Innovation Contests with Distinct Approaches

Simon Block

University of Bonn

28.08.2023
Innovation Contests

- Principal sets up a contest to induce agents to create an innovation.
- Principal’s objective: successful innovation (not just effort).
- Common uncertainty: is innovation feasible?
- Agents engage in a race:
 - fixed quality standard
 - variable date of discovery
Idea: There may be distinct approaches leading to the desired innovation.
Distinct Approaches

Idea: There may be distinct approaches leading to the desired innovation.

Example: Vaccines can be categorized into distinct approaches.

Figure 1: *from "The race for coronavirus vaccines"* (Ewan Callaway, nature news feature, 28.4.20)
Distinct Approaches

Idea: There may be distinct approaches leading to the desired innovation.

Example: Different technologies to remove CO_2 from the atmosphere.

Figure 2: $100M XPRIZE for a carbon removal technology (site: xprize.org)
Correlated Successes

Figure 3: Stock prices BioNTech and Moderna, November 2020

- **9 Nov**: Biontec ↑↑, Moderna ↑
- **16 Nov**: Biontec ↓, Moderna ↑
How do approaches differ?

1. *Viability*: different costs, and probabilities of success.
2. *Correlation* of successes within approaches.

Main results: Are approach-independent contests efficient? In general not. Why not? Correlation of success on promising approaches; fast approaches crowding out slower approaches. How to identify the efficient assignment of agents to approaches? With a greedy algorithm if costs are equal. How can a desired behavior be implemented? Contest with approach-specific prizes.
How do approaches differ?

1. Viability: different costs, and probabilities of success.
2. Correlation of successes within approaches.
3. Timing of successes: fast or slow.

Main results:

- Are approach-independent contests efficient?
 In general not.
How do approaches differ?

1. **Viability**: different costs, and probabilities of success.
2. **Correlation** of successes within approaches.
3. **Timing** of successes: fast or slow.

Main results:

- *Are approach-independent contests efficient?*
 - In general not.
- *Why not?*
 - Correlation of success on promising approaches; fast approaches crowding out slower approaches.
How do approaches differ?

1. **Viability**: different costs, and probabilities of success.
2. **Correlation** of successes within approaches.
3. **Timing** of successes: fast or slow.

Main results:

- **Are approach-independent contests efficient?**
 - In general not.
- **Why not?**
 - Correlation of success on promising approaches; fast approaches crowding out slower approaches.
- **How to identify the efficient assignment of agents to approaches?**
 - With a greedy algorithm if costs are equal.
How do approaches differ?

1. *Viability*: different costs, and probabilities of success.
2. *Correlation* of successes within approaches.

Main results:

- *Are approach-independent contests efficient?*
 - In general not.
- *Why not?*
 - Correlation of success on promising approaches; fast approaches crowding out slower approaches.
- *How to identify the efficient assignment of agents to approaches?*
 - With a greedy algorithm if costs are equal.
- *How can a desired behavior be implemented?*
 - Contest with approach-specific prizes.
Related Literature

Model: Agents and Approaches

- N identical, risk-neutral agents; 2 Periods.
- K distinct approaches $\{a_1, ..., a_K\} =: \mathcal{A}$.
- Unobservable state of the world: $(\theta_{a_1}, ..., \theta_{a_K}) \in \{\text{Good, Bad}\}^K$.

Actions and successes publicly observed.
Model: Agents and Approaches

- N identical, risk-neutral agents; 2 Periods.
- K distinct approaches $\{a_1, ..., a_K\} =: \mathcal{A}$.
- Unobservable state of the world: $(\theta_{a_1}, ..., \theta_{a_K}) \in \{\text{Good, Bad}\}^K$.
- $\theta_{a_1}, ..., \theta_{a_K}$ independent, common prior:
 \[P_a := \mathbb{P}(\theta_a = \text{Good}) \quad \text{for all} \quad a \in \mathcal{A}. \]
- Approach $a \in \mathcal{A}$ described by:
 \[(\lambda_{a,1}, c_{a,1}), (\lambda_{a,2}, c_{a,2}). \]
Model: Agents and Approaches

- N identical, risk-neutral agents; 2 Periods.
- K distinct approaches $\{a_1, \ldots, a_K\} =: \mathcal{A}$.
- Unobservable state of the world: $(\theta_{a_1}, \ldots, \theta_{a_K}) \in \{\text{Good, Bad}\}^K$.
- $\theta_{a_1}, \ldots, \theta_{a_K}$ independent, common prior:

 $$P_a := \mathbb{P}(\theta_a = \text{Good}) \quad \text{for all } a \in \mathcal{A}.$$

- Approach $a \in \mathcal{A}$ described by:

 $$\left(\lambda_{a,1}, c_{a,1}\right), \left(\lambda_{a,2}, c_{a,2}\right).$$

Period 1:

1. Each agent chooses
 - to follow an approach $a \in \mathcal{A}$,
 - or to abstain.

2. All agents following $a \in \mathcal{A}$
 - incur cost $c_{a,1}$,
 - succeed with prob. $\lambda_{a,1}$
 - if $\theta_a = \text{Good}$.

Innovation Contests with Distinct Approaches
Model: Agents and Approaches

- \(N \) identical, risk-neutral agents; 2 Periods.
- \(K \) distinct approaches \(\{a_1, \ldots, a_K\} =: \mathcal{A} \).
- Unobservable state of the world: \((\theta_{a_1}, \ldots, \theta_{a_K}) \in \{\text{Good, Bad}\}^K \).
- \(\theta_{a_1}, \ldots, \theta_{a_K} \) independent, common prior:
 \[P_a := \mathbb{P}(\theta_a = \text{Good}) \quad \text{for all } a \in \mathcal{A}. \]
- Approach \(a \in \mathcal{A} \) described by:
 \((\lambda_{a,1}, c_{a,1}), (\lambda_{a,2}, c_{a,2}). \)

Period 1:

1. Each agent chooses
 - to follow an approach \(a \in \mathcal{A} \),
 - or to abstain.
2. All agents following \(a \in \mathcal{A} \)
 - incur cost \(c_{a,1} \),
 - succeed with prob. \(\lambda_{a,1} \)
 - if \(\theta_a = \text{Good} \).

Period 2:

1. Each remaining agent chooses
 - to continue following \(a \),
 - or to quit.
2. All agents following \(a \in \mathcal{A} \)
 - incur cost \(c_{a,2} \),
 - succeed with prob. \(\lambda_{a,2} \)
 - if \(\theta_a = \text{Good} \).
Model: Agents and Approaches

- N identical, risk-neutral agents; 2 Periods.
- K distinct approaches $\{a_1, \ldots, a_K\} =: A$.
- Unobservable state of the world: $(\theta_{a_1}, \ldots, \theta_{a_K}) \in \{\text{Good, Bad}\}^K$.
- $\theta_{a_1}, \ldots, \theta_{a_K}$ independent, common prior:
 \[P_a := \mathbb{P}(\theta_a = \text{Good}) \quad \text{for all } a \in A. \]
- Approach $a \in A$ described by:
 \[(\lambda_{a,1}, c_{a,1}), (\lambda_{a,2}, c_{a,2}). \]

Period 1:
1. Each agent chooses
 - to follow an approach $a \in A$,
 - or to abstain.
2. All agents following $a \in A$
 - incur cost $c_{a,1}$,
 - succeed with prob. $\lambda_{a,1}$ if $\theta_a = \text{Good}$.
 - Actions and successes publicly observed.

Period 2:
1. Each remaining agent chooses
 - to continue following a,
 - or to quit.
2. All agents following $a \in A$
 - incur cost $c_{a,2}$,
 - succeed with prob. $\lambda_{a,2}$ if $\theta_a = \text{Good}$.
Model: Principal and Contests

- **Principal:**
 - valuation v for first success, 0 for subsequent,
 - cares about the rewards she has to pay, risk-neutral,
 - selects a *contest* before period 1.
Model: Principal and Contests

- **Principal:**
 - valuation v for first success, 0 for subsequent,
 - cares about the rewards she has to pay, risk-neutral,
 - selects a *contest* before period 1.

- **Contest:** reward function $w : \mathcal{H} \rightarrow \mathbb{R}^N_{\geq 0}$, that
 1. is anonymous,
 2. only rewards successful agents.
Model: Principal and Contests

- **Principal:**
 - valuation v for first success, 0 for subsequent,
 - cares about the rewards she has to pay, risk-neutral,
 - selects a contest before period 1.

- **Contest:** reward function $w : \mathcal{H} \rightarrow \mathbb{R}^N_{\geq 0}$, that
 - is anonymous,
 - only rewards successful agents.

- **Equilibrium:**
 - Perfect Bayesian equilibrium in pure strategies,
 - potentially asymmetric.
Static Case \([\lambda_{a,2} = 0]\)

- Notation: for all \(a \in A\),
 - \(P_a := \mathbb{P}(\theta_a = \text{Good})\),
 - \(\lambda_a := \lambda_{a,1} := \mathbb{P}(\text{"i succeeds by following } a\text{"} | \theta_a = \text{Good})\),
 - \(c_a := c_{a,1} \rightarrow \text{cost of following } a\).
Static Case \([\lambda_{a,2} = 0]\)

- **Notation:** for all \(a \in A\),
 - \(P_a := \mathbb{P}(\theta_a = \text{Good})\),
 - \(\lambda_a := \lambda_{a,1} := \mathbb{P}(\text{"i succeeds by following } a\text{" } | \theta_a = \text{Good})\),
 - \(c_a := c_{a,1} \rightarrow \text{cost of following } a\).

- **Unconditional probability of success:** \(P_a \lambda_a\)
Static Case \([\lambda_{a,2} = 0]\)

- Notation: for all \(a \in \mathcal{A}\),
 - \(P_a := \mathbb{P}(\theta_a = \text{Good})\),
 - \(\lambda_a := \lambda_{a,1} := \mathbb{P}(\text{“}i\text{ succeeds by following \(a\)”}|\theta_a = \text{Good})\),
 - \(c_a := c_{a,1} \rightarrow \text{cost of following \(a\)}.

- Unconditional probability of success: \(P_a \lambda_a\)

- Correlation of successes within approach:
 \[
 \rho_a = \text{Corr}(\mathbb{1}_{\{i\text{ succeeds on \(a\)}\}}, \mathbb{1}_{\{j\text{ succeeds on \(a\)}\}}) = 1 - \frac{1 - \lambda_a}{1 - P_a \lambda_a}.
 \]
Static Case \([\lambda_{a,2} = 0]\)

- Notation: for all \(a \in A\),
 - \(P_a := \mathbb{P}(\theta_a = \text{Good})\),
 - \(\lambda_a := \lambda_{a,1} := \mathbb{P}(\text{“i succeeds by following } a\text{” }| \theta_a = \text{Good})\),
 - \(c_a := c_{a,1} \rightarrow \text{cost of following } a\).
- Unconditional probability of success: \(P_a\lambda_a\)
- Correlation of successes within approach:
 \[\rho_a = \text{Corr}\left(\mathbb{1}\{i \text{ succeeds on } a\}, \mathbb{1}\{j \text{ succeeds on } a\}\right) = 1 - \frac{1 - \lambda_a}{1 - P_a\lambda_a}.
- Holding \(P_a\lambda_a\) fixed:
 - \(\lambda_a \uparrow \implies \rho_a \uparrow\)
 - \(P_a \uparrow \implies \lambda_a \downarrow \implies \rho_a \downarrow\)
- Extremes:
 - \(\lambda_a = 1 \implies \rho_a = 1\)
 - \(P_a = 1 \implies \rho_a = 0\)
Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: \(c_A = c_B = c \)
 - A more viable: \(P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3} \)

- large \(v \), large approach-independent prize \(w \)
Correlation Matters

Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large v, large approach-independent prize w

Suppose agent 1 follows A:

- Best reply of 2?
Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large v, large approach-independent prize w

Suppose agent 1 follows A:

- Best reply of 2? Also follow A!
Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large v, large approach-independent prize w

Suppose agent 1 follows A:

- Best reply of 2? Also follow A!
- Efficient action of 2?
Correlation Matters

Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: $c_A = c_B = c$
 - A more viable: $P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3}$
- large ν, large *approach-independent* prize w

Suppose agent 1 follows A:

- Best reply of 2? Also follow A!
- Efficient action of 2? Depends on correlation: follow A if
 \[P_B \lambda_B (1 - P_A \lambda_A) \leq P_A \lambda_A (1 - \lambda_A) \iff \lambda_A \leq \frac{7}{8} \]
Example 1:

- 2 agents: 1 and 2
- 2 approaches: A and B:
 - identical costs: \(c_A = c_B = c \)
 - A more viable: \(P_B \lambda_B = \frac{1}{4} < P_A \lambda_A = \frac{2}{3} \)
- large \(\nu \), large *approach-independent* prize \(w \)

Suppose agent 1 follows A:

- Best reply of 2? Also follow A!
- Efficient action of 2? Depends on correlation: follow A iff
 \[
P_B \lambda_B (1 - P_A \lambda_A) \leq P_A \lambda_A (1 - \lambda_A) \iff \lambda_A \leq \frac{7}{8}
\]

Insight

An approach-independent contest may induce inefficient equilibrium behavior.
Efficient Assignment

Proposition 1

If all approaches have equal costs, then a greedy algorithm that always adds the approach with the highest marginal benefit, until no approach has a positive marginal benefit, or until all agents are assigned identifies the social optimum.
Proposition 1

If all approaches have equal costs, then a greedy algorithm that
- always adds the approach with the highest marginal benefit,
- until no approach has a positive marginal benefit,
- or until all agents are assigned
identifies the social optimum.
Pseudo marginal social benefit: Denote by $mb_{a,i}(\pi)$ the hypothetical marginal social benefit of
an additional agent following a,
conditional on i failures on a, and
given that some other agent will succeed with probability π.

$$mb_{a,i}(\pi) := \mu_i(a) \lambda a (1 - \pi) \cdot v - c_a 0 1 v P a \lambda a \cdot v - c_a \mu_1(a) \lambda a \cdot v - c_a \mu_2(a) \lambda a \cdot v - c_a - c_a mb_{a,0}(\pi) mb_{a,1}(\pi) mb_{a,2}(\pi)$$
Pseudo marginal social benefit: Denote by \(mb_{a,i}(\pi) \) the *hypothetical* marginal social benefit of

an additional agent following \(a \),

conditional on \(i \) failures on \(a \), and

given that some other agent will succeed with probability \(\pi \).

\[
mb_{a,i}(\pi) := \mu_i(a) \lambda_a (1 - \pi) \cdot v - c_a
\]
Pseudo marginal social benefit: Denote by $mb_{a,i}(\pi)$ the hypothetical marginal social benefit of

an additional agent following a,

conditional on i failures on a, and

given that some other agent will succeed with probability π.

$m_{ba,i}(\pi)$
Proposition 2

If $c > 0$ and $P_a > 0$ for all approaches, then the principal can uniquely implement any action profile, and extract (almost) the entire social surplus at the same time, by selecting suitable approach-specific prizes w_{a_1}, \ldots, w_{a_k} excluding permutations

$w_a := \#(\text{agents the principal wants to follow } a) P(\text{At least one of these agents succeeds}) (c_a + \epsilon)$

Corollary

It is optimal for the principal to implement the social optimum.
Proposition 2

If $c_a > 0$ and $P_a \lambda_a > 0$ for all approaches, then

the principal can uniquely implement any action profile, and extract (almost) the entire social surplus at the same time, by selecting suitable approach-specific prizes w_{a_1}, \ldots, w_{a_k}.

\(^a\)excluding permutations
Proposition 2

If $c_a > 0$ and $P_a \lambda_a > 0$ for all approaches, then

the principal can uniquely\(^a\) implement any action profile, and extract (almost) the entire social surplus at the same time, by selecting suitable approach-specific prizes w_{a_1}, \ldots, w_{a_k}.

\(^a\text{excluding permutations}\)

\[
 w_a := \frac{\#(\text{agents the principal wants to follow } a)}{\mathbb{P}(\text{“At least one of these agents succeeds”})} (c_a + \varepsilon)
\]
Proposition 2

If $c_a > 0$ and $P_a \lambda_a > 0$ for all approaches, then

the principal can uniquelya implement any action profile,

and extract (almost) the entire social surplus at the same time,

by selecting suitable approach-specific prizes w_{a_1}, \ldots, w_{a_k}.

aexcluding permutations

\[w_a := \frac{\#(\text{agents the principal wants to follow } a)}{\mathbb{P}(\text{"At least one of these agents succeeds"})} (c_a + \varepsilon) \]

Corollary

It is optimal for the principal to implement the social optimum.
Two Periods: crowding-out

Example 2

- Approach-independent prize \(w \)
- Two agents 1 and 2
- Two approaches \(A \) and \(B \): \(P_A = P_B = 1 \),

Equilibria for varying \(w \):

- Both abstain: \(\pi = 0 \)
- 1 agent follows \(B \): \(\pi = \frac{2}{3} \)
- 1 agent follows \(A \): \(\pi = \frac{1}{2} \)
- Both follow \(A \): \(\pi = \frac{3}{4} \)

Insights

- Increasing \(w \) can cause decrease in probability of success. (crowding-out)
- Even for large \(w \), equilibrium behavior can be inefficient.
Two Periods: crowding-out

Example 2

- Approach-independent prize \(w \)
- Two agents 1 and 2
- Two approaches \(A \) and \(B \): \(P_A = P_B = 1 \),

\[
A \text{ is faster: } (\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = \left(\frac{1}{2}, c \right), (0, 0),
\]

\[
B \text{ is more effective: } (\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), \left(\frac{2}{3}, 0 \right).
\]
Two Periods: crowding-out

Example 2

- *Approach-independent* prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

 \[
 A \text{ is faster: } (\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = \left(\frac{1}{2}, c\right), (0, 0),
 \]

 \[
 B \text{ is more effective: } (\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), \left(\frac{2}{3}, 0\right).
 \]

Equilibria for varying w:

\[
\begin{align*}
0 & \quad \frac{3}{2}c & \quad 2c & \quad \frac{8}{3}c & \quad w
\end{align*}
\]
Example 2

- **Approach-independent** prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1,$

$$A \text{ is faster: } (\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = \left(\frac{1}{2}, c \right), (0, 0),$$

$$B \text{ is more effective: } (\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), \left(\frac{2}{3}, 0 \right).$$

Equilibria for varying w:

- both abstain
- $\pi = 0$
- $0 \text{ to } \frac{3}{2} c$
- $\frac{3}{2} c \text{ to } 2c$
- $2c \text{ to } \frac{8}{3} c$
- w
Two Periods: crowding-out

Example 2

- **Approach-independent** prize \(w \)
- Two agents 1 and 2
- Two approaches \(A \) and \(B \): \(P_A = P_B = 1 \),

\[
A \text{ is faster: } (\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = \left(\frac{1}{2}, c \right), (0, 0),
\]

\[
B \text{ is more effective: } (\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), \left(\frac{2}{3}, 0 \right).
\]

Equilibria for varying \(w \):

\[
\begin{array}{c}
\text{both abstain} \\
\pi = 0 \\
0 \]
\[
\begin{array}{c}
\text{1 agent follows } B \\
\pi = \frac{2}{3} \\
\frac{3}{2} c \end{array}
\]
\[
\begin{array}{c}
\text{2c} \\
\frac{8}{3} c \end{array}
\]

Innovation Contests with Distinct Approaches
Example 2

- **Approach-independent** prize \(w \)
- Two agents 1 and 2
- Two approaches \(A \) and \(B \): \(P_A = P_B = 1 \),

\[
A \text{ is faster: } (\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = \left(\frac{1}{2}, c \right), (0, 0),
\]

\[
B \text{ is more effective: } (\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), \left(\frac{2}{3}, 0 \right).
\]

Equilibria for varying \(w \):

- both abstain: \(\pi = 0 \)
- 1 agent follows \(B \): \(\pi = \frac{2}{3} \)
- 1 agent follows \(A \): \(\pi = \frac{1}{2} \)

Innovation Contests with Distinct Approaches
Two Periods: crowding-out

Example 2

- Approach-independent prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1,$

$$A \text{ is faster: } (\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = \left(\frac{1}{2}, c\right), (0, 0),$$

$$B \text{ is more effective: } (\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), \left(\frac{2}{3}, 0\right).$$

Equilibria for varying w:

- Both abstain: $\pi = 0$
- $\frac{3}{2}c$: $\pi = \frac{2}{3}$
- $2c$: $\pi = \frac{1}{2}$
- $\frac{8}{3}c$: $\pi = \frac{3}{4}$
Two Periods: crowding-out

Example 2
- **Approach-independent** prize \(w \)
- Two agents 1 and 2
- Two approaches \(A \) and \(B \): \(P_A = P_B = 1, \)
 \[
 A \text{ is faster: } (\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = \left(\frac{1}{2}, c \right), (0, 0),
 \]
 \[
 B \text{ is more effective: } (\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = (0, c), \left(\frac{2}{3}, 0 \right).
 \]

Equilibria for varying \(w \):

- both abstain \(\pi = 0 \)
- \(\frac{3}{2} c \) 1 agent follows \(B \) \(\pi = \frac{2}{3} \)
- \(2c \) 1 agent follows \(A \) \(\pi = \frac{1}{2} \)
- \(\frac{8}{3} c \) both follow \(A \) \(\pi = \frac{3}{4} \)

Insights
- Increasing \(w \) can cause decrease in probability of success. (crowding-out)
Two Periods: crowding-out

Example 2
- **Approach-independent** prize w
- Two agents 1 and 2
- Two approaches A and B: $P_A = P_B = 1$,

\[
A \text{ is faster: } (\lambda_{A,1}, c_{A,1}), (\lambda_{A,2}, c_{A,2}) = \left(\frac{1}{2}, c\right), (0, 0),
\]

\[
B \text{ is more effective: } (\lambda_{B,1}, c_{B,1}), (\lambda_{B,2}, c_{B,2}) = \left(0, c\right), \left(\frac{2}{3}, 0\right).
\]

Equilibria for varying w:

<table>
<thead>
<tr>
<th>w</th>
<th>both abstain</th>
<th>1 agent follows B</th>
<th>1 agent follows A</th>
<th>both follow A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\pi = 0$</td>
<td>$\pi = \frac{2}{3}$</td>
<td>$\pi = \frac{1}{2}$</td>
<td>$\pi = \frac{3}{4}$</td>
</tr>
<tr>
<td>$\frac{3}{2}c$</td>
<td>$\pi = \frac{2}{3}$</td>
<td>$\pi = \frac{1}{2}$</td>
<td>$\pi = \frac{3}{4}$</td>
<td></td>
</tr>
<tr>
<td>$2c$</td>
<td>$\pi = \frac{1}{2}$</td>
<td>$\pi = \frac{3}{4}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{8}{3}c$</td>
<td>$\pi = \frac{3}{4}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insights
- Increasing w can cause decrease in probability of success. (crowding-out)
- Even for large w, equilibrium behavior can be inefficient.
Approach-independent contests are potentially inefficient. Possible causes:

1. High correlation on most viable approaches.
2. Crowding-out effect.

When costs are equal, a greedy algorithm determines the efficient assignment. (Otherwise this is a hard problem.)

Approach-specific prizes: strong tool to implement desired behavior in the static case. (Can be extended to dynamic setting if v and N are large enough.)