Innovation Contests with Distinct Approaches

Simon Block

University of Bonn

28.08.2023

Innovation Contests with Distinct Approaches

- Principal sets up a *contest* to induce agents to create an *innovation*.
- Principal's objective: successful innovation (not just effort).
- Common uncertainty: is innovation feasible?
- Agents engage in a race:
 - fixed quality standard
 - variable date of discovery

Distinct Approaches

Idea: There may be distinct approaches leading to the desired innovation.

Distinct Approaches

Idea: There may be distinct approaches leading to the desired innovation.

Example: Vaccines can be categorized into distinct approaches.

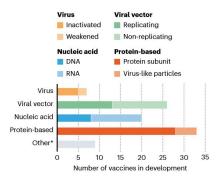


Figure 1: from "The race for coronavirus vaccines" (Ewan Callaway, nature news feature, 28.4.20)

Idea: There may be distinct approaches leading to the desired innovation.

Example: Different technologies to remove CO_2 from the atmosphere.

Figure 2: \$100M XPRIZE for a carbon removal technology (site: xprize.org)

Correlated Successes

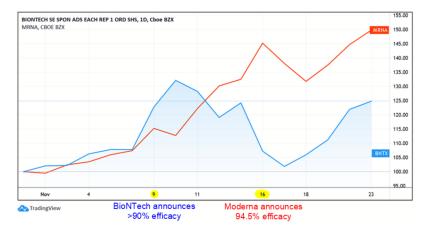


Figure 3: Stock prices BioNTech and Moderna, November 2020

- 9.Nov: Biontec ↑↑, Moderna ↑
- 16.Nov: Biontec ↓, Moderna ↑

- Viability: different costs, and probabilities of success.
- **2** Correlation of successes within approaches.
- Timing of successes: fast or slow.

- Viability: different costs, and probabilities of success.
- ② Correlation of successes within approaches.
- *Timing* of successes: fast or slow.

Main results:

• Are approach-independent contests efficient? In general not.

- Viability: different costs, and probabilities of success.
- Orrelation of successes within approaches.
- Solution Timing of successes: fast or slow.

Main results:

- Are approach-independent contests efficient? In general not.
- Why not?

Correlation of success on promising approaches; fast approaches crowding out slower approaches.

- Viability: different costs, and probabilities of success.
- ② Correlation of successes within approaches.
- *Timing* of successes: fast or slow.

Main results:

- Are approach-independent contests efficient? In general not.
- Why not?

Correlation of success on promising approaches; fast approaches crowding out slower approaches.

How to identify the efficient assignment of agents to approaches?
 With a greedy algorithm if costs are equal.

- Viability: different costs, and probabilities of success.
- Orrelation of successes within approaches.
- Timing of successes: fast or slow.

Main results:

- Are approach-independent contests efficient? In general not.
- Why not?

Correlation of success on promising approaches; fast approaches crowding out slower approaches.

- How to identify the efficient assignment of agents to approaches?
 With a greedy algorithm if costs are equal.
- How can a desired behavior be implemented? Contest with approach-specific prizes.

Innovation contests:

Halac, Kartik and Liu (2017), Choi (1991), Malueg and Tsutsui (1997) and many others

• Contests with distinct approaches: Letina (2016), Letina and Schmutzler (2019), Akcigit and Liu (2016), Cabral (2001) and others

Portfolio choice theory: Chade and Smith (2006), Olszewski and Vohra (2016), Shorrer (2019)

- *N* identical, risk-neutral agents; 2 Periods.
- *K* distinct approaches $\{a_1, ..., a_K\} =: \mathcal{A}$.
- Unobservable state of the world: $(\theta_{a_1}, ..., \theta_{a_K}) \in {\text{Good}, \text{Bad}}^K$.

- *N* identical, risk-neutral agents; 2 Periods.
- *K* distinct approaches $\{a_1, ..., a_K\} =: \mathcal{A}$.
- Unobservable state of the world: $(\theta_{a_1}, ..., \theta_{a_K}) \in {\text{Good}, \text{Bad}}^K$.
- $\theta_{a_1}, ..., \theta_{a_K}$ independent, common prior:

$$P_a \coloneqq \mathbb{P}\left(heta_a = \mathsf{Good}
ight) \quad ext{for all } a \in \mathcal{A}.$$

• Approach $a \in \mathcal{A}$ described by:

 $(\lambda_{a,1}, c_{a,1}), (\lambda_{a,2}, c_{a,2}).$

- *N* identical, risk-neutral agents; 2 Periods.
- *K* distinct approaches $\{a_1, ..., a_K\} =: \mathcal{A}$.
- Unobservable state of the world: (θ_{a1},...,θ_{aK}) ∈ {Good, Bad}^K.
- $\theta_{a_1}, ..., \theta_{a_K}$ independent, common prior:

$$P_a \coloneqq \mathbb{P}(\theta_a = \text{Good}) \quad \text{for all } a \in \mathcal{A}.$$

• Approach $a \in \mathcal{A}$ described by:

$$(\lambda_{a,1}, c_{a,1}), (\lambda_{a,2}, c_{a,2}).$$

Period 1:

- Each agent chooses
 - to follow an approach $a \in \mathcal{A}$,
 - or to abstain.
- **2** All agents following $a \in \mathcal{A}$
 - incur cost *c*_{a,1},
 - succeed with prob. $\lambda_{a,1}$ if $\theta_a = \text{Good}$.

- N identical, risk-neutral agents; 2 Periods.
- K distinct approaches $\{a_1, ..., a_K\} =: \mathcal{A}$.
- Unobservable state of the world: $(\theta_{a_1}, ..., \theta_{a_K}) \in {\text{Good}, \text{Bad}}^K$.
- $\theta_{\mathbf{a}_1},...,\theta_{\mathbf{a}_K}$ independent, common prior:

$$P_a \coloneqq \mathbb{P}\left(heta_a = \mathsf{Good}
ight) \quad ext{for all } a \in \mathcal{A}.$$

• Approach $a \in \mathcal{A}$ described by:

$$(\lambda_{a,1}, c_{a,1}), (\lambda_{a,2}, c_{a,2}).$$

Period 2:

Period 1:

Each agent chooses

- to follow an approach $a \in \mathcal{A}$,
- or to abstain.
- 2 All agents following $a \in \mathcal{A}$
 - incur cost c_{a,1},
 - succeed with prob. $\lambda_{a,1}$ if $\theta_a = \text{Good}$.

Each remaining agent chooses

- to continue following a,
- or to quit.
- **2** All agents following $a \in A$
 - incur cost c_{a,2},
 - succeed with prob. $\lambda_{a,2}$ if $\theta_a = \text{Good}$.

- N identical, risk-neutral agents; 2 Periods.
- K distinct approaches $\{a_1, ..., a_K\} =: \mathcal{A}$.
- Unobservable state of the world: $(\theta_{a_1}, ..., \theta_{a_K}) \in {\text{Good}, \text{Bad}}^K$.
- $\theta_{\mathbf{a}_1},...,\theta_{\mathbf{a}_K}$ independent, common prior:

$$P_a \coloneqq \mathbb{P}\left(heta_a = \mathsf{Good}
ight) \quad ext{for all } a \in \mathcal{A}.$$

• Approach $a \in \mathcal{A}$ described by:

$$(\lambda_{a,1}, c_{a,1}), (\lambda_{a,2}, c_{a,2}).$$

Period 2:

Period 1:

- Each agent chooses
 - to follow an approach $a \in \mathcal{A}$,
 - or to abstain.
- **2** All agents following $a \in A$
 - incur cost c_{a,1},
 - succeed with prob. $\lambda_{a,1}$

if $\theta_a = \text{Good}$.

• Actions and successes publicly observed.

- Each remaining agent chooses
 - to continue following a,
 - or to quit.
- **2** All agents following $a \in A$
 - incur cost c_{a,2},
 - succeed with prob. $\lambda_{a,2}$ if $\theta_a = \text{Good}$.

• Principal:

- valuation v for first success, 0 for subsequent,
- cares about the rewards she has to pay, risk-neutral,
- selects a *contest* before period 1.

• Principal:

- valuation v for first success, 0 for subsequent,
- cares about the rewards she has to pay, risk-neutral,
- selects a *contest* before period 1.
- **Contest**: reward function $w : \mathcal{H} \to \mathbb{R}^N_{\geq 0}$, that
 - is anonymous,
 - only rewards successful agents.

• Principal:

- valuation v for first success, 0 for subsequent,
- cares about the rewards she has to pay, risk-neutral,
- selects a *contest* before period 1.
- **Contest**: reward function $w : \mathcal{H} \to \mathbb{R}^N_{\geq 0}$, that
 - is anonymous,
 - only rewards successful agents.

• Equilibrium:

- Perfect Bayesian equilibrium in pure strategies,
- potentially asymmetric.

- Notation: for all $a \in \mathcal{A}$,
 - $P_a := \mathbb{P}(\theta_a = \text{Good}),$
 - $\lambda_a \coloneqq \lambda_{a,1} \coloneqq \mathbb{P}$ ("*i* succeds by following a" $|\theta_a = \text{Good}$),
 - $c_a \coloneqq c_{a,1} \to \text{cost of following a.}$

- Notation: for all $a \in \mathcal{A}$,
 - $P_a := \mathbb{P}(\theta_a = \text{Good}),$
 - $\lambda_a \coloneqq \lambda_{a,1} \coloneqq \mathbb{P}($ "*i* succeds by following *a*" $|\theta_a = \text{Good})$,
 - $c_a \coloneqq c_{a,1} \to \text{cost of following a.}$
- Unconditional probability of success: $P_a\lambda_a$

- Notation: for all $a \in \mathcal{A}$,
 - $P_a := \mathbb{P}(\theta_a = \text{Good}),$
 - $\lambda_a \coloneqq \lambda_{a,1} \coloneqq \mathbb{P}($ "*i* succeds by following *a*" $|\theta_a = \text{Good})$,
 - $c_a \coloneqq c_{a,1} \to \text{cost of following a.}$
- Unconditional probability of success: $P_a \lambda_a$
- Correlation of successes within approach:

$$egin{aligned} &
ho_{a} = \textit{Corr}ig(\mathbbm{1}_{\{i \text{ succeeds on }a\}}, \mathbbm{1}_{\{j \text{ succeeds on }a\}}ig) \ &= 1 - rac{1-\lambda_{a}}{1-P_{a}\lambda_{a}}. \end{aligned}$$

- Notation: for all $a \in \mathcal{A}$,
 - $P_a := \mathbb{P}(\theta_a = \text{Good}),$
 - $\lambda_a \coloneqq \lambda_{a,1} \coloneqq \mathbb{P}($ "*i* succeds by following *a*" $|\theta_a = \text{Good})$,
 - $c_a \coloneqq c_{a,1} \to \text{cost of following } a$.
- Unconditional probability of success: $P_a\lambda_a$
- Correlation of successes within approach:

$$egin{aligned} &
ho_{a} = \textit{Corr}ig(\mathbbm{1}_{\{ \text{i succeeds on }a\}}, \mathbbm{1}_{\{ \text{j succeeds on }a\}}ig) \ &= 1 - rac{1-\lambda_{a}}{1-P_{a}\lambda_{a}}. \end{aligned}$$

• Holding $P_a\lambda_a$ fixed:

• Extremes:

- $\lambda_a \uparrow \Longrightarrow \rho_a \uparrow$
- $P_a \uparrow \Longrightarrow \lambda_a \downarrow \Longrightarrow \rho_a \downarrow$

- $\lambda_a = 1 \implies \rho_a = 1$
- $P_a = 1 \implies \rho_a = 0$

Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large v, large approach-independent prize w

Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large v, large approach-independent prize w

Suppose agent 1 follows A:

• Best reply of 2?

Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large v, large approach-independent prize w

Suppose agent 1 follows A:

• Best reply of 2? Also follow A!

Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large v, large approach-independent prize w

Suppose agent 1 follows A:

- Best reply of 2? Also follow A!
- Efficient action of 2?

Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large v, large approach-independent prize w

Suppose agent 1 follows A:

- Best reply of 2? Also follow A!
- Efficient action of 2? Depends on correlation: follow A iff

 $P_B\lambda_B(1-P_A\lambda_A) \leq P_A\lambda_A(1-\lambda_A) \iff \lambda_A \leq \frac{7}{8}$

Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large v, large approach-independent prize w

Suppose agent 1 follows A:

- Best reply of 2? Also follow A!
- Efficient action of 2? Depends on correlation: follow A iff

$$P_B\lambda_B(1-P_A\lambda_A) \le P_A\lambda_A(1-\lambda_A) \iff \lambda_A \le \frac{7}{8}$$

Insight

An approach-independent contest may induce inefficient equilibrium behavior.

Efficient Assignment

Proposition 1

If all approaches have equal costs, then a greedy algorithm that

- always adds the approach with the highest marginal benefit,
- until no approach has a positive marginal benefit,
- or until all agents are assigned

identifies the social optimum.

Pseudo marginal social benefit: Denote by $mb_{a,i}(\pi)$ the *hypothetical* marginal social benefit of

an additional agent following a,

conditional on i failures on a, and

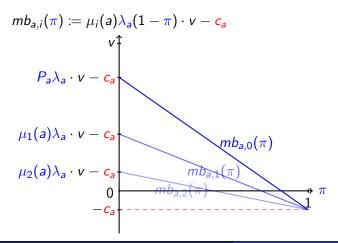
given that some other agent will succeed with probability π .

Pseudo marginal social benefit: Denote by $mb_{a,i}(\pi)$ the hypothetical marginal social benefit of

an additional agent following a,

conditional on *i* failures on *a*, and

given that some other agent will succeed with probability π .

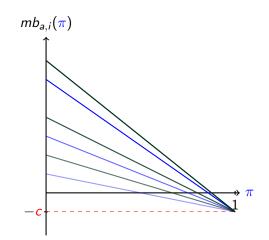


Pseudo marginal social benefit: Denote by $mb_{a,i}(\pi)$ the *hypothetical* marginal social benefit of

an additional agent following a,

conditional on *i* failures on *a*, and

given that some other agent will succeed with probability π .



Proposition 2

If $c_a > 0$ and $P_a \lambda_a > 0$ for all approaches, then

the principal can **uniquely**^{*a*} implement **any** action profile, and extract (almost) the entire social surplus at the same time, by selecting suitable approach-specific prizes $w_{a_1}, ..., w_{a_k}$.

^aexcluding permutations

Proposition 2

If $c_a > 0$ and $P_a \lambda_a > 0$ for all approaches, then

the principal can **uniquely**^{*a*} implement **any** action profile, and extract (almost) the entire social surplus at the same time, by selecting suitable approach-specific prizes $w_{a_1}, ..., w_{a_k}$.

^aexcluding permutations

$$w_a := rac{\#(ext{agents the principal wants to follow a})}{\mathbb{P}(ext{ "At least one of these agents succeeds"})}(c_a + \varepsilon)$$

Proposition 2

If $c_a > 0$ and $P_a \lambda_a > 0$ for all approaches, then

the principal can **uniquely**^{*a*} implement **any** action profile, and extract (almost) the entire social surplus at the same time, by selecting suitable approach-specific prizes $w_{a_1}, ..., w_{a_k}$.

^aexcluding permutations

$$w_a \coloneqq \frac{\#(\text{agents the principal wants to follow a})}{\mathbb{P}(\text{``At least one of these agents succeeds''})}(c_a + \varepsilon)$$

Corollary

It is optimal for the principal to implement the social optimum.

Example 2

- Approach-independent prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

Example 2

- Approach-independent prize w
- Two agents 1 and 2

В

• Two approaches A and B: $P_A = P_B = 1$,

$$A \text{ is faster: } (\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = (\frac{1}{2}, c), (0, 0),$$

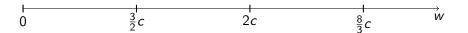
is more effective: $(\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), (\frac{2}{3}, 0).$

Example 2

- Approach-independent prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

A is faster:
$$(\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = (\frac{1}{2}, c), (0, 0),$$

B is more effective: $(\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), (\frac{2}{3}, 0).$

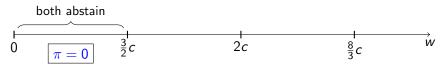


Example 2

- Approach-independent prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

A is faster:
$$(\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = (\frac{1}{2}, c), (0, 0),$$

B is more effective: $(\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), (\frac{2}{3}, 0).$

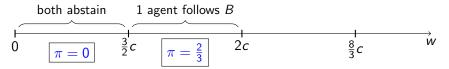


Example 2

- Approach-independent prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

A is faster:
$$(\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = (\frac{1}{2}, c), (0, 0),$$

B is more effective: $(\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), (\frac{2}{3}, 0).$

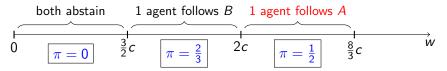


Example 2

- Approach-independent prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

A is faster:
$$(\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = (\frac{1}{2}, c), (0, 0),$$

B is more effective: $(\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), (\frac{2}{3}, 0).$

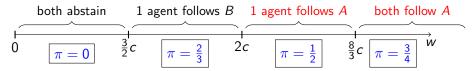


Example 2

- Approach-independent prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

A is faster:
$$(\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = (\frac{1}{2}, c), (0, 0),$$

B is more effective: $(\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), (\frac{2}{3}, 0).$



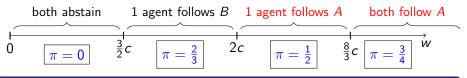
Example 2

- Approach-independent prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

A is faster:
$$(\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = (\frac{1}{2}, c), (0, 0),$$

B is more effective: $(\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), (\frac{2}{3}, 0).$

Equilibria for varying w:



Insights

- Increasing w can cause decrease in probability of success. (crowding-out)

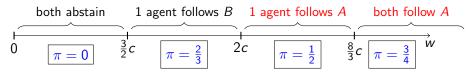
Example 2

- Approach-independent prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

A is faster:
$$(\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = (\frac{1}{2}, c), (0, 0),$$

B is more effective: $(\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), (\frac{2}{3}, 0).$

Equilibria for varying w:



Insights

- Increasing w can cause decrease in probability of success. (crowding-out)
- Even for large w, equilibrium behavior can be inefficient.

- Approach-independent contests are potentially inefficient. Possible causes:
 - High correlation on most viable approaches.
 - Orowding-out effect.
- When costs are equal, a greedy algorithm determines the efficient assignment. (Otherwise this is a hard problem.)
- Approach-specific prizes: strong tool to implement desired behavior in the static case. (Can be extended to dynamic setting if v and N are large enough.)