first realization. In particular, the consumer could find it optimal to ignore the more expensive
product even if she learns that she likes something about it. In this case, the consumer would
search (2, 2) hoping to find a good realization instead, and would only inspect the more expensive
product if she knows she likes both of its attributes and nothing else. Consider again the
candidate prices profile p1,1 = p2,2 = pT , p1,2 = p1,2 = pT + δL. After realization A1 = 1, B1 = 0:

u1,1 = 1 − p1,1, E[u1,2]|I={(1,1)} = 1 + α − s − p1,2,

E[u2,2] = α2(2 − p2,2) + (1 − α)(1 − p2,2) + α(1 − α)(2 − s − p1,2) − s

When prices are uniform, a consumer would always want to inspect (1, 2) after learning A1 = 1,
B1 = 0. Now, this is not necessarily the case. It is possible that the consumer, observing the
different prices, decided to change the order in which to inspect the remaining products. In
particular, she could elect to inspect (2, 2) first and learn her realizations for all attributes. Then,
the consumer could discover that u2,2 = 2, which she would not be able to by inspecting (1, 2).
If she were to learn that A2 = 0 and B2 = 1, instead, then and only then she would inspect (1, 2)
and purchase it.

For α high enough and s low enough, inspecting (2, 2) before (1, 2) is a rational deviation: search
in this case is cheap, and the likelihood of liking both attributes A2 and B2 is relatively high.
This deviation is at the detriment of the monopolist: the more expensive products now are
reached with lower probability. The monopolist can optimally reply in three ways:

• the monopolist can let the consumer search (2, 2) first, and further increase p1,2 and p2,1

to (p1,1 + 1 − s),

• the monopolist can reduce prices p1,2 and p2,1 to encourage his preferred order of search
to arise,

• the monopolist can remove (2, 2) to induce his preferred order of search and keep the same
prices for all other products.

The first reply further highlights the ability of the monopolist to condition prices on search
behavior. If the consumer has an incentive to search (2, 2) after (1, 1) conditional on A1 +B1 = 1,
he knows that the other two products would only be reached if they are the only product
generating utility equal to 2. The probability of this happening, however, is lower than in the
optimal price profile. Alternatively, the monopolist can make (1, 2) and (2, 1) cheaper. Since
the consumer is interested in searching (2, 2) first because the alternative is too expensive, this
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deviation re-establishes the most profitable search order. Because the prices need to be lower,
however, these paths are now less profitable than without the deviation. Finally, removing (2, 2)
forces the consumer to take the path the monopolist want her to. This, however, reduces the
probability of trade. These deviation are only necessary as long as (α, s) ∈ (0, 1) × (0, α2): when
s > α2, search costs are too high for the consumer to be interested in searching (2, 2) when the
monopolist would want her to inspect (1, 2) or (2, 1).

Each of the above strategies generates different expected profits for the monopolist. Given
p∗ = pT , p∗∗ = pT + δL:

• if the monopolist allows the consumer to deviate and raises p∗∗ to p = p∗ + 1 − s,

π = (1 − (1 − a)4)p∗ + 2α2(1 − α)2(p − p∗);

• if the monopolist reduces p∗∗ to p to induce monopolist preferred order,

π = (1 − (1 − a)4)p∗ + 2α2(1 − α)(p − p∗);

• if the monopolist removes (2, 2) to prevent the deviation deviation,

π̂ = (1 − (1 − a)2)p∗ + 2α2(1 − α)(p∗∗ − p∗).

0 1
0

2 2 α

α

No Search

Unif. pM
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Figure 3: Equilibrium monopoly menu
selection and pricing for all feasible

combinations of α ∈ (0, 1) and search costs
s ∈ (0, 2α)

All three options are optimal for some combinations
of α and s. The same exercise can be applied to
the alternative pricing profile p1,1 = p2,2 = pE

H > 1,
p1,2 = p1,2 = 2 − s

α : in this case, deviation by the
consumer is always feasible, and so the monopo-
list must react accordingly as well. In particular,
for this alternative profile, removing (2, 2) always
dominates the other two strategies.

The feasible expected profits under differential
prices must be compared to the highest expected
profit under uniform prices obtained in the previous
subsection. Two results emerge. First, whenever
the monopolist had an incentive to select uniform
prices that encourage search, he has an incentive
to differentiate prices. This is intuitive: the lowest
prices when products are priced differently are the
same as the trade-maximizing uniform price. As
prices are set up to generate strictly higher profits
while maintaining the same probability of trade, it
is clearly an improvement to set differential prices.
Second, whenever it is optimal to remove a product
to prevent deviation by the consumer, the high
uniform prices generate higher profits. This, too, is
straightforward: when the monopolist’s best option
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is to give up on an inspection in case of a bad first match, uniform prices generate higher
expected profits because, when prices are different, the consumer always starts from the cheaper
one.

Figure 3 summarizes the equilibrium menu and pricing selection for all feasible combinations
of α and s. The two decisions are intertwined. The monopolist has an incentive to make all
products available only if they can all be reached, and purchased, with positive probability.

When search costs are very high, only a bad first realization induces the consumer to keep
searching: introducing more than two products allow the consumer to randomize her starting
point but at no benefit for the monopolist. On the other hand, when search costs are very low
the monopolist prefers to set prices that prevent some search paths to arise if probability of
a match is relatively high. Lower search costs do not necessarily translate to more product
variety. Moreover, whenever all products are introduced, they are never priced uniformly. This,
in turn, implies that the monopolist always has an incentive to induce specific search patters to
arise. Further, it implies that in no case the consumer is free to select where to start searching:
menu selection and pricing always cause an asymmetry in per-product sale. The monopolist
is indifferent between which product or products can act as starting point. Ex post, however,
the learning dynamic analyzed above leads to some products becoming endogenously prominent
despite the fact the all products are equivalent before any inspection has taken place.

4.2. Discussion

The results of this section highlight the incentives of a multiproduct monopolist to strategically
determine the menu of available products to extract rent efficiently. To do so, he leads consumers
towards specific search paths consistent with different outcomes of past inspections. With
differential prices the monopolist is able to profit off the learning component of search in this
environment.

This finding is at odds with the standard prediction of search models with multiproduct firms.
in environments in which inspection of a product does not inform consumers of their taste for
alternative, strategic obfuscation of alternatives is the general outcome. Petrikaitė (2018), for
example, shows that a multiproduct monopolist like the one studied here has an incentive to
increase search cost of inspecting one product to induce consumers to inspect the easier to find,
and more expensive, alternative. Strikingly, the prediction goes in the opposite direction in the
framework presented here. The learning component introduced here induces the monopolist to
display some products more prominently, at a lower price, to let consumers learn about their
taste. With learning, encouraging search, rather than discouraging it, allows the monopolist to
sell more expensive products.

A possible application of this framework relates to the practice of businesses to offer free samples
of new products to attract interest18. In particular, by making some products prominent and
easy to assess, a firm can encourage potential buyers to learn about their taste for novelties and
alternatives that they might not consider otherwise. In doing so, the firm can use the positive
experience associated with the sampling to increase the willingness to pay of consumers unaware
of their preferences for said products. Together with the strategic ordering shown above, this

18Thanks to David Ronayne for pointing out this interaction.
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points at the importance of menu selection and positioning of options in environments with
search frictions.

The model also carries implications for digital markets, particularly in relation to recommendation
systems and price discrimination based on consumers’ search history. Recommendation systems
have been object of great interest and scrutiny in the past few years because of their crucial
role in the digital economy. A good recommendation system reduces frictions and, therefore,
increases efficiency of trade. It is, however, clear that such systems can be object of manipulation.
The results of the model imply that the learning component relevant when searching products
sharing attributes creates incentives to bias recommendations. The monopolist modelled here
does not want to make prominent the best match possible. Rather, he wants the consumer to
start from a subpar match and then self-select towards a more expensive product after learning
his preferences since she might be discouraged from inspecting an expensive product without
any information about it.

Consumers self-selecting based on taste also creates the incentive to condition pricing on their
search history19. Algorithmic pricing, the practice of pricing items automatically to adapt to
the state of the market, are more and more commonly used in the digital world20. The model
highlights the role product’s position in the attribute space plays in their pricing. Consumers are
willing to search more expensive products only if they have already learned something positive
about them by inspecting a different option. Equivalently, one can imagine a reactive pricing
system that adapts as search unfolds. If two products sharing attributes are inspected in sequence,
the ordering signals that the consumer has learned something positive about those attributes.
The price of the second, then, can be safely raised by an algorithm trained to recognite these
patterns. On the other hand, if two products not sharing any feature are inspected in sequence,
both should be priced low to maintain the consumer engaged with the search. This interaction
between spatial learning in search, evidence of which is presented in Hodgson and Lewis (2020),
and algorithmic pricing suggests the need for further, more detailed investigation.

5. Optimal search with multi-attribute products

The simplified framework analyzed above hints at the mechanics underlying optimal search in this
environment. A consumer can rationally inspect different products after different realizations,
and the value of inspecting two products depends on the order in which they are inspected even
if they are ex ante identical. Further, the value of inspecting a product depends on the other
products that share attributes with it, since what is learned through inspection affects these
products’ expected utility.

I now generalize this intuition. More specifically, I obtain rules of search that apply generally
in this environment. In what follows, I rethink the problem in a way that allows to apply
Weitzman (1979)’s logic and therefore reduce the search problem to a set of rules reminiscent of
Pandora’s optimal search policy. Weitzman (1979)’s result is not immediately applicable to this

19Thanks to Willy Lefez for pointing out this interaction.
20Airline companies and, more recently, e-commerce retailers are prime examples of this practice being widely

in use.
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environment due to the correlation between products: since products share attributes, it is not
possible to assign to each product a score that only depends on the product itself. I show how
this can be achieved by building “nests” of product to be scored as a single “box”21, and letting
their score update following certain realizations to account for changes in the optimal search
that would follow.

A similar environment is studied in Bao et al. (2022): in their framework, products share one
attribute and are independent across the other; however, the authors study Bayesian updating
when the two attributes cannot be observed separately. Ke and Lin (2022) also study a problem
with products sharing one of their attributes. They characterize search with two correlated
products and obtain conditions for complementarity between these products to arise. Instead, I
propose a more general approach: by building fictitious boxes including all correlated products
and tracing optimal follow-up inspections inside these boxes, I characterize search with correlated
products in a way that preserves the intuition behind Pandora’s optimal search policy.

5.1. Towards a general framework

First steps Consider first a simpler case, illustrated in Figure 4. The two products available
share one attribute (A1) and are independent along the other (Bj , j ∈ {1, 2}).

A1

B1 B2

(1, 1) (1, 2)

Figure 4: Two products available

Suppose that the consumer already inspected (1, 1):
she has learned her valuation for A1, shared by both
products, and B1. She still does not know her valuation
for B2. At this stage, it is clear that choosing between
stopping at (1, 1) and costly inspecting (1, 2) is governed
by the standard myopic search process illustrated in
Weitzman (1979)22. In particular, u1,1 is known, and
(1, 2)’s value is only unknown in B2. Therefore, we can
express the value of inspecting (1, 2) using Weitzman
(1979)’s reservation value. In particular, the certain equivalent that makes a consumer indifferent
between that value and costly discovering realization B2 is the value z that solves:

s =
∫ B̂

z
(B2 − z) dF (B2).

Then, the reservation value of inspecting (1, 2) when A1 is known is simply23:

r1,2 = A1 + z.

Following Weitzman (1979), the consumer would inspect (1, 2) if and only if B1 < z, or u1,1 < r1,2.
Figure 5 illustrates.

We cannot go backwards and apply the same myopic logic to the choice of inspecting (1, 1):
since the reservation value of each individual product depends on the other, we cannot apply

21Once again, this approach was inspired by the work contained in Anderson et al. (2021); I thank Daniel
Savelle for his many helpful comments.

22This intuition can be found, for example, in Ke and Lin (2022)
23Notice that this is the same utility structure studied in Choi et al. (2018)
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Pandora’s search algorithm.

Suppose however that the two products were in a bigger box, and that the consumer had to decide
whether to open one box containing both (1, 1) and another box, containing (1, 2), or nothing at
all. Following the intuition detailed in Anderson et al. (2021), opening this “compound” box,
that I refer to as X1,1, can be scored.

If the consumer opens the box, she discovers u1,1, the implied reservation value r1,2, and searches
accordingly. Since we know how search takes place inside this box, we can give a score to X1,1 that
reflects not just the value of inspecting (1, 1) but also the value of the information learned through
the possibility of correcting towards (1, 2). As shown below, this intuition can be generalized to
an arbitrary number of products. When applied to each product separately, compound boxes
generates an environment in which products sharing attributes can be appropriately scored to
reflect the information they carry.

A1

B1 B2

u1,1 r1,2
?

Figure 5: Myopic search after
inspecting (1, 1)

Notice that the consumer could also want to inspect
(1, 2) first. We can then imagine another compound
box, X1,2, containing (1, 2) and a nested box containing
(1, 1). The two are ex ante identical before either is
opened, and once one is opened, the other becomes the
smaller nested box contained in the one inspected first.
Maintaining the assumption that the consumer inspects
unknown attributes in increasing order of their index
when indifferent is still without loss of generality.

The value of a compound box. Consider the frame-
work with infinite variants available for each attribute, and therefore with infinite products to,
potentially, inspect. Let us build a compound box X1,1 around product (1, 1). From the above,
this box contains (1, 1) and infinitely many smaller boxes with all products characterized by
either A1 or B1. We must give a score to this compound box. Once X1,1 has been opened, the
consumer has learned her valuation for A1 and B1. Suppose she decided to keep searching in
this compound box by inspecting the nested boxes therein.

Suppose A1 > B1: it is clear that the consumer would choose to keep A1 and possibly search to
discover the best Bj out of the infinite many combinations available. Notice that all Bjs are
independent. As this is the standard Weitzman (1979)’s environment, we can once again apply
Pandora’s search. We know that each of the nested boxes can be assigned a score and searched
in decreasing order or said score. Since A1 is known, this environment perfectly mimics that
analyzed in Choi et al. (2018). Further, since all attributes are i.i.d., all nested boxes share the
same reservation value z satisfying:

s =
∫ ŷ

z
(y − z)dF (y),

where y represents a generic attribute. Notice that, given distribution F , z only depends on s.
As shown in Choi et al. (2018), every reachable nested box has reservation value ri,1 = A1 + z if
attribute A1 is kept, or r1,j = B1 + z if B1 is kept instead.
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Since there are infinite products, the consumer knows that she will keep opening boxes until she
finds a Bj that beats the reservation value z of all of the boxes that would follow. Therefore,
she expects to keep a product generating utility:

E[u1,j ] = A1 + E[y|y ≥ z],

where A1 > B1 is kept, and the latter is the expected valuation of an attribute that would only
be kept if larger than z. To ease the notation, I define:

ȳ ≡ E[y|y ≥ z],

which is immediately pinned down by the distribution F and search cost s through z. Notice
that this value is only valid if the consumer does not open a compound box and “backtrack”
to a previously inspected alternative: suppose that the consumer has opened compound boxes
X1,1 and X2,2, and optimally decided to inspect product (1, 2) next. When the decision is made,
the value of this product is fully known and equal to A1 + B2 − s. I show below that this
dynamic can be accounted for by updating the value of affected unopened compound boxes upon
encountering such a realization. At the beginning of the game, before any box has been opened,
this is clearly not relevant.

Further, notice that this search dynamic is only relevant if z ≥ 0, or, if s ≤ E[y]24. If search costs
are higher than E[y], the consumer would never optimally choose to inspect nested products
since it would hold:

u1,1 = A1 + B1 > max{A1, B1} + z

for any realization A1, B1. Then, if s > E[y] the effective content of a compound box is simply
the products immediately available before any inspection has taken place. For now, assume
s ≤ E[y]; the case in which s > E[y] is characterized towards the end of the section.

Suppose search has yet to start (and s ≤ E[y]). The compound box containing (1, 1) and all
nested products sharing an attribute with it can be scored. To do so, let’s decompose the possible
scenarios. If both A1, B1 are above z, clearly the consumer would not search anything else inside
the box. If only one is, say A1, she would keep that and search through the B attributes until
she finds one that beats z. The same is true if B1 is and A1 is not. What happens if both are
below z?

Since there are infinite products, the consumer would keep the highest one, say A1 without loss
of generality, and search through the various Bj until she find something to keep. Therefore,
before the compound box is opened, the consumer expects to gain from it utility equal to:

E[X1,1] =[1 − F (z)]2(ȳ + ȳ)
+ 2F (z)[1 − F (z)](ȳ + ȳ)

+ F (z)2
(

ȳ + 1
F (z)2

∫ z

0
y dF (y)2

)
,

24The knife edge case in which s = E[y] generates z = 0. In this case, a consumer would be indifferent between
keeping (1, 1) and opening nesting boxes if and only if min{A1, B1} = 0. As this is an event with probability zero,
weakness of the inequality is irrelevant.
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where the first two component reflect the expected value of both attributes being above z, either
found immediately or eventually reached; the last component, instead, is ȳ, eventually found, and
the highest of two realizations below z (and can therefore be expressed through order statistics).
Rearranging:

E[X1,1] =
[
2 − F (z)2

]
ȳ +

∫ z

−∞
y dF(2,2)(y).

Following Choi et al. (2018), we can back out the reservation value of this compound box from
the above formulation; in particular:

R1,1 = [2 − F (z)2]ȳ + F (z)2z,

where, from the standard formulation contained in Weitzman (1979), z satisfies:

s =
∫ z

z

(
y

F (z)2 − z

)
dF (y)2.

The same can be done for all compound boxes: Ri,j = [2 − F (z)2]ȳ + F (z)2z, ∀ i, j is the value
of each compound box before search starts. Notice that, because products are ex ante identical,
the value attached to each compound box must be the same. Notice also that this value is
higher than the value of inspecting any of the products in isolation: just like in the simplified
framework, the presence of uninspected alternatives sharing an attribute with a products makes
inspecting it more valuable in expectation.

With infinite boxes, the consumer would open compound boxes in decreasing order of their
index (because of the ordering assumption) and stop whenever either the highest realization or
the reservation value r of the best nested box inside of it (since upon opening a compound box
the reservation values of the nested boxes inside become visible) is higher than the reservation
value of the next compound box. With infinite boxes, the consumer never stops until he finds
something to keep. All possible combinations of values must be accounted for.

A1

A2

...

B1 B2 ...

u1,1 A1 + z

...

B1 + z

...

X1,1

A1 > B1

B1 < z

B1 > A1

A1 < z

Figure 6: Graphical representation of
optimal search inside compound box X1,1.

Notice that the value Ri,j determined above relies on the
consumer following the optimal search policy inside the
fictitious box we built around each product and depicted
in Figure 6. Further, notice that the way these boxes
were built is such that the same product is “contained”
in multiple compound boxes. This is by design: in doing
so, the value of the box can be updated following how
realizations affect the optimal search from that point
onward. In what follow, I show that the the value of all
unopened compound boxes depends non-trivially, but
predictably, on past realizations in a way that allows to
determine cut-offs that depend only on distributional
assumptions and search costs, above which the consumer
always keeps a realized attribute. Further, I show that
in this environment a consumer can rationally discard an attribute and then go back to it
depending on the search costs. Finally, I show that for s high enough the correlation between
products is immaterial, and the optimal search policy is exactly Weitzman (1979)’s search
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algorithm.

5.2. Optimal search in the general framework

Dynamic compound boxes. Before the consumer opens any box, all available products
are contained in compound boxes Xi,j with the score Ri,j characterized above. This score is
not static: since different compound boxes contain the same product, their values change as
boxes are opened. Suppose that the consumer opened compound box X1,1: she learned her
valuation for A1 and B1, and can now reach all products sharing one of those attributes through
the nested boxes with value r1,j or ri,1 inside of it. The value of opening X2,2 depends on the
realizations A1 and B1. the formulation R2,2 = [2 − F (z)2]ȳ + F (z)2z crucially depends on the
consumer not going back to either (1, 2) or (2, 1). Next, I determine when this is indeed the case
and, when it is not, what are the implications. For now, I keep the assumption that s ≤ E[y]:
towards the end of the section I detail the implications of s > E[y] for the search process.

If the consumer were to open X2,2 and decided to keep one of the two attributes, she would start
inspecting unopened nested boxes to discover her valuation for variants of the other attribute
only if it was better to do so than to go back to a product defined by either A1 or B1. In
particular, if (without loss of generality) B2 is kept, it must hold:

r2,j = z + B2 > A1 + B2 − s.

If both A1 and B1 are below z + s, search inside subsequent compound boxes follows the order
characterized above, and the value R2,2 assigned to X2,2 before search started is still valid. In this
case, the consumer would search according to standard search logic, selecting the best between
u1,1 (and stopping), r1,j (and open nested boxes characterized by A1), ri,1 (and open nested
boxes characterized by B1), and R2,2 (and discover two new attributes) to proceed. Equivalently,
if both A1 and B1 are below z + s, (1, 2) and (2, 1)’s presence inside X2,2 is immaterial: since
the consumer would never inspect them, it is as if they are not there. Figure 7 illustrates.

Suppose now that A1 ≥ z + s. If this is the case, the consumer knows that opening X2,2 would
make her back track to (1, 2) instead of inspecting (3, 2) if she wanted to keep B2. In this case,
the formulation R2,2 = [2−F (z)2]ȳ+F (z)2z is invalid and must be updated. Updating this value
requires to retrace the steps performed in the last subsection, and consider how the expected
utility of different outcomes changed with the change in the optimal search path. Suppose
A1 ≥ z + s > B1 has already been learned; suppose further that the consumer decided to open
X2,2 and discovered her valuation for A2, B2. How would she proceed?

If B2 > z, (2, 2) beats all unopened nested boxes containing a product sharing B2. Then, the
consumer would optimally choose between keeping A2 if A2 > A1 − s, or backtrack to (1, 2),
which has higher reservation value than all unopened nested boxes by construction. Instead,
if B2 < z, the consumer would always prefer opening nested boxes keeping A2 then staying at
(2, 2). She would choose to do so if and only if:

A2 + z > A1 + B2 − s ⇐⇒ A2 > A1 − s − (z − B2).

If A2 is high enough, keeping it is better than backtracking; otherwise, backtracking is still
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A2

A3
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B1 B2 B3 ...

u2,2

u1,2 − s

u2,1 − s A2 + z

...

B2 + z

...

X2,2

A2 > B2

B2 < z

B2 > A2

A2 < z

A1

A2

A3

...

B1 B2 B3 ...

u1,1

R2,2 R2,3

R3,2 R3,3

A1 + z A1 + z

B1 + z

B1 + z

...
...

...

...

...

...

Figure 7: Evolution of the search environment after inspecting (1, 1). If max{A1, B1} < z + s, they do
not affect search in unopened compound boxes (on the left). Products characterized by attributes A1 or B1

are represented by their nested equivalent; products unrelated to (1, 1) are unaffected (on the right).

preferable. Notice that these are the relevant choice only because by construction compound
boxes only contain products sharing attributes with the product around which they are built.
This is crucial to appropriately define the value of opening the compound box compared to that
of keeping a discovered attribute. From the above, after finding that A1 ≥ z + s, the reservation
value of unopened compound box X2,2 (and all other unopened compound boxes) updates to:

R̃A1
2,2 =[1 − F (z)][1 − F (A1 − s)](E[y|y ≥ A1 − s] + ȳ)+

[1 − F (z)][F (A1 − s)](A1 − s + ȳ)+
[F (z)][1 − F (A1 − s − (z − y))](E[y|y ≥ A1 − s − (z − y)] + ȳ)+

[F (z)][F (A1 − s − (z − y))]
(
A1 − s + z

)
,

where y = E[y|y < z] is the expected value of a realization lower than z, z solves:

s =
∫ z

z

(
y

F (z) − z

)
dF (y),

and apex A1 reflects the fact that A1 > z + s reroutes search towards itself.

Notice that since a product defined by A1 can be found in all unopened compound boxes, the
value of all of them update in the same way. More in general, since the highest such realization
would be the one to be selected, I identify the value of a compound box in which an attribute y

reroutes search towards itself as R̃A
i,j and R̃B

i,j if max{y ∈ A∩I} > z+s or max{y ∈ B∩I} > z+s

respectively. Figure 8 illustrates the effect of finding A1 > z + s > B1. Whenever unambiguous,
I refer to a box in which backtracking can be optimal as R̃i,j .

If a consumer finds an attribute y > z + s upon opening compound box X1,1, she will proceed
selecting the highest between u1,1 (and stop), r1,j , ri,1 (and open nested boxes), and R̃i,j (and
open compound boxes). If the latter is selected, the consumer will repeat the same choice
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Figure 8: If A1 > z + s > B2, A1 reroutes search towards itself (on the left). Since a product
characterized by A1 can be found in all unopened compound boxes, this affects the value of all of them (on

the right).

updating as necessary, and possibly backtracking to a product whose attribute she has learned
about during the search process. More importantly, assuming A1 > z + s > B1 is realized, the
consumer is indifferent between opening new compound boxes and keeping A1 if it holds:

A1 + z = R̃2,2 ⇐⇒ A1 = R̃2,2 − z.

R̃ depends non-trivially on s and on the realization y > z + s that caused the updating. A higher
search cost implies a lower threshold z (and z + s, since z decreases faster than s increases under
our distributional assumption). This, in turn, implies that relatively low realizations are enough
to trigger the updating for higher search costs. Further, it is clear that a higher realization
y > z + s increases the value of the unopened compound box, since it contains it. However, this
increment is limited by the extra search cost to be paid to reach the relevant product inside
this compound box, and the shrinking probability of finding a higher realization in the same
dimension. For a high enough realization y, it can be shown that y + z > R̃(y) always hold.

Of course, both A1 and B1 could be found to be above z + s and, depending on s and the
distributional assumption, not be jointly enough to beat the next unopened compound box.
Notice however that if this is the case the update characterized above is incorrect, as B1 beats
all unknown variants Bj just like A1 did before. The same procedure as above allows to obtain a
different updated value, R̃A,B

i,j , which becomes relevant from that point onward. With the same
calculations as above:

R̃A,B
2,2 =[1 − F (B1 − s)][1 − F (A1 − s)](E[y|y ≥ A1 − s] + E[y|y ≥ B1 − s])+

[1 − F (B1 − s)][F (A1 − s)](A1 − s + E[y|y ≥ B1 − s])+
[F (B1 − s)][1 − F (A1 − s)](E[y|y ≥ A1 − s] + B1 − s)+
[F (B1 − s)][F (A1 − s)] (max{A1, B1} − s + z̃) ,
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where z̃ solves:
s =

∫ z

z̃

(
y

F (min{A1, B1} − s) − z̃

)
dF (y).

No other forms of updating is possible.

Evolution of the search environment. Given the structure above, it is clear that keeping
a discovered attribute (or, opening nested boxes instead of the next compound box) can be
optimal only if the attribute by itself is high enough to beat the updated informational value
attached to an undiscovered alternative. Formally, it can be shown that:

Proposition 3. For any distribution F (y) and search cost s ≤ E[y], there exist a unique value
yT = max{z + s, ỹ}, where ỹ is the value that satisfies ỹ = R̃ỹ − z, such that an attribute strictly
above yT is always kept. z + s > ỹ when search costs are below some threshold 0 < s̃ < E[y]. If
s < s̃ (resp. s > s̃), yT is decreasing (resp. increasing) in s.

Proof. All calculations can be found in Appendix B. ■

The result establishes that backtracking to a previously inspected attribute can be rational if
search costs are high enough (but, for now, not higher than E[y]), that is, when ỹ > z + s. In
particular, if an attribute is high enough to beat an undiscovered substitute, but not high enough
to beat the (updated) expected value of an unopened nested box by itself, a rational consumer
would still prefer to discover two new attributes and, possibly, go back to it after finding a good
enough attribute to go with it in the other dimension. On the other hand, if search costs are low
enough, a discarded variant is never returned to, and the updating process does not bite: for s

low enough, if a realization is high enough to affect the value of subsequent boxes it is also high
enough to keep.

While apparently counter-intuitive, the result of Proposition 3 follows from the fact that the lower
s is, the higher the threshold z + s is. For small enough s, the value ỹ that solves ỹ = R̃(ỹ) − z is
lower than z + s and, therefore, is irrelevant. ỹ grows in the search cost, while z + s decreases. At
s̃, the two are equivalent, and ỹ = z + s exactly. As s keeps growing, ỹ keeps increasing and z + s

keeps decreasing: the distance between the two widens, and more realizations that change the
value of unopened compound boxes without beating them in expectation become feasible. When
this is the case, backtracking to a previously inspected attribute becomes possible provided
that the realizations that follow make that choice superior, in expectation, than inspecting two
undiscovered attributes.

Notice however that an attribute below z < y < yT could still be rationally kept if found in
conjunction with another attribute such that, together, they beat Ri,j for all unopened compound
boxes Xi,j . In other words, Proposition 3 establishes a sufficient but generally not necessary
condition for an attribute to be kept.

The updating process detailed here allows the value of unopened boxes to change depending on
past realizations in a way that maintains consistency of the search process. In particular, at any
“decision node” the value of every unopened box is pinned down by Ri,j , Ry

i,j , or RA,B
i,j depending

on the highest past realization of inspected attributes y ∈ A ∩ I and y ∈ B ∩ I. Notice that
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these scores are mutually exclusive: Define AH = max{y ∈ A ∩ I}, BH = max{y ∈ A ∩ I} the
highest past realization in A and B; then:

Ri,j =


Ri,j if max{AH , BH} < z + s,
Ry

i,j if y = max{AH , BH} > z + s > min{AH , BH},
RA,B

i,j if min{AH , BH} > z + s.

assigns the appropriate value to all compound boxes yet to inspect. Since by construction
all unopened boxes update in the same way because all compound boxes contain at least one
product characterized by every attribute available, it follows that:

Corollary 1. If it is ever optimal to inspect a product characterized by an attribute with known
realization, it is never optimal to inspect a product not characterized by it afterwards (as long as
one is available).

Proof. All calculations can be found in Appendix B ■

By tracing optimal search along discovered attributes, Ri,j reflects not only the value of the
product it represents, but that of all relevant information learned as well in terms of its
implications for the search process that would follow. Then, at every decision node of the search
process, Weitzman (1979)’s logic can be applied. While the whole search process cannot be
determined ex ante because of the learning component introduced by correlation of products, at
each decision node of the consumer there is no ambiguity regarding the value of her possible
options. The main result of this section follows:

Proposition 4. Define AH = max{y ∈ A ∩ I}, BH = max{y ∈ B ∩ I} the highest past
realization for A and B. Optimal search is characterized as follow:

• Search order: If a box is to be opened, it should be the reachable box with the highest
reservation value Ri,j or ri,j.

• Compound box selection: compound boxes are opened until all unopened compound box
has reservation value Ri,j lower than the highest realized outcome or reservation value out
of all reachable nested box.

• Stopping rule: Boxes are opened until the highest unopened (compound or nested) box
has reservation value below the highest realized outcome.

Where Ri,j = Ri,j if max{AH , BH} < z + s, Ri,j = R̃y
i,j if max{AH , BH} ≥ z + s >

min{AH , BH}, and Ri,j = R̃A,B
i,j if min{AH , BH} ≥ z + s.

Proof. All calculations can be found in Appendix B. ■

High search costs. It can be shown that the result of Proposition 4 applies generally. When
search costs are so high that inspection of an attribute by itself is not worth its cost, that is,
when s > E[y], however, a few adjustments must be made. In particular, the consumer can
never optimally inspect unknown nested products. This follows, once again, from the structure
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of the compound box. Since s > E[y] implies z < 0, any realization ui,j discovered opening a
compound box beats all the adjacent nested boxes by construction:

ui,j = Ai + Bj > max{Ai, Bj} + z.

Therefore, before any search has taken place, the value of opening a compound box must
be exactly the value of the product it represent and nothing else. Let Yi,j ≡ Ai + Bj , and
G(·) = 2 F (·) its distribution. Then, each unopened compound box can be represented by zM

that solves:
s =

∫ Ŷ =2ŷ

zM

(Y − zM ) d G(Y ).

This, however, does not mean that the value of compound boxes is static, just that searching
forward inside a compound box cannot be optimal. However, going backwards can be optimal just
like it was for lower search costs; in this case, updating is triggered by realizations y ≥ s > E[y].

It can be shown that the effect of this updating depends on the relative value of s and zM .
In particular, there exist a unique value s̄ ∈ (E[y], E[Y ]), which solves s = zM , such that for
s ≥ ȳ correlation is immaterial to the optimal search policy from an outcome standpoint. While
unopened compound boxes do update in their score following the logic detailed above, whenever
this happens (that is, when some y ≥ s ≥ s̄ is found), this realization is enough to induce the
consumer to stop and keep it. Furthermore, since s ≥ zM , the optimal search process in this
case is equivalent to that detailed in Weitzman (1979):

Corollary 2. There exist a unique value E[y] < s̄ < E[Y ] such that, for s ∈
[
s̄, E[Y ]

]
,

correlation through attributes is immaterial, and the optimal search process is equivalent to
Weitzman (1979)’s myopic search: consumers inspect uncorrelated products sequentially until a
realization Y > zM is found.

Proof. All calculations can be found in Appendix B. ■

To understand the result of Corollary 2, suppose A1 was high, B1 was low, and A1 + B1 < zM .
Suppose the consumer chose to open next X2,2. Then, the consumer would choose between:

• keeping (1, 1),

• keeping (2, 2),

• inspecting (1, 2), with known value r1,2 = u1,2 − s,

• inspecting (2, 1), with known value r2,1 = u2,1 − s,

• opening X3,3.

As it was the case for low search costs, the value of opening X2,2 must reflect the ability of the
consumer to combine A1 and B2, or B1 and A2. This gives rise to the same updating detailed
above. In particular, updating only bites when some attribute y ≥ s is found. In Appendix B, I
show that for s ∈ (E[y], s̄), this gives rise to the usual updating dynamic; in particular, in this
interval, the sufficient (but not necessary) condition for an attribute to be kept is y ≥ zM + ϵ for

31



A1

A2

...

B1 B2 ...

zM zM

...

zM

...

zM

...

...

...

...

...

A1

A2

...

B1 B2 ...

u1,1 A1 + z

...

B1 + z

...

zM

...

...

...

...

...

A1

A2

...

B1 B2 ...

u1,1 A1 + z

...

B1 + z

...

R̃2,2

...

...

...

...

...

Figure 9: Evolution of the search environment when s > E[y]. Before any inspection has taken place (on
the left), all products are scored to reflect their myopic value; after inspection of (1, 1), all unopened boxes
update to reflect the information learned. If A1 and B1 are below s, unrelated boxes are unaffected (in the

center). Otherwise, they can reroute search towards themselves (on the right).

some ϵ > 0 pinned down by G. When s ∈
[
s̄, E[Y ]

]
, instead, such updating does not bite and

the sufficient condition for a product to be kept is simply Y ≥ zM . Therefore, for high enough
search costs the optimal search policy is unaffected by correlation through shared attributes,
and is equivalent to Pandora’s algorithm.

The result echoes the high search cost case analyzed in Section 4: in the binomial case it
holds that if search costs are so high that inspection of a single attribute is not worth its cost,
correlation between products does not bite. This needs not hold in general: while for the binomial
case an attribute not good enough to be kept is always discarded, more general distributions
allow for more nuanced updating. With high enough search costs however, the condition that
leads to said updating is more stringent than the one necessary to keep a discovered attribute.
In this case, optimal search is equivalent to Weitzman (1979)’s myopic optimal policy, and only
products unknown in both attributes can be rationally inspected.

The model, then, can be used to rationalize the well known relation between the recent steady
reduction in search costs fostered by the internet and the “long-tail effect”. As Bar-Isaac et al.
(2012), among many others, argues, new and more efficient search technologies benefit fringe
products in the market, and creates incentives for new fringe products to be introduced. The
model suggests that the same is true for the variety of alternative version of the same product
that cater to diverse tastes.

5.3. Optimal pricing with infinite products

The two point distribution assumption behind the simplified framework allowed to effectively
ignore the updating dynamic that characterizes the general setting. Net of pricing effects, in
the simplified framework an attribute is always either a match, and kept, or not a match, and
discarded. The more general framework incorporates history-dependent updating that does
not allow for this kind of clear pathing. However, it resembles, mechanically, the simplified
framework. How these differences affect the seller’s strategy is the topic of this subsection.

In what follows I characterize pricing in the general model detailed above, that is, with two sets
in infinite i.i.d. attributes defining products in an infinite grid. I once again focus my attention
on the optimal strategy of a multiproduct monopolist with control over menu and pricing, and
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assume him to post prices before the representative consumer starts inspecting products.

To understand pricing in this specification, consider again the structure of a compound boxes.
The value of inspecting an unknown product depends on the expected value of the follow-up
inspections along one of the attributes the product is defined by. The structure presented
above can be readily adapted to incorporate prices. In particular, the value associated with
each product must be reduced by the posted price; this new value, then, can be used to score
compound boxes appropriately, accounting for the price of all products on the relevant search
paths. Notation-wise, price of product (i, j) is henceforth indexed by pi,j , which is the same
convention used in Section 4.

Consider the compound box X1,1 built around product (1, 1) priced at p1,1; the box contains
all products (1, j), priced at p1,j , and all products (i, 1), priced at pi,1. Suppose the consumer
opened X1,1 and decided to keep searching in it keeping attribute A1. Then, she would inspect
next the product (1, j) that satisfies:

max
j

(A1 + z − p1,j) ≥ A1 + B1 − p1,1,

where, once again, the value of inspecting any of the i.i.d. Bj attributes can be expressed by the
score z.

Three things are worth noticing: first, if p1,j is not uniform, the consumer would always select
to inspect products (1, j) in increasing order of price. Second, for X1,1 to be inspected before all
other (1, j) products, it must have been the cheapest of them. Third, if p1,1 ̸= p1,j , (1, j) would
be inspected next if and only if:

B1 ≤ z − (p1,j − p1,1) < z.

Of course, the same structure governs inspection of products (i, 1).

In principle, all products (1, j) could be priced differently. Suppose that prices where increasing
in j and always strictly below z. Then, if the consumer decided to inspect (1, 2) after discovering
A1, B1, he would expect to either keep it if it beats the reservation value of (1, 3), or keep
searching, and so on for all subsequent inspections. The total value associated with this path
given vector of prices p1,k of all products (1, k > 1) is then:

y(p1,j) =
∞∑

k=1
F (z − (p1,k+1 − p1,k))k

∫ ŷ

z−(p1,k+1−p1,k)
(y − p1,k+1) dF (y).

All compound boxes Xi,j can be scored exactly as before assuming prices increase consistently.
Define ∆i,k ≡ pi,k+1 − pi,k and ∆k,j ≡ pk+1,j − pk,j ; further, define

ȳi,k = E[y|y > z − ∆i,k], ȳk,j = E[y|y > z − ∆k,j ].
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Then:

Ri,j(pi,j) =[1 − F (z − ∆i,i+1)][1 − F (z − ∆j+1,j)](ȳi,i+1 − ȳj+1,j − pi,j)
+ [1 − F (z − ∆i,i+1)]F (z − ∆j+1,j)(ȳi,i+1 + y(pi,k))
+ F (z − ∆i,i+1)[1 − F (z − ∆j+1,j)](y(pk,j) + ȳj+1,j)

+ F (z − ∆i,i+1)F (z − ∆j+1,j)
(
zi,j + max{y(pi,k), y(pk,j)}

)
,

where zi,j is the certain equivalent of opening a box distributed according to the highest of
realizations Ai < z − ∆i,i+1 and Bi < z − ∆j+1,j at cost s.

Obtaining an equilibrium pricing vector requires studying the impact of different price com-
binations on the optimal search process. While a high price that does not make a product
never worth inspecting makes it more profitable to sell, it also pushes the product attached to
it further away from the optimal starting point of the consumer. Suppose all products were
priced a some uniform level pu and one was slightly more expensive. Then, not only the more
expensive product would have lower value in any search path in which it could be found, but
all compound boxes that contain it would also have a lower R(p) score. It follows that none
of the boxes associated with this product would ever be inspected as there are infinite better
alternative for the consumer.

Another difficulty relates to the updating described in the pages above. Attributes can still have
realizations that reroute search towards themselves, and in a way that is much more cumbersome
to keep track of when prices are accounted for. Moreover, since the relationship between R,
R̃y, and R̃A,B depends on the specific realization or realizations that triggered the update, the
updating could lead to all unopened boxes to become less valuable than they originally were,
which could lead the consumer to end his search prematurely.

Both concerns can be addressed, and the following result emerges:

Proposition 5. Consider a multiproduct seller pricing infinite products defined by two infinite
sets of i.i.d. attributes. It holds:

• there exist a unique equilibrium pricing vector,

• the equilibrium pricing vector is uniform,

• the uniform equilibrium price can be expressed as:

p∗ = λ∗Ri,j + (1 − λ∗)R̃, λ∗ ∈ [0, 1],

where R̃ ≡ min{R̃y
i,j |y=z+s, R̃A,B

i,j |A=B=z+s}.

Proof. All calculations can be found in Appendix C. ■

Proposition 5 states that the only possible equilibrium features uniform pricing that can be
expressed as a linear combination of different possible values of compound boxes. The first part
of the result follows from the same intuition that generated differential pricing equilibria in the
simplified model of Section 4. With only four products, different prices could arise specifically
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because the second product searched was generally the last one: after inspecting (1, 1), if (2, 2)
was inspected afterwards, the consumer would either purchase it or stop searching since no other
products were available to inspect. To make it worth searching, it had to be priced accordingly.

This is still true for the infinite attribute case. However, since there are infinite products available,
all compound boxes are of infinite size at the beginning of the search process. It follows that
“discounting” some products to encourage search after a bad realization is unnecessary, as the
value of inspecting products does not decrease mechanically after every inspection25.

The fact that compound boxes do not shrink by itself does not imply that products cannot be
priced differently. In principle, given the total value of a compound box Ri,j , different products
could be priced differently to capitalize on the information learned through inspection just
like it was the case for the simplified framework. In Appendix C, I show that this cannot be
optimal. The intuition is as follows: suppose that, following the intuition driving the results of
Section 4, compound box X1,1’s products were priced according to p1,1 = p for some p > 0 and
p1,j = pi,1 = p + δ for some δ > 026. Plugging in these prices in the score of the compound box,
one finds:

R1,1(p1,1) =[1 − F (z − δ)]2(2ȳδ − p)
+ 2F (z − δ)[1 − F (z − δ)](2ȳδ − (p + δ))
+ F (z − δ)2 (ȳδ + zδ − (p + δ)) ,

where ȳδ ≡ E[y|y > z − δ], and zδ solves:

s =
∫ z−δ

zδ

(
y

F (z − δ)2 − zδ

)
d F (y)2.

Studying R1,1(p1,1) reveals that any positive δ would be detrimental to the expected profit of
the seller. On one hand, the probability that the consumer finds a realization that induces her
to keep searching after inspecting (1, 1) shrinks as δ increases since F (z − δ) is decreasing in
δ. On the other hand, the participation constrain implied by the fact that the consumer must
decide to open the first box becomes tighter as δ increases.

To see why, notice that the above can be rewritten as:

R1,1(p1,1) = [2 − F (z − δ)2]yδ + F (z − δ)2zδ −
(
p + δ

[
1 − [1 − F (z − δ)]2

])
.

It is clear that no pricing such that R1,1(p1,1) < 0 can be optimal, since it would discourage
the consumer from searching. On the other hand, notice that the value of opening a compound
box net of prices is equivalent to that of opening the same box when search costs are higher,
and in particular s′ > s such that z′ = z − δ. It follows that δ > 0 makes starting the search
process less valuable, which tightens the consumer participation constraint and, therefore, how
high prices that do not discourage search can be. Since different prices tighten the consumer
participation constraint, make it, all else equal, more likely to sell at a lower price than under
uniform prices, and do not generate additional probability of trade, it is clear that a non-uniform

25A more in depth discussion about the finite number of attributes case can be found in the Extensions.
26In the Appendix, I show that if an equilibrium with differential prices exists, it must have prices following

this structure.
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pricing vector cannot be optimal.

The structure of p∗ follows from the updating dynamic detailed in the previous subsection.
Since any y ≥ z + s can change the value of all subsequent unopened boxes, and since R̃ ≡
min{R̃y

i,j |y=z+s, R̃A,B
i,j |A=B=z+s} is the lowest value any unopened compound box can ever have

at any point of the search process, any optimal price level must be between this value and
Ri,j , the highest price that does not prevent search from taking place. The former must, by
construction, lead to probability of trade taking place equal to one; the latter, instead, leads to
the lowest probability of trade sustainable in equilibrium.

To understand how different pricing levels affect expected profits of the monopolist one must
identify the expected probability of trade for any price. This is straightforward. Trade does not
happen if, after an update is triggered, the consumer prefers to stop searching rather than go on.
For this to happen, prices must be high enough, and the realization triggering the update must
be low enough, that the new reservation value of all unopened boxes is lower than the respective
price.

Formally, Define:
pλ = λRi,j + (1 − λ)R̃, λ ∈ [0, 1].

a generic candidate equilibrium price, and:

y = yλ : R̃y
i,j |y=yλ

= pλ.

The realization y that equates the updated value it triggers to its price. Since R̃y
i,j is increasing

in y, yλ must be increasing in pλ. Then, the probability of trade taking place if pu = pλ is the
probability of a realization such that the update is triggered and no available product, inspected
or uninspected, is kept or discovered. Expected profits of the monopolist pu = pλ is then:

πλ = pλ

[
1 − Pr

(
y2,2 ∈ (z + s, yλ) ∧ y1,2 < R̃y

i,j |y=yλ
− y2,2

)]
,

where y2,2 and y1,2 are the highest and lowest of two independent i.i.d. realizations, which
represent the realized utility of an inspected product.

Notice that the price increases and the probability of trade decreases in λ in ways that are
directly pinned down by F (y) and s. The equilibrium price must then be:

p∗ = pλ : λ = arg max
λ∈[0,1]

(πλ).

The discussion establishes two things. First, even with infinite products available and uniform
prices, probability of trade might not be equal to one. This follows from the updating dynamic,
which could be trigger by a good, but not good enough, realization. Second, that the number
of available products, the wideness of the menu, affects optimal pricing structure. Comparison
of the simplified and the infinite attribute framework suggest that the wider the range of
options available to the consumer, the more likely products are to be priced uniformly. Ease
of substitution generated by abundance of search options, in principle, can deter the seller
from steering consumers towards specific search paths. Conversely, a wider selection lets the
consumer obtain more bad realizations without being deterred from searching without the need
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of discounting products, which in turn suggests that the monopolist would have no incentive to
restrict the supply.

Finally, notice that the probability of trade taking place for any given price pλ is decreasing
in s. This is intuitive: the higher s is, the lower z + s is, which implies that for high search
costs more realizations can make the consumer stop searching before finding something to keep.
This suggests that, for s low enough, the monopolist has a stronger incentive to price more
aggressively. Therefore:

Corollary 3. For s low enough, in the unique equilibrium it holds pi,j = p∗ = Ri,j, ∀ (i, j), and
the expected utility of search for the consumer is equal to zero.

As search costs increase, the probability that the consumer terminate her search prematurely
increases if prices are set too high. When search costs are high enough, the monopolist has the
incentive to reduce them to increase the probability of trade, leaving some expected utility to
the consumer as a result. The observation implies that a reduction of search costs does increase
the value of search for the consumer net of prices, but allows the monopolist to extract rent
more efficiently as well.

6. Extensions

I consider a variety of extensions to the general model. In what follows, I discuss how the model
changes when the number of available attributes is finite and sketch the structure of three-
attributes compound boxes. Further, I contextualize the assumption of realized but uninspected
products require a search cost to be paid to be purchased. Finally, I discuss limitations and
directions forward.

6.1. Finite number of attributes

In the baseline model I considered an infinite number of variants for each attribute. The
advantage of this approach is that once the consumer starts searching in one direction, she
can continue to do so without ever changing until she finds something to keep, which happens
with probability one. This feature made building compound boxes reasonably straightforward.
Restricting the environment to finite sets of attributes introduces new challenges. The logic
underneath the structure of the compound boxes, and the search process itself is, however,
unchanged.

Consider a box like the one in Figure 10. This box can be scored following the same logic used
for the infinitely large boxes: if upon opening the box min{A1, B1} > z, the consumer would
stop. If max{A1, B1} > z > min{A1, B1}, the highest would be kept. If z > max{A1, B1},
the highest would be kept as well. Unlike before, we must account for the eventuality that an
attribute that beats z is never found: in this case, both variants would be inspected, and the
highest would be kept.
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Figure 10: Three products available

Further, when scoring compound boxes we must account
for the eventuality of inspecting keeping one attribute
fixed and, after exhausting all products sharing that
attribute, switching to products characterized by the
other. Consider again Figure 10, and suppose A1 and B1

both had very low realizations such that z > A1 > B1.
From the above, we know the consumer would inspect
(1, 2) next. In the infinite attributes case, the consumer
would never run out of (1, j) products to inspect. Now,
this is not the case. Would the consumer ever optimally
inspect (2, 1) next?

For this to be the case, it must be that:

B1 + z > A1 + max{B1, B2}.

If B1 > B2, this is trivially true since z > A1 > B1. Otherwise, if it holds:

B2 < z − (A1 − B1),

then the consumer would optimally inspect (2, 1) next and keep the highest of all three realizations.
This, too, needs to be accounted for when scoring unopened compound boxes.

Another difference with the infinitely large boxes of the baseline model follows from the fact
that unlike before, when compound boxes are opened and discarded, this implies that following
boxes “shrink” by one variant per attribute. Suppose X1,1 contained products characterized by
n variants of A and m − 1 variants of B. Further, suppose max{A1, B1} < z + s. Then, X2,2

would effectively contain products characterized by n − 1 variants of A and m − 1 variants of B.
Assuming consumers search in increasing order of the index27, then, the size of each subsequent
compound box Xi,i would have n + 1 − i variants of A and m + 1 − i variants of B.

The corner represent another complication. While it is clear that the value of a compound box
containing only a product and nothing else, relevant if all other options have been exhausted,
can be obtained as a standard reservation value, what happens if the box is asymmetric is less
obvious. In particular, suppose there were two variants of A and three of B. Then, after opening
two boxes sharing no attributes, all remaining products would be either known or with only
one unknown. In this case, standard Weitzman (1979) logic would once again dictate what to
inspect next.

Finally, notice that finding one or more attributes above z + s affect all subsequent boxes in
the same way as they did before: such an attribute beats all remaining unopened boxes in the
same dimension, and reroutes search towards itself in every unopened compound box. This, in
turn, allows the same exact updating detailed in the baseline model. Accounting for all of the
above translates to rather unwieldy expressions for R; both R and updating logic can be found
in Appendix D. However, the discussion above motivates the following:

27this is, to an extent, without loss of generality if we imagine each consumers to reorder the attributes according
to some private infinitesimally small taste shock; in this sense, the labeling is just an arbitrary convention since
attributes are i.i.d. by assumption.
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Corollary 4. After fixing an order of indifference (e.g.: increasing order of indices), optimal
search as defined in Proposition 4 (or Corollary 2) applies to the finite attribute case.

As a final note, notice that Corollary 4 is only valid if the grid is complete: if some combination
of attributes was not available, the compound boxes would not be ex ante identical anymore,
since some would necessarily be “larger” than others. Accounting for this additional feature
generally makes the problem exceedingly complex, and is therefore left to future reaserch.

6.2. More than two attributes

The baseline model features products defined by two attributes, A and B. In this extension I show
that the intuition of the two attributes case can be generalized to accommodate specifications
with more attributes. In particular, I obtain starting reservation values of compound boxes with
three attribute products, describe the search dynamic that the structure entails, and discuss
implications.

In the baseline model, two attribute products are scored by building fictitious boxes including
the product itself and closed boxes with all other products sharing attributes with it. The same
logic can be applied to three attribute products. The difference is that, with three attributes,
two different kinds of closed boxes must be included in the larger compound box together with
the product it represents. On one hand, all products sharing exactly one attribute with the
central product can be represented as small nested boxes equivalent to the ones contained in the
two attributes case. This follows from the same intuition: if a product shares two attributes
with the visible one, it is unknown in only one dimension after opening the compound box.

On the other hand, products that share only one attribute with the central one are unknown
in two dimensions, and must be placed in different, larger boxes. If attributes come in infinite
variants as assumed in the baseline model, the three attributes compound box contains infinite
small nested boxes and infinite larger, two-dimensional boxes equivalent to the compound boxes
of the baseline model. These “intermediate” boxes, moreover, contain infinite smaller compound
boxes as well. For visual aid, one can imagine multiple grids representing two attribute products
side by side to resemble a cube, with the intermediate boxes representing search along one of
the sides, and the small boxes representing search along one of the edges.

To score such a box, one must consider how search inside of it would proceed. In particular,
thresholds over which an attribute, or two, are kept must be defined. The problem is more
complex than in the two attributes case because we must compare different objects, small and
intermediate boxes. However, recall from Proposition 3 that each attribute can be assigned the
same threshold value yT above which it is always kept in a two dimensional box. This implies
that the optimal search inside the three attributes box depends on how many products are found
that surpass this unique threshold.

Recall that G(Y ) = 2F (y) is the cumulative distribution of the sum of two attributes. Since
F (y) is assumed to be twice-differentiable everywhere on support [0, ŷ], so is G(Y ) on support
[0, 2ŷ]. Then, we can write the reservation value of this box based knowing that:

• if three attributes are found above yT , the consumer will stop,
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Figure 11: Graphical representation of a three attribute compound box centered around (1, 1, 1).
Products that share two attributes with (1, 1, 1) can be displayed along the edges of a cube (north

for products sharing A1, B1, south-west for products sharing A1, C1, south east for products
sharing B1, C1); Products that share one attribute with (1, 1, 1) can be displayed along the sides
of the cube (north-west for products sharing only A1, north-east for products sharing only B1,

south for products sharing only C1).

• if two attributes are found above yT , small boxes will be opened next until something that
beats z is found,

• if one attributes are found above yT , intermediate boxes will be opened next until something
that beats R2 is found,

• if no such attribute is found, the highest will be kept and intermediate boxes will be opened
as well.

Notice that, mechanically, this is the same outcome anticipated by the consumer in the two
attribute case.

This directions can be used to score three attribute products just as for the two attributes one.
The added difficulty compared to the smaller case lies both in the higher number of options and
on the existence of several different thresholds determining the value of the box conditional on
different outcomes. In particular, notice that ȳ = E[Y |Y > R2] represents the expected value of
opening intermediate boxes given the first set of realizations and, therefore, follows updating
as described in the main model depending on the number of attributes found above z + s but
below yT . A more detailed analysis can be found in Appendix E as well.

As before, these are the scores of all three attribute boxes before search starts. Solving the optimal
search process from now on requires going through the same steps as before: when deciding what
to search next, the consumer compares the reservation value of unopened compound boxes with
that of past realizations and visible nested boxes. Finding attributes above certain thresholds can
make the consumer backtrack to a previously discarded option, and search can be represented in
terms of Pandora’s optimal search policy at every step.
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The discourse above hints at the major limitation of this approach: generalizing the model to
products defined by an arbitrary number of attributes requires finding the equivalent to threshold
yT for all boxes of smaller size. For example, a ten attribute product would be represented by a
box containing smaller boxes with unknown realizations in up to nine dimensions, each of which
must be characterized. Solving the three attributes case is necessary to characterize the four
attribute case, which is in turn necessary to characterize the five attributes case, and so on. A
more nuanced approach might be possible; finding out is left for future research.

6.3. Purchase without inspection

Currently, it is assumed that consumers must expend a search cost to inspect any uninspected
product. Since products in this environment share attributes, however, after inspecting multiple
products some uninspected products would be fully revealed. If search is understood as the
physical action of finding a product, this distinction does not matter. If, however, one were
to interpret search as the time and effort necessary to ascertain the quality of the match of a
product, it would be sensible to suggest that products uninspected but nonetheless known in
their realization should not need search costs to be expended. In this extension I explore the
implications of this alternative interpretation.

First, it is clear that if taking a product whose attribute have been fully independently discovered
is free, the only optimal search process would be one that involves searching new attributes
in pairs until the highest realization for each attribute is such that they, together surpass the
value of all uninspected products. Mechanically, this implies that the reservation value Ri,j or
compound boxes should account for the fact that keeping one attribute fixed and searching
along the other is never optimal. This can be achieved by modifying the way reservation values
update after each observation. In particular, the lowest realization that reroutes search towards
itself inside all unopened compound boxes is (without loss of generality) A1 > z rather than
A1 > z + s. With this change, the choice of keeping an attribute is always dominated since all
products sharing an attribute with an inspected product would be contained, at zero additional
cost, in all unopened compound boxes. The updating still takes place, but since the realization
must not be discounted by the search cost, all realizations A1 update future compound boxes to
higher values. Therefore, all else equal, yT , the threshold above which an attribute is always
kept, would need to be higher than in the baseline model when s < E[y].

The pricing game in Section 4 is also affected by this change. Remember that the price the
multiproduct monopolist can impose is restricted by the search cost and by the opportunity
of searching additional products. If the consumer would always search on the diagonal before
selecting a combination of known attributes to keep, the monopolist would have an incentive
to increase the price of all products off the diagonal to capitalize on the consumers’ ability to
correct his choice for free. Because consumers would need to be induced to start searching,
however, this also implies that the products on the diagonal would need to become cheaper too.
The change in interpretation does not affect the result qualitatively, but the mechanical change
to the search process suggests that prices would be even more dispersed in equilibrium under
this alternative interpretation of search costs.

41



6.4. Limitations and directions forward

On the Eventual Purchase Theorem Since the problem can be solved by scoring products
in a way that takes into account the relevant information each carries through the expected
search paths that they open up, one might wonder whether a version of the eventual purchase
theorem exists in this environment. The eventual purchase theorem (henceforth, EPT), first
proposed in Armstrong (2017) and Choi et al. (2018), states that the outcome of a search process
to find one out of independently distributed products can be obtained through a simple statistic.
In particular, the product i that is ultimately selected by a consumer will be the one with the
highest statistic:

Wi = min{ri, ui},

or, the highest minimum between reservation and match value of a product.

Obtaining a similar statistic in this environment comes with a few challenges. First, a product is
kept as long as it’s match value surpasses that of different objects, namely the closed compound
boxes and the closed reachable nested boxes. These objects are associated with different scores,
one reflecting the value of the implied search paths that would follow from it, one reflecting the
value of the one inspection it involves. A statistic like the one governing the EPT, then, should
account for both28.

Another difficulty is the threshold over which attributes are kept. In the main analysis I show
that an attribute is kept as long as it has realization above yT . However, this is only true for
the first attribute kept. Once this is selected, and the consumer starts looking for a variant of
the other attribute to go with it, the threshold relevant for this additional component is z rather
than yT ≥ z + s. Hence, the statistic above represents a sufficient but not necessary condition.
This change in the relevant threshold further complicates the problem.

Finally, it should be pointed out that some distributional restriction could help generate a viable
statistic. Suppose that F was such that:

R̃ < z + s < R = [2 − F (z)2]ȳ + F (z)2z,

or, such that no realization below z + s would beat a closed compound box without the updating
discussed in the main model. Intuitively, this requires s to be small enough (so that z + s > yT ),
F to be such that ȳ is sufficiently larger than z, and z to be relatively high. In this case, y ≥ z +s

would be a necessary and sufficient condition for the first attribute to be kept. Then, the relevant
thresholds would be defined by z + s and z. Further, since a consumer would search to discover
two attributes on the diagonal and adjust along rows or columns based on the realization on the
diagonal itself, the indices i, j would determine the position of a product (i, i) on the diagonal
(that would be kept if and only if its highest realization was above z + s and its lowest was above
z) and that of a product [i, j ̸= i] off the diagonal (whose attribute j > i would be kept if above
z).

If the condition above is not satisfied, however, the condition y > yT is not necessary for a
28This is clearly only true for s < s̄: as shown above, for higher search costs the optimal search process is

unaffected by correlation and, therefore, the EPT as characterized by Armstrong (2017) and Choi et al. (2018)
trivially applies in this case.
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product to be kept; in this case, the thresholds should account for the eventuality of an attribute
being discarded and then picked again, and for two attributes below yT to beat closed boxes
without updating.

Different distributions In principle, removing the assumption of attributes following the
same distribution can be accommodated. One can easily imagine a variant of the model above
in which all A attributes were i.i.d and all B attributes were too, but the two sets followed a
different distribution. This does not affect the analysis significantly. What is far more challenging
is accounting for different distributions across different variants of the same attribute in the
general framework. The reason stems from the way compound boxes are constructed: with
different distributions come different reservation values z for the same search cost s, which means
that the expected value of searching along one dimension is not straightforward to compute. A
possible solution might be to use the EPT as characterized by Armstrong (2017) and Choi et al.
(2018) to pin down said value, and the value of all other dimensions. This, too, is left open for
future research.

7. Conclusion

In this paper, I study the implications of product correlation through shared attributes for
directed search and the associated incentives of a monopolist to introduce different products and
prices to capitalize on consumer learning. The framework highlights a novel interaction between
pricing and optimal order of inspection in directed search: consumers have an incentive to find
better matches in their search process as they learn what they like. This dictates their strategy
predictably. On one hand, this allows to rethink the problem in a way that generates threshold
values of searching different available options in a way reminiscent of Weitzman (1979)’s optimal
search policy. On the other, it highlights that a multiproduct monopolist is able to profit off
the learning process by setting differential prices to let consumers self-select based on their
preferences.

It is natural to ask what would be the features of an hypothetical equilibrium with competing
firms. The results above rely strongly on the monopolist’s ability to coordinate product menu
and pricing. Restricting the supply by means of strategic de-listing would clearly not be possible
when products are introduced and priced by separate agents. Competition should lead to more
variety as a consequence. Additionally, the monopolist studied here is interested in eliciting
specific search patterns, but he is indifferent regarding which product acts as starting point.
Conditional on a certain variant being the first one visited, however, the remaining available
products do not generate the same expected profit. While this is irrelevant for a monopolist,
competing sellers would likely try to gain prominence through undercutting strategies. If an
equilibrium with competing sellers exists, it should then feature lower, uniform prices when
consumers have the same prior considered here. These observation imply that competition would
allow consumers to more freely explore the options made available in the market.

The framework’s predicted search patterns align well with recent evidence of spatial learning
in search: Hodgson and Lewis (2020) reports evidence of search for digital cameras to be
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characterized by a learning process consistent with the one model in this framework. Cameras
are identified by their unique combination of brand, pixel, zoom, and display; the authors show,
among other things, that the distance (in terms of identified attributes) between two products
inspected sequentially shrinks as the search process continues. Consumers are shown to search
to inspect a broader set of attributes early only to close in on their preferred alternatives in later
stages, getting closer and closer to the product they ultimately choose to purchase. This pattern
cannot be easily reconciled with standard search models, but is well in line with the prediction
of this framework. Further, the model can more easily rationalize the pervasive tendency of
consumers to retrace their steps while searching for products.

The implications of this model for recommendation systems and algorithmic pricing schemes has
been addressed in an earlier section. It is worth stressing out, however, that these implications
go beyond the specific market structure studied here. Coordination of menu and pricing allows
a multiproduct monopolist to induce specific search paths to arise. Equivalently, one can
imagine e-commerce platforms to do the same through manipulation of the options presented
to consumers and the information therein. This is especially true in a world in which data on
consumers’ decisions, consumption and search patterns is abundant, and algorithmic pricing and
recommendation systems are ever more effective at predicting human behavior.

From this perspective, the paper has implications for environments in which order of search
is selected by an agent different from the consumer. Inspecting different products leads to
consumers learning about different attributes. This, in turn, restricts the possible search paths
that can feasibly arise. If consumers adapt their search strategy as suggested in this model
and in line with the spatial learning described above, strategic selection of what consumers
are allowed to sampled at the beginning of their search would lead to specific products being
inspected, and others never being reached. If one agent selling a product variety could dictate
what the consumer can see, as is the case for modern e-commerce platforms, it seems clear that
he would try to induce a favorable order of search. In line with recent work on consumption
steering and self-preferencing, the model’s results suggest the need for meticulous regulatory
oversight over the algorithms determining what consumers shopping online are shown, and when.
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Appendix

A. Simplified framework: monopoly pricing

Uniform prices As in the main text, I start by assuming Ñ ≡ N and obtain equilibrium
prices for different combinations of α, s. Then, I show the optimal restriction of Ñ conditional
on the optimal prices.

The monopolist is interested in finding prices that maximize probability of trade times price.
Given expected utility of search as per Equation 1:

E[u1,1]|I≡∅ = α2 max(2 − pu, 0) − s

+ 2α(1 − α) max(1 − pu, (1 − α) max(1 − pu, 0) + α max(2 − pu, 0) − s, 0)
+ (1 − α)2 max(α2 max(2 − pu, 0) + 2α(1 − α) max(1 − pu, 0) − s, 0)

the highest prices that make consumers start search can be computed as prices that make the
expression reach a value of zero:

pD =


pM = 2α−s

α(2−α) if α ≤ s < 2α

pD
L = 2α(1+(1−α)(α−s))−s

α(2−α) if 3α2−2α3

1+2α−2α2 ≤ s < α

pD
H = 2α(α(3−2α)−(1−α)s)−s

α2(3−2α) if 0 < s < 3α2−2α3

1+2α−2α2

The highest prices that allows for inspection after a bad first realization, instead, are:

pE =

pE
L = 2α−s

α(2−α) if α2 ≤ s < 2α

pE
H = 2α2−s

α2 if 0 < s < α2

In each segment identified among the two sets of prices above, lower prices are always feasible,
as they generate positive expected utility of search. Lower prices can induce more extensive
search and higher probability of trade. Therefore, we look for profitable price reductions for
each segment in consideration.

If α ≤ s < 2α, only pM = pE
L is feasible among the candidates above. Furthermore, it can be

shown that:
α ≤ s < 2α → pM < 1

By plugging in pM in equation 1, one sees that at this prices the consumer stops and purchase if
u(a, b) ̸= 0, and is willing to search again if u1,1 = 0. It is clear that no deviation from pM can
be profitable: if prices are any higher, expected utility of search would be negative and search
would not start; if prices were any lower, no additional probability of trade would be generated.
Therefore, in this segment, pu∗ = pM .

If 3α2−2α3

1+2α−2α2 ≤ s < α, both pD
L and pE

L are feasible. Moreover, it holds pM = pE
L < pD

L for the
whole segment. Therefore, it is sufficient to compare expected profits under pE

L and pD
L . Notice
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that pD
L is such that searching again after a bad first realization is not possible. In this segment:

α2(2 − pD
L ) + 2α(1 − α)(1 − pD

L ) − s < 0

Therefore, the monopolist compares:

πE
L = (1 − (1 − α)4)pE

L

πD
I = α2(1 + 2(1 − α))pD

L

Direct comparison indicates that pD
L is selected for some combination of high α and relatively

low s:
πD

I > πE
L ⇐⇒ 4α2 − 2α

3α − 1 < s < α

pE
L is selected otherwise.

If 0 < s < 3α2−2α3

1+2α−2α2 , several distinctions must be made. First, pE
L < 1 ⇐⇒ α2 < s < α.

Therefore, for s < α2, pT = 1 becomes a feasible deviation as it is the price that maximizes
probability of trade. Further, pD

H is now a feasible price to select: it only leads to a purchase
if an inspected product is liked in both attributes, and allow for a second search after finding
one liked attribute but not after a bad first realization. pE

H also requires two attributes to be
liked by the consumer, but always allow for a follow up search. pE

H , which is always true in this
segment, only allows for a follow-up search if 0 < s < α2. This final segment must be split in
two sub-segments.

If α2 < s < 3α2−2α3

1+2α−2α2 , pE
L < 1 is always the best choice:

πE
L > πD

H = pD
H(α2(1 + 2(1 − α))

If 0 < s < α2, pE
H > pT ; the choice is between:

πT = (1 − (1 − α)4)pT

πE
H = (α2(1 + 2(1 − α) + (1 − α)2)pE

H

πD
H = (α2(1 + 2(1 − α))pD

H

Direct comparison indicates that all three pricing levels can be optimal: πT is optimal for:

min
(

3α3 − 6α2 + 2α

α − 2 ,
−α4 + 8α3 − 12α2 + 4α

2α2 − 2α − 1

)
< s < α2

πE
H is optimal for:

0 < s < min
(

3α3 − 6α2 + 2α

α − 2 ,
2α2

3

)

and α high enough. Otherwise, πD
H is optimal.

All feasible combinations of α ∈ (0, 1) and s ∈ (0, 2α) are then accounted for when restricting
the monopolist to a uniform pricing strategy.
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Differential prices It must be shown that the price deviations shown in the main text lead
to a higher expected profit. Consider pu = pE

L . As long as at this price level consumers have
a strictly positive expected utility of search, the monopolist can introduce differential prices
profitably. In particular, consider pricing such that:

p1,1 = pE
L < 1 p2,2 = pE

L < 1 p1,2 = pE
L + α − s p2,1 = pE

L + α − s

Which is valid for pE
L < 1 or, α2 < s. As shown in the main text, for s > α the consumer has

no reason to search again after finding something she likes, and indeed would lead to a lower,
rather than higher, price level for p1,2 and p2,1. In this segment (α2 < s < α), such prices lead
to strictly higher expected profits. Indeed, when the consumer starts from (1, 1) (equivalently,
(2, 2)), she only searches the more expensive product if she already knows that she likes it in
some attribute. The consumer cannot start from any other product: if she starts from the
more expensive product, her expected utility of search in this segment is negative since the she
purchases the cheaper product with higher probability if she starts from it.

Finally, the difference in prices do not induce changes in the optimal search path. To see why,
consider the optimal deviation available to the consumer on the path in which she would want
to inspect (1, 2): inspecting (2, 2) leads to utility equal to two with probability α2, and allows
to correct to (1, 2) if she learns that she likes B2 but not A2, which happens with probability
α(1 − α). The expected utility along this alternate path is equal to:

(α2(2 − pE
L ) + (α(1 − α) + (1 − α)2)(1 − pE

L ) + α(1 − α)(2 − s − (pE
L + α − s)) − s

which is lower than the expected utility of searching (1, 2) directly if s > α2. Therefore, no
deviation is possible in this segment.

If s < α2, two changes must be accounted for. First, pT is the preferred option, since pE
L > 1

does not lead to trade taking place. Further, the consumer would want to search the cheaper
(2, 2) first, since search costs are low. The monopolist can react by:

• letting the consumer do so, increase the price of (1, 2) to pT + 1 − s

• reducing the price (1, 2) to induce his preferred order of search

• removing (2, 2).

The first reaction re-establishes the equilibrium: the consumer now inspects the more expensive
product only if he knows it is the only product that leads to utility equal to two. Since this is
the case, its price can be increased, since the search process took away all uncertainty about it.
This product is purchased with probability α2(1 − α)2 and leads to expected profit:

π = (1 − (1 − α)4)pT + 2α2(1 − α)2(1 − s)

which is still a strictly higher expected profit than the respective uniform price strategy.

The second reaction also re-establishes the equilibrium: by setting a lower price for (1, 2), the
monopolist makes sure that the consumer has no incentive to deviate. Since s < α2, the baseline
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price is p = pT and the level p that prevents the deviation solves:

α(2 − p) − s = α2 + (1 − α)α(−p − s + 2) − s ⇐⇒ p = 1 + s

(1 − α

α

)
which leads to expected profits:

π = (1 − (1 − α)4)pT + 2α2(1 − α)
(

s

(1 − α

α

))

Finally, removing (2, 2) prevents the deviation from taking place at all. Since no follow-up search
in case of a bad first realization is possible without (2, 2), however, overall probability of trade
decreases. Expected profits in this case are:

π̂ = (1 − (1 − α)2)pT + 2α2(1 − α)(α − s)

By direct comparison, one finds that all three can be optimal for different values of α, s. In
particular, π̂ is optimal for α high enough, that is, for:

0 < s < min
(

3α2 + α − 2
2α2 ,

1
2
(
α2 + 3α − 2

))

π is optimal for:
max

(
α

α + 1 ,
1
2
(
α2 + 3α − 2

))
< s < α2

while π is optimal otherwise.

The same argument can be applied to the trade-off between pE
H and pD

H when 0 < s < α2. In
this segment, pE

H is such that trade only happens if the consumer learns that she likes both
attributes about a product, but the parameters encourage the consumer to search again after a
bad first realization. Here, too, the monopolist can choose an intermediate strategy between
uniform prices at pE

H and uniform prices at pD
H . Suppose the consumer inspected (1, 1) and

learned A1 = 1, B1 = 0. Then, she would want to inspect (1, 2). She does so as long as:

α(2 − p1,2) − s ≥ 0 > 1 − pE
H

which implies:
p1,2 = 2 − s

α

It can be shown that the consumer always reacts to this price level by inspecting (2, 2) instead
of (1, 2). Indeed, if 0 < s < α2

1+α , it holds:

α2 (2 − pI) + (1 − α)α
(

−
(

2 − s

α

)
− s + 2

)
− s > α

(
2 −

(
2 − s

α

))
− s = 0

Once again, the monopolist can react by allowing the deviation and further increasing p1,2 to
2 − s, reducing p1,2 to 2α3−2α2−2α−3α2s+5αs−s

(α−2)α to make the consumer search according to his
preferred order, or remove (2, 2).

Unlike in the previous case, the latter option is always optimal. When the monopolists selects
differentiated prices, then, for α high and s low the consumer has an incentive to adapt in a way
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that makes the monopolist restrict the menu of available products.

Comparison Comparison between the optimal uniform price strategy and the deviation shown
above is straightforward. First, it is trivial that whenever pu∗ = pT , all deviations are strictly
preferable: indeed, the strategy with differentiated prices preserves the total probability of trade
but generates higher profits for some positive probability. To compare the above strategy with
the other uniform prices the monopolist can optimally select, direct comparison of the profit is
sufficient. The same applies to the case in which pu∗ = pD

L and 0 < s < α2.

Two results emerge: when selecting pT as base product and the consumer does not adapt their
search strategy, this is always optimal. Second, when there is adaptation by consumer and
monopolist, those profits must be compared with the relevant uniform price in the segment, that
is, pD

H .

Direct comparison indicates that pD
H dominates different prices whenever the optimal reply of

the monopolist to the consumer adapting his search strategy is to restrict the supply. This
follows from the fact that, with different prices, consumers always search the cheapest one first.
Therefore, the only comparisons left are between πD

H and the best between π and π when p∗ = pT .
It holds:

π > πD
H ⇐⇒ α4 − 8α3 + 12α2 − 4α

2α3 − 6α2 + 4α + 1 < s < α2

π > πD
H ⇐⇒ α4 + 4α3 − 10α2 + 4α

2α4 − 4α3 + 4α2 − 2α − 1 < s < α2

Which delimit the lower right area in Figure 3 in the main text.

B. General model: search dynamic

The value of infinite compound boxes We show here how to obtain the value of unopened
compound boxes conditional on past realizations. Consider first the value of these boxes before
anything is observed. All compound boxes Xi,j contain products (i, j), readily available, [i, j′ ̸= j],
in closed boxes, and [i′ ̸= i, j], also in closed boxes.

Suppose the box was opened and Ai, Bj was observed. From the above, we can give reservation
value ri,j′ to all closed boxes containing products [i, j′ ̸= j]. Since all attributes are assumed be
i.i.d, following Choi et al. (2018):

ri,j′ = Ai + z, z : s =
∫ ȳ

z
(y − z) dF (y),

and in the same fashion:

ri′,j = Bi + z, z : s =
∫ ȳ

z
(y − z) dF (y),

Unopened boxes inside Xi,j are independent as they share no attribute by construction. Then, a
consumer would search among these alternatives following Weitzman (1979)’s optimal search
policy: the box with the highest reservation value is opened first, then the second, until a realized
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outcome is higher than all unopened boxes. From the above:

ri,j′ > ri′,j , ∀{i′, j′} ⇐⇒ Ai > Bj

Therefore, the consumer would always want to keep the highest of the two realizations and
inspect variants of the lowest one if min{Ai, Bj} < z, and stop there otherwise. Suppose (w.l.o.g.)
that Ai > z > Bj . The consumer keeps Ai and searches variants of B until she finds Bj > z to
keep. Then, in expectation, she expects to get:

Ai + [1 − F (z)]E[y|y > z] + F (z)
(

[1 − F (z)]E[y|y > z] + F (z)
(
...

or
Ai + [1 − F (z)]

∞∑
k=1

F (z)kE[y|y > z] = Ai + E[y|y > z].

The same applies if Bj is kept instead.

If min{Ai, Bj} > z, the consumer would stop and obtain Ai + Bj . If max{Ai, Bj} < z, the
highest of the two would be kept, and the consumer would expect to get:

max{Ai, Bj} + E[y|y > z].

These paths depend on whether the realizations of Ai, Bj are above or below z. Combining the
various cases:

E[Xi,j ] =[1 − F (z)]2(ȳ + ȳ)
+ 2F (z)[1 − F (z)](ȳ + ȳ)

+ F (z)2
(

ȳ + 1
F (z)2

∫ z

0
y dF (y)2

)
,

where 1
F (z)2

∫ z
0 y dF (y)2 is the expected value of the highest of two i.i.d. independent realizations,

obtained through order statistics. Then, Ri,j = [2 − F (z)2] + F (z)2z, where z is the certain
equivalent of searching a box with distribution F2,2(·) = F (·)2 with support [0, z].

We now want to characterize the value of closed boxes conditional on the past realizations.
Assuming products are inspected in increasing order of their index, inside any unopened box
Xi,j we find the product, all unopened nested boxes representing products with higher indices in
one attribute, and products that have been already discovered, with reservation value:

r(i, j′′ < j) = Ai + Bj′′ − s, r(i′′ < i, j) = Ai′′ + Bj − s,

respectively. Clearly, any of these boxes beats the unopened ones if:

Ai′′ + Bj − s > Bj + z ⇐⇒ Ai′′ > z + s,

and equivalently for B.

When one such attribute is found, the search inside future compound boxes must be updated,
since consumers will not opened unknown boxes in that dimension but go back. If only one such
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attribute (Ai′′ , w.l.o.g.)is found in previous searches:

R̃i,j =[1 − F (z)][1 − F (Ai′′ − s)](E[y|y ≥ Ai′′ − s] + ȳ)+
[1 − F (z)][F (Ai′′ − s)](Ai′′ − s + ȳ)+
[F (z)][1 − F (Ai′′ − s − (z − y))](E[y|y ≥ Ai′′ − s − (z − y)] + ȳ)+

[F (z)][F (Ai′′ − s − (z − y))]
(
Ai′′ − s + z

)
.

The first two lines refer to case in which Bj > z and either Ai > Ai′′ − s, and is therefore kept,
or Ai < Ai′′ − s, and is discarded in favor of product [i′′, j]. The second two refer to the case
in which Bj < z and either Ai is kept and search continues (if Ai > Ai′′ − s − (z − Bj))), or
discarded in favor of [i′′, j] once again. The above reflects expected values before the box is
opened just as in the first value found. Notice that this value is only relevant conditional on
finding an attribute A > z + s: the score above is valid because, at the time of relevance, Ai is
known.

Finally, if two attributes Ai′′ > z + s, Bj′′ > z + s are found, they both beat the respective sets
of closed boxes by construction. Following the same steps we obtain:

R̃A,B
i,j =[1 − F (Bj′′ − s)][1 − F (Ai′′ − s)](E[y|y ≥ Ai′′ − s] + E[y|y ≥ Bj′′ − s])+

[1 − F (Bj′′ − s)][F (Ai′′ − s)](Ai′′ − s + E[y|y ≥ Bj′′ − s])+
[F (Bj′′ − s)][1 − F (Ai′′ − s)](E[y|y ≥ Ai′′ − s] + Bj′′ − s)+
[F (Bj′′ − s)][F (Ai′′ − s)]

(
max{Ai′′ , Bj′′} − s + z̃

)
,

where z̃ solves:
s =

∫ z

z̃

(
y

F (min{Ai′′ , Bj′′} − s) − z̃

)
dF (y),

since, in expectation, the highest between Ai′′ and Bj′′ is expected to be kept if max{Ai, Bj} < z.

Notice that at any given time either no, one, or two attributes above z + s can have been found,
and that these conditions are mutually exclusive. Therefore, at any given time, only one of
these values are relevant for all boxes. If no such attribute is found, search in unopened boxes is
unchanged and, therefore, the attributes become irrelevant after being discarded; this follows
from the infinite attributes assumption, as all unopened boxes will be of infinite size no matter
how many boxes were opened beforehand. Moreover, notice that all closed compound boxes
contain exactly one product characterized by Ai′′ and one characterized by Bi′′ , so all unopened
boxes are affected in the same way, and update all in the same way at the same time. Finally,
notice that if more than one variant for the same attribute is found above z + s, the highest of
them beats all others in the follow-up searches and is, therefore, the only relevant one.

Threshold result Proposition 3 states that there exists a unique value yT = max{z + s, ỹ} ∈
(z + s, ŷ) such that an attribute found above it is always kept. In particular, this value is such
that:

yT + z ≥ R̃i,j , ỹ + z = R̃i,j ,
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for all unopened boxes. Notice that R̃i,j is the relevant one to be considered since it is the value
accounting for the attribute rerouting search towards itself in subsequent boxes. Notice also that,
because of it, the condition in Proposition 3 is sufficient but not necessary, as a lower realization
could be kept if found, for example, in an optimally inspected nested box (in which case the
lower threshold would be z < z + s).

To prove the result, we must study the shape of R̃i,j and z + s separately. Consider first z + s:
since z solves:

s =
∫ ŷ

z
(y − z) dF (y),

and since we assumed F to be well-behaved, z is continuous and decreasing in s. In particular, it
can be shown that z is convex in s and therefore decreases faster than s increases for s ∈ [0, E(y)].
z + s, then, is decreasing and such that:

lim
s→0

z + s = ŷ, lim
s→E(y)

z + s = [E(y)].

Next, we must study how the attribute that re-routs search towards itself affects R̃i,j of unopened
boxes. Remember that, after finding Ai′′ > z + s, it holds:

R̃i,j =[1 − F (z)][1 − F (Ai′′ − s)](E[y|y ≥ Ai′′ − s] + ȳ)+
[1 − F (z)][F (Ai′′ − s)](Ai′′ − s + ȳ)+
[F (z)][1 − F (Ai′′ − s − (z − y))](E[y|y ≥ Ai′′ − s − (z − y)] + ȳ)+

[F (z)][F (Ai′′ − s − (z − y))]
(
Ai′′ − s + z

)
.

First, it’s clear that R̃i,j is increasing in the realization Ai′′ > z + s: indeed, for all realizations
Ai′′ > z + s, the value of searching the next compound box in the dimension A is a linear
combination of Ai′′ > z + s and the expected value of a realization strictly above Ai′′ > z + s,
both discounted by the search cost associated with backtracking. Further, it can be shown that:

lim
s→0

R̃i,j < 2ŷ, lim
s→E(y)

R̃i,j > 2ȳ.

To show the first limit result, notice that lims→0 z = ŷ (thus, 1 − F (z) = 0), and, therefore,
lims→0 ȳ = ŷ. Further, Ai′′ > z + s implies Ai′′ = ŷ. Substituting all of the above in the
expression for R̃i,j , defining µ ≡ E[y]:

R̃i,j |s→0 =0 + 0
[1 − F (µ)](E[y|y ≥ µ] + ŷ)+
[F (µ)] (2ŷ) < 2ŷ.

The result follows: if an attribute Ai′′ > z + s is found, the following nested boxes will have
score lims→0 Ai′′ + z = 2ŷ, which beats R̃i,j of all unopened boxes.

For the second result, notice that as s goes to [E(y)], z converges to zero and, at the limit,
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F (z) = 0, and ȳ = µ. Further, Ai′′ > z + s can take any value above s. Substituting:

R̃i,j |s→ŷ =[1 − F (Ai′′ − s)](µ + E[y|y > µ])
+ F (Ai′′ − s)(µ + Ai − s)
+ 0 + 0 > 2µ > µ + z = µ = z + s.

As s increases, then, ỹ : ỹ = R̃i,j − z increases. For s low enough, ỹ < z + s and, therefore,
is irrelevant since it does not affect the value of the boxes that follow. Then, any realization
y > max{z + s, ỹ} is always kept.

Search dynamic We want to show that the structure above can be used to obtain the optimal
search policy in the spirit of Weitzman (1979). First, notice that by scoring unopened boxes
as above, all follow-up optimal searches are accounted for and contribute to the score of the
box overall. In this sense, R ∈ {R, R̃y, R̃A,B} reflects the value of searching a product and the
value of the information this inspection implies in terms of optimal follow-ups given only the
information learned with the inspection itself.

When a compound box is opened, two things happen: first, the relevant attributes are observed;
second, all nested boxes inside become reachable in their “myopic” form. On the grid, these
nested boxes substitute the compound boxes sharing an attribute with the opened one. This is
true as long as once the consumer starts opening nested boxes, she never wants to abandon the
attribute she elected to keep as per Corollary 1:

Proof. The proof of Corollary 1 is as follows: suppose at any point of the sequential search
process it is optimally selected to search a product characterized by a previously inspected
attribute. Then, it must be the case that this product is better, in expectation, than a product
sharing no attributes with any inspected products. Therefore, if such a product is inspected,
either its realization is low, and the consumer makes the same choice again, or is high, and the
consumer cannot have the incentive to inspect anything else.

From Proposition 3, after inspecting (i, j), Ai is kept and [i, j + 1] is inspected next if:

Ai + z > max{Ai + Bj , z + Bj , Ri+1,j+1}.

Since z > Bj , Ri+1,j+1 = R̃A
i+1,j+1, that is, Ai reroutes search towards itself in all unopened

compound boxes and Xi+1,j+1 in particular.

Suppose the consumer inspected [i, j +1]: Bj+1 is now known, and Ai+1 is unknown. If Bj+1 > z,
the consumer would always stop there since Ai + Bj+1 > Ai + z. Suppose that is not the case,
and that the consumer found it optimal to inspect something other than [i, j + 2].

Clearly, inspecting [i + 1, j] cannot be optimal by standard Weitzman (1979)’s logic, since
z + Bj < Ai + z. Since after inspection of [i, j + 1] Bj+1 < 1 is known, the same must apply to
[i + 1, j + 1]. Finally, all other unopened compound boxes are unaffected, since B < z < z + s

cannot trigger an update. Therefore, [i, j + 2] is the only possible optimal search.

The proof does not rely on products being characterized by two attributes. Each individual
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attribute, if kept after a search, must be strictly better than the unopened compound boxes that
follow. Since the argument applies to each attribute in isolation, it is robust to an environment
with a higher number of attributes defining products. ■

Backtracking can only be possible after discovering multiple realizations of a product. The
optimal search path with infinite product is instructed by comparison of:

• ui,j , the readily available product in the latest compound box opened,

• ri,j′ , the nested boxes that maintain Ai fixed, which if selected rules out any new attributes
A being ever inspected,

• ri,j′ , the nested boxes that maintain Bj fixed, which if selected rules out any new attributes
B being ever inspected,

• Ri′,j′ , the unopened compound boxes, the score of which reflects optimal search that
follows depending on the realization.

Assuming once again that attributes are inspected in increasing order of their index, it is clear
that only compound boxes Xi,i can be optimally opened, while all nested boxes that can be
opened have value ri,j , i ̸= j. Opening a compound box informs the consumer of ui,i, which can
be compared with both kinds of unopened boxes. if ui,i > Ri+1,i+1, either the product is kept
or nested boxes are opened. Both can happen, depending on the individual realizations of Ai

and Bi.

ui,i < Ri+1,i+1, instead, the comparison is between max{ri,i+1, ri+1,i} and Ri+1,i+1. If no
individual attribute is high enough to beat, in expectation, Ri+1,i+1, another compound box
should be optimally opened, and the same inequalities dictate the next. Otherwise, one attribute
is kept and nested boxes are opened, and no other variant of the same attribute can be discovered
as per Corollary 1. This proves the result in Proposition 4.

High search costs. We want to show that for s̄ < s ≤ E[Y ], where s̄ = zM , the optimal
search process is equivalent to a myopic search process as per Corollary 2.

First, it is straightforward to show that a consumer would not rationally inspect two products
sharing an attribute. Suppose by contradiction that that was the case. Without loss of generality,
suppose the consumer inspected product (i, j) and then chose to inspect [i, j + 1]. Then, it must
hold:

Ai + z > Ai + Bj .

Since Bj ≥ 0 and since s > E[y] → z < 0, this cannot happen. It follows that the score of any
compound box Xi,j depends only on product (i, j); Ri,j , then, is the reservation value of a box
containing an unknown realization from distribution G(Y ), which can be identified by the value
zM that solves:

s =
∫ Ŷ

zM

(Y − zM ) d G(Y ).
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Next, we show that there exist a value s̄ ∈ (E[y], E[Y ]) such that:

s̄ =
∫ Ŷ

s̄
(Y − s̄) d G(Y ).

In particular we want to show that s̄ > E[y] and s̄ < E[Y ]. The latter is true by definition
of zM . We prove the former by contradiction. Suppose s̄ = E[y]. Then, by definition of zM ,
s̄ = E[y] implies:

E[y] = −E[y] + E[y]
∫ E[y]

0
d G(Y ) +

∫ Ŷ

E[y]
Y d G(Y ).

Since it holds:
E[y|y < E[y]]

∫ E[y]

0
d G(Y ) < E[y]

∫ E[y]

0
d G(Y ),

and, by linearity of E[·]:

∫ E[y]

0
Y d G(Y ) +

∫ Ŷ

E[y]
Y d G(Y ) = E[Y ] = 2E[y],

it must hold:
E[y] < −E[y] + E[y]

∫ E[y]

0
d G(Y ) +

∫ Ŷ

E[y]
Y d G(Y ).

Therefore, if s = E[y], it holds zM > s. Further, since zM is decreasing in s, there exist a unique
value s̄ = zM .

Suppose s ∈ (E[y], s̄): it can be shown that in this case updating does affect the value of
unopened compound boxes. Consider the updating process of compound boxes described above.
A consumer would ever backtrack to a previously discovered attribute Ai if and only if Ai −s > 0.
Suppose inspection of (i, i) leads to realization Ai ≤ s > Bi ≥ 0. Then, expected gain of
inspecting [i + 1, i + 1] is:

E[ui,j ]|Ai>s>Bi = E[Bi+1] + [1 − F (Ai − s)]E[y|y > Ai − s] + G(Ai − s)(Ai − s) − s.

Suppose first Ai = s, Bi = 0. (i, i) beats the next unopened compound box if it holds:

s > E[Ai+1] + E[Bi+1] − s =
∫ Ŷ

0
Y dG(Y ) − s.

Notice that the rhs has certain equivalent equal to zM > s. Therefore, y ≥ E[y] is not a sufficient
condition for y to be kept.

Suppose now Ai = zM > s, Bi = 0. (i, i) beats the next unopened compound box if it holds:

zM > E[Bi+1] + [1 − G(Ai − s)]E[y|y > Ai − s] + G(Ai − s)(Ai − s) − s = zM + G(Ai − s)(Ai − s − E[y < Ai − s]),

which is again a contradiction. The updating increases the value of all subsequent unopened
compound boxes when y > s is found.
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Finally, suppose Ai = ŷ, Bi = 0. (i, i) beats the next unopened compound box if it holds:

ŷ > E[Bi+1] + (ŷ − s) − s,

which is satisfied since s > E[y]. Therefore, there exist a threshold value yT = zM + G(yT −
s)(yT − s − E[y|y < yT − s]) which represents a unique sufficient but not necessary condition for
y to be kept.

We can apply the same argument to prove that the opposite is true for s > s̄. In particular, since
this condition implies s > zM , y ≥ s is a sufficient condition for attribute y to be kept. Then,
y ≥ zM is necessary (by definition of zM ) and sufficient. For s > s̄ correlation is immaterial,
and the optimal search process is as described in Corollary 2.

C. General model: monopoly pricing

The proof of Proposition 5 comes in three steps. First, I show that if a non-uniform equilibrium
price vector exists, it must be such that lower uniform prices are set for exactly one product
characterizing all attributes, and higher uniform prices are set for all other products. Next,
I show that for all such price vector there exist an equivalent uniform vector that generates
the same probability of trade but leads to higher expected profits. Finally, I show that the
formulation of p∗ as per Proposition 5 is indeed optimal.

Optimal differentiated price vector Suppose the monopolist wanted to set differential
prices for his infinite products. First, it is obvious that at least one product must be prices
differently than all others. For notational clarity, I define p1 < p2 < p3 as a set of three price
levels. I show that any optimal differential price vector must be such that a set of products
sharing no attributes with each other must be priced at p1 and all other products must be priced
at either p2 or p3, but there cannot be any vector with more than two price levels.

First suppose that more than one product sharing an attribute Ai has price set at p1. The
geometry of the product space implies that there must be one attribute Bj for which the same
applies. For example, if (1, 1) and (1, 2) were priced at p1, (1, 2) and (2, 2) would also need to be.
Then, the consumer would optimally start her search process from (1, 2) since compound box
X1,2 contains the most cheap products. If the consumer then wanted to open a new compound
box, she would optimally select X3,3 and proceed along the diagonal.

If p1 is such that the consumer would want to open X1,2 but not X3,3 without updating, the
monopolist would have the incentive to set a lower p1 to all products on the diagonal and increase
the price of (1, 2); on the other hand, if the consumer is willing to open X3,3 without updating,
then p1,2 = p1 implies that with positive probability the consumer will choose to keep either A1

or B2 and purchase (1, 1) or (2, 2) at a lower price that he would have been willing to. Therefore,
the monopolist would have the incentive to increase p1,2 to re-establish the canonical order of
search. This intuition extends to any number n > 1 of products for each attribute, and to all
attributes. Therefore, at most one product per attribute can be optimally set to be cheaper
than the others.

Suppose now that a strict subset of attributes has all associated products priced at either p1 or
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p2, while all other attributes follow the pricing detailed above. If the selected price is p1, all
products with such attributes are cheaper than all others, and are therefore more valuable to the
consumer. If the consumer is willing to exhaust these products and still inspect the attributes
with differentiated prices, with positive probability the monopolist sells at a lower price than the
consumer was willing to pay. If the selected price is p2, all such attributes would be pushed to
the end of the search order and never reached since the consumer has infinite better alternatives
available29.

Finally, suppose that exactly one product per attribute is priced at p1 and all others are priced
at either p2 or p3. Suppose first that a finite subset of attributes has products priced at either p1

or p2 and all other attributes have products priced at either p1 or p3. A consumer that optimally
decides to start searching will search first the compound box or boxes in which the most cheap
products can be found. If he is willing to keep searching the boxes until only the ones with
the highest number of expensive products and stop without updating, having the latter group
cannot be optimal, and all products should belong to the former group. If the consumer is still
interested in searching, instead, all products should belong to the latter group.

Suppose now that all attributes are such that one product is priced at p1, a finite subset of
products is priced at p2 and all others are priced at p3. If the consumer optimally elected to keep
an attribute after inspecting a product priced at p1, she would select to inspect the ones priced
at p2 first. If after exhausting them she would stop, all other products should also have been
priced at p2. Otherwise, all products should have been priced at p3. The result immediately
extends to any number of price levels larger than two. The result follows.

Optimality of uniform prices Next, I show that for any vector of differential prices structured
as above, there exist an uniform price vector that preserves probability of trade and returns
strictly higher expected profit. As discussed in the main text (and detailed in the next part of
the proof), probability of trade conditional on the consumer starting to search depends on the
probability of finding realizations such that the resulting updating of unopened compound boxes
makes the consumer stop searching and not purchase anything. The highest uniform price is
such that:

Ri,j(punif ) = [2 − F (z)2]ȳ + F (z)2z − punif = 0, ∀(i, j).

Henceforth, I refer to Ri,j(punif ) and Ri,j as the initial value of compound box Xi,j with and
without prices. For any uniform price punif , probability of trade is equal to:

qunif =
[
1 − Pr

(
y2,2 ∈ (z + s, y(punif )) ∧ y1,2 < R̃y

i,j |y=y(punif ) − y2,2
)]

,

where y(punif ) : punif = R̃y
i,j |y=y(punif ) is the realization that, after triggering the update,

generates an updated value of compound boxes exactly equal to p, while y1,2, y2,2 are the first
and second order statistics of two of an i.i.d. random variable distributed according to F (y).
It’s clear that this probability is decreasing in punif : the higher punif is, the wider the range
of realizations that make the consumer stop searching. Then, we can define a generic price
punif = Ri,j − k(punif ), for some positive k, to define the expected probability of trade.

29This implies that the pricing scheme with infinite products has infinite payoff-equivalent equilibria in which
the monopolist sets a high price for all products defined by a finite subset of attributes which are never reached.
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To obtain the expected probability of trade in the differential case, we repeat the same steps for
a price vector such that pi,i = p, pi,j ̸=i = p + δ. Define Rδ = [2 − F (z − δ)2]ȳδ + F (z − δ)2zδ the
initial value of an unopened compound box with differential prices as obtained in the main text.
It holds:

Ri,j(pdiff ) = Rδ −
(
p + δ

[
1 − [1 − F (z − δ)]2

])
.

For a differential price vector to have the same probability of trade as some punif , the two price
vectors need to make the consumer stop searching for the same realizations. Therefore, defining
probability defining qdiff the probability of trade under differential prices, it holds:

qunif = qdiff ⇐⇒ Rδ −
(
p + δ

[
1 − [1 − F (z − δ)]2

])
= Ri,j − punif = k(punif ).

Notice that p + δ
[
1 − [1 − F (z − δ)]2

]
is the expected profit of the seller if a purchase takes

place: with probability [1 − F (z − δ)]2, the consumer purchases a product along the diagonal at
p, and with the remaining probability she purchases a product priced at p + δ. Equivalently,
expected profit of the seller if the purchase takes place under uniform prices is trivially equal to
punif . The condition above is equivalent to:

p + δ
[
1 − [1 − F (z − δ)]2

]
= Rδ − k.

To prove the claim, I show that Rδ < Ri,j whenever δ > 0. Remember that it holds:

Rδ =[1 − F (z − δ)]2(2ȳδ)
+ 2F (z − δ)[1 − F (z − δ)](2ȳδ)
+ F (z − δ)2 (ȳδ + zδ) .

This is equivalent to the value of opening a compound boxes Ri,j with some s′ > s under uniform
prices. In particular, define:

s′ : s′ =
∫ ŷ

z−δ
(y − (z − δ))d F (y).

Since reservation value of a single unknown attribute is decreasing in the search cost, if δ > 0 it
must be that s′ > s since z − δ < z. Since Ri,j is decreasing in s by construction, this implies
that for any δ > 0, there exists a uniform price vector that generates the same probability of
trade qunif = qdiff = q but such that expected profit conditional on trade taking place is:

punif = Ri,j |s − k(punif ) > Ri,j |s′>s = Rδ = p + δ
[
1 − [1 − F (z − δ)]2

]
,

which proves the result.

Optimal uniform prices vector Finally, I show that the formulation of p∗ as per Proposition
5 is indeed optimal. As explained above, each price level pins down the probability of trade.
The highest possible optimal price is:

p = Ri,j ,
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since if p > Ri,j , the consumer would not start searching. To find the lowest possible optimal
price, we find the price that leads to probability of trade equal to one. Since trade can only not
happen if the update of a compound box is such that the consumer does not purchase anything
and stops searching, we find the lowest possible realization after an update.

Suppose Ai = z + s, Bj < z + s is found after opening Xi,j . Then:

R̃y=z+s
i′,j′ =[1 − F (z)]2(2ȳ)+

[1 − F (z)][F (z)](z + ȳ)+
[F (z)][1 − F (y)](E[y|y ≥ y)] + ȳ)+

[F (z)][F (y)]
(
z + z

)
.

Suppose now Ai = z + s, Bj = z + s is found after opening Xi,j . Then:

R̃A,B=z+s
i′,j′ =[1 − F (z)]2(2ȳ)+

2[1 − F (z)][F (z)](z + ȳ)+
[F (z)]2 (z + z) .

While z > z always holds, the relationship between E[y|y ≥ y)] and z depends on the distribution.
If p is equal to the minimum of this too expression, pinned down by F (y), then, p is the lowest
candidate optimal price, since it returns probability of trade equal to one:

p = R̃ ≡ min{R̃y
i,j |y=z+s, R̃A,B

i,j |A=B=z+s}.

For any price p ∈ (R̃, Ri,j ], probability of trade is lower than one and can be pinned down
precisely by the price. Following the main text, define with:

pλ = λRi,j + (1 − λ)R̃, λ ∈ [0, 1].

a generic candidate equilibrium price, and:

y = yλ : R̃y
i,j |y=yλ

= pλ.

Then, probability of trade q is:[
1 − Pr

(
y2,2 ∈ (z + s, yλ) ∧ y1,2 < R̃y

i,j |y=yλ
− y2,2

)]
.

This follows from the search dynamic. Suppose a box Xi,j is opened and (W.L.O.G.) Ai ∈
(z + s, yλ) > Bi. By construction, the next closed compound box has now negative value, so the
consumer would not inspect it. We want to see when the consumer also decides to stop searching.
First, it is clear that for this to be relevant, this needs to be the first update that made the
consumer update the value of unopened boxes, since otherwise he would have already stopped
and purchased something. Therefore, internal consistency requires all previously inspected boxes
to be below pλ. The consumer then must choose between:
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• purchasing the last opened box, which happens only if Ai + Bj ≥ pλ = R̃y
i,j |y=yλ

,

• inspecting nested boxes optimally, which now have score ri,j′ = Ai + z − pλ.

The latter can be shown to never be a relevant option by contradiction. Recall that the
consumer is indifferent between keeping attribute Ai and opening the next compound box if
Ai = ỹ = R̃ỹ

i,j − z. Since at most Ai = yλ − ϵ for ϵ > 0 arbitrarily small, the highest possible
updated value R̃y

i,j = pλ − ϵ′ for ϵ′ > 0 arbitrarily small.

If Ai = ỹ, ri,j′ = R̃ỹ
i,j − pλ, but R̃ỹ

i,j − pλ > 0 requires Ai = ỹ > yλ. Therefore, inspecting nested
boxes is never an option if a realization that would make the consumer stop opening compound
boxes is found. Then, the consumer stops without purchasing anything if and only if the last
product (i, j) inspected is such that Bj < Ai ∈ (z + s, yλ) and Ai + Bj < pλ = R̃y

i,j |y=yλ
, which

is the expression for q obtained above.

Then, expected profit as a function of λ is:

πλ = pλ

[
1 − Pr

(
y2,2 ∈ (z + s, yλ) ∧ y1,2 < R̃y

i,j |y=yλ
− y2,2

)]
.

Since ∂pλ
∂λ > 0, ∂qλ

∂λ < 0, the choice of λ determines the the expected profit and, therefore:

p∗ = pλ : λ = arg max
λ∈[0,1]

(πλ)

is the optimal uniform price given distribution F (y) and search cost s.

D. Extension - Finite number of attributes

We want to show that the logic of the infinite attribute case is unaffected in the finite attribute
one. Suppose products were defined by two attributes. Suppose further that A came in n

variants, and B in m. Following the same intuition employed for the infinite attributes case, we
can build compound boxes accounting for the number of viable products that share attributes
with each.

Suppose the first box X1,1 is opened. Inside there are (1, 1), n − 1 nested products characterized
by B1, and m − 1 nested products characterized by A1. As before, it is clear that the highest
between A1, B1 would be kept. W.l.o.g., suppose A1 > B1. Then, the consumer has m − 1
possible products to inspect before running out. Suppose A1 > B1 > z: then, the consumer
would stop. Suppose instead A1 > z > B1 , the consumer expects to find:

A1 + [1 − F (z)]ȳ + [1 − F (z)]
n−1∑
k=1

ȳ + F (z)n
( 1

F (z)n

∫ z

0
y dFn,n(y)

)
.

Since at every step she will either find something above z or keep searching, and if she finds
nothing she expects to keep the highest of n realizations below z. The same is true if B1 > z > A1,
and if max{A1, B1} < z, in which case the highest would be kept. In this last case, however, it
is possible for the consumer to exhaust all (1, j) products and then optimally decide to inspect
(i, 1) products instead. As this is the more involved case, let us focus on that in isolation.

We want to back out the value of searching inside a compound box conditional on the first
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realization inside of it, u1,1 = A1 + B1 to be such that max{A1, B1} < z. Suppose first A1 > B1.
Then, the consumer would search through the m − 1 nested products characterized by A1 in
order. If she ever finds an attribute Bj that beats z, she would stop. If she does not, after
exhausting all m − 1 nested products, she might decide to start inspecting the n − 1 nested
products characterized by B1 if:

max
j∈{2,...,m}

[Bj ] < z − (A1 − B1).

This implies that with every new inspection keeping A1 fixed, with probability [1 − F (z)] the
consumer would find Bj > z and stop, with probability [F (z) − F (z − (A1 − B1))] the consumer
would keep searching but not drop A1 even if nothing above z is found, and with probability
F (z − (A1 − B1)) the consumer would still decide to inspect (i, 1) after exhausting products
(1, j). Therefore, she expects to find:

E[U1,1|z>A1>B1 ] = [1 − F (z)]
(

m−2∑
k=0

k∑
h=0

[F (z) − F (z − (A1 − B1))]hF (z)k−h

)
ȳ

+
(

m−2∑
k=0

[F (z) − F (z − (A1 − B1))]m−k−1F (z)k

)
max{ȳ(1,2), ȳ(m−k−1,m−k−1)}

+ F (z − (A1 − B1))m−1
(

[1 − F (z)]
∑ n−1∑

k=0
F (z)k(ȳ − (ȳ(2,2) − ȳ(1,2)))

+ F (z)n−1 max{ȳ(2,2) + ȳ(m−1,m−1), ȳ(1,2) + ȳ(n−1,n−1)}
)

,

where ȳ(·,·) is the expected value of the order statistic conditional over the relevant constrained
support. In the same fashion, we can obtain E[U1,1|z>B1>A1 ], which is different as long as n ≠ m.

Combining all scenarios, expected utility of opening the compound box X1,1 is:

E[U1,1] =[1 − F (z)]2(ȳ + ȳ)

[1 − F (z)]F (z)ȳ + [1 − F (z)]
n−1∑
k=1

F (z)kȳ + F (z)n
( 1

F (z)n

∫ z

0
y dFn,n(y)

)

+ [1 − F (z)]F (z)ȳ + [1 − F (z)]
m−1∑
k=1

F (z)kȳ + F (z)m
( 1

F (z)m

∫ z

0
y dFm,m(y)

)
+ F (z)2

(
z2 + 1

2E[U1,1|z>A1>B1 ] + 1
2E[U1,1|z>B1>A1 ]

)
,

where:
z2 : s =

∫ z

z2

(
y

F (z)2 − z2

)
dF2,2(y).

Suppose now that the box has been opened and the consumer found two attributes below z + s.
Then, when the consumer decides to open the next compound box, she knows she will not go
back to either A1 or B1. In practice, these products do not matter for the optimal search that
would occur inside the second box. Then, the second box has value equal to R1,1 if it had n − 1
variants of A and m − 1 variants of B inside of it. On the other hand, if one or two attributes
are found above z + s, they re-route search towards themselves in the same way they would have
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done in the infinite attribute case. In this case, the same updating takes place. Finally, notice
that if n = m, it would be possible to open n − 1 boxes and wanting to discard them all. In
this case, the reservation value of the last compound box would just be the value implied by
distribution G(Y ) = F (y) + F (y) since attributes are i.i.d.

At every step, the consumer can choose one of many options. Suppose some compound boxes on
the diagonal30 were still unopened, after opening box (i, i), the consumer chooses between:

• maxj∈{1,2,...,i}[uj,j ], the highest realized value,

• max{ri,i+1, ri+1,i}, the value of closed nested boxes,

• Ri+1,i+1, the value of the next compound box,

• maxj ̸=j′ [uj,j′ ] − s, the highest known but uninspected product for some j ̸= j′, j, j′ ≤ i.

Compared to the infinite case, two differences emerge: first, Ri+1,i+1 = Ri+1,i+1 becomes smaller
and smaller as the consumer proceeds on the diagonal if no attributes y > z + s are found. If
one is, the box still shrinks in one dimension (the one for which such attribute is not found). If
two are, boxes update to R̃A,B

i,j and become all the same “size”, since the consumer would not
explore now individual attributes in either direction. If boxes do shrink, a box explored earlier
has more value than one explored late, in expectations. Therefore, some realizations might be
too low to beat a subsequent large compound box, but large enough to beat a subsequent small
box. Notice that this was not the case in the infinite products case: a product could not be
abandoned and then recovered unless it rerouted search towards itself since, if he did not, search
inside the box would not have changed.

Thus, one must consider the outside option of the consumer. While with infinite products no
combination of attributes could be optimal to keep unless rerouting took place, it is possible
now since boxes shrink. Then, the relevant outside option of the consumer is not necessarily
the highest realization found, but rather the highest between the highest realization and the
highest realization not yet inspected, minus the search costs. This distinction was not relevant
for the infinite case, but it is for the finite one. However, since the certain equivalent of such a
product is just the known utility of the product minus its search cost, the result of Proposition
4 is unaffected.

Finally, we notice that if n ̸= m, a consumer could inspect a full diagonal and not find anything
good enough to keep. In this case, however, all realizations for the attribute with less variants
would be exhausted by construction. After the last element on the diagonal is inspected, all
products remaining will have at most one unknown component. In this case, Weitzman (1979)’s
result trivially applies.

E. Extension - More than two attributes

We are interested in extending the intuition of the main model to products defined by more than
two attributes. Suppose each product was characterized by a combination of three attributes, A,

30Once again, I assume the consumer breaks indifference by searching in increasing order of the index when
indifferent.
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B, and C, each coming in infinite variants. We want to build compound boxes around these
products. A compound box built around, for example, (1, 1, 1) will contain all products defined
by at least one between A1, B1, and C1. In particular, this box will contain:

• product (1, 1, 1), readily available,

• small nested boxes each containing one between products defined by:

– [1, 1, k], with reservation value r1,1,k = A1 + B1 + z,

– [1, j, 1], with reservation value r1,j,1 = A1 + C1 + z,

– [i, 1, 1], with reservation value ri,1,1 = B1 + C1 + z,

• “intermediate” nested boxes centered around products defined by:

– [1, j, k], with reservation value R1,j,k = A1 + Rj,k,

– [i, 1, k], with reservation value Ri,1,k = B1 + Ri,k,

– [i, j, 1], with reservation value Ri,j,1 = C1 + Ri,j ,

each containing the product readily available and small nested boxes that share one of the
two unknown attributes with it.

The logic underlying the value of opening this bigger box is the same underlying the two attributes
compound box, though the presence of multiple different objects makes it more complex. The
relevant question is: for which observations is the consumer expected to open which of the
smaller boxes contained inside the compound box?

From the two attributes case, we know that there are several relevant thresholds for each
attribute to account for. We known that an individual attribute beats all closed compound
boxes that are affected by it if above threshold max{z + s, yT }. Suppose the consumer opened
X1,1,1 and found A1 > max{z + s, yT }. Then, A1 beats all closed boxes defined by a different
variant for the A attribute. This implies that the consumer would not want to open nested boxes
(i, 1, 1) nor (i, 1, k), or (i, j, 1). Which one she would open between the remaining ones depend
on realizations B1 and C1. Since this applies for the other attributes as well, high realizations
can be resolved immediately: if all three attributes are above max{z + s, yT }, the consumer
would stop and gain 3E[y|y > max{z + s, yT }]. If exactly two attributes are, the consumer
would want to keep those two attributes and search along the third one, expecting to gain
2E[y|y > max{z + s, yT }] + E[y|y > z]. By the same logic, if only one is the consumer would
want to keep that one and open intermediate boxes instead. If none are, the highest would be
kept and intermediate boxes would be opened as well.

We know from the two attributes case that if s is high enough it holds: z + s < yT so that
some realizations are not good enough to be kept but are able to reroute search towards
the respective attribute. We must distinguish two cases: if s ≤ s̃, this cannot happen, and
all viable unopened compound boxes have unknown component of their value equivalent to
Ri,j,k = [2 − F (z)2]ȳ2 + F (z)2z2, where the subscript “2” indicates that we are referring to the
equivalent objects in the two attributes case. If s > s̃, instead, we must distinguish between
realizations that are kept and realizations that update the expected value of searching forward.
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Suppose s ≤ s̃ and define G(Y ) = 2F (y) the cumulative distribution of the sum of two attributes,
which is well defined thanks to the i.i.d. assumption. Then, expected value of opening compound
box X1,1,1 is:

E[U1,1,1] =[1 − F (z + s)]3(3ȳ3)
+ [1 − F (z + s)]2 ([F (z + s) − F (z)](2ȳ3 + E[y|z < y < z + s])
+F (z)(2ȳ3 + E[y|y > z]))
+ [1 − F (z + s)]F (z + s)2(ȳ3 + Ȳ )

+ F (z + s)3
(

Ȳ + 1
F (z + s)3

∫ z+s

0
y dF(3,3)(y)

)
,

where:
ȳ3 ≡ E[y|y > z + s], Ȳ ≡ E[Y |Y > Ri,j,k],

and the final component is the order statistic representing the expected value of the highest of
three realizations below z + s. Then:

R1,1,1 =[1 − F (z + s)]3(3ȳ3)
+ [1 − F (z + s)]2 ([F (z + s) − F (z)](2ȳ3 + E[y|z < y < z + s])
+F (z)(2ȳ3 + E[y|y > z]))
+ [1 − F (z + s)]F (z + s)2(ȳ3 + Ȳ )

+ F (z + s)3
(
Ȳ + z3

)
,

where:
z3 : s =

∫ z+s

z3

(
y

F (z + s)3 − z3

)
dF (y)3.

Suppose now that s > s̃. Now, there are realizations y ∈ (z + s, yT ) that cause an update in the
boxes they affect. This update follows the same logic of the two attributes case: an attribute in
this interval search towards itself rather than allowing for exploration of other variants in that
dimension once a variant in the other dimension is picked. In particular, once an attribute such
as this is found, the boxes affected have updated value Ri,j,k = y+R̃2 rather than Ri,j,k = y+R2,
where y is the (at that point) known attribute, and R̃2 is the value of the closed boxes with two
unknowns after a variant of one of the unknown components is found such that y ∈ (z + s, yT ).
If two such attributes are found, the update uses ˜̃R2 instead. Then, R1,1,1 must change to reflect
these possibilities:
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R1,1,1 =[1 − F (z + s)]3(3ȳ3)

+ [1 − F (z + s)]2
(

[F (z + s) − F (z)](2ȳ3 + E[y|z < y < z + s])

+ F (z)(2ȳ3 + E[y|y > z])
)

+ [1 − F (z + s)]
(

[F (yT ) − F (z + s)]2(ȳ3 + E[Y |Y > ˜̃R2])

+ [F (yT ) − F (z + s)]F (z)(2ȳ3 + E[Y |Y > R̃2])

+ F (z)2(2ȳ3 + E[Y |Y > R2])
)

+ F (z + s)3
(

z3 + [F (yT ) − F (z + s)]2(E[Y |Y > ˜̃R2])

+ [F (yT ) − F (z + s)]F (z)(E[Y |Y > R̃2]) + F (z)2(E[Y |Y > R2])
)

.

This score reflect the value of inspecting a product and then searching optimally based on
only the information learned through it, consistently with all the information available. Based
on the number of attributes found to be high enough to keep, different paths can be optimal.
Comparing search paths across different three attribute boxes, then, would lead to the same
updating dynamic highlighted for the two attribute case, and similar threshold values determining
how good a realization must be to beat the next three attribute compound box, preserving the
logic of the search process.
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