Informing to Divert Attention

Margarita Kirneva

CREST - Ecole Polytechnique

August 28, 2023 EEA-ESEM congress

Margarita Kirneva (CREST-X)

Informing to Divert Attention

August 28, 2023

A = A = A = A = A = A = A

Introduction

- Consider an interaction between a policy-maker and an informational lobbyist over 2 policy issues
- The lobbyist and the policy-maker may have aligned interests on both, on one of them or misaligned on both
- The lobbyist provides policy-relevant information to the policy-maker
- The policy-maker may access some additional information afterwards prior to making the decisions
- The lobbyist is strategic and chooses the type of information and its quality to make her preferred policies more likely

Introduction

In such framework lobbyist's information has two effects:

- Informing policy-maker to assure better decision
- Directing policy-maker's own search for information (to influence which issues are under PM's attention)

Introduction

In such framework lobbyist's information has two effects:

- Informing policy-maker to assure better decision
- Directing policy-maker's own search for information (to influence which issues are under PM's attention)

Questions:

- Can the lobbyist influence Receiver's information acquisition to her benefit in the presence of a conflict of interests?
- Can more information be harmful for the policy-maker?

This paper

- 2-dimensional Sender-Receiver framework with private information acquisition
- Receiver needs to take 2 actions, one for each of the dimensions of the state of the world
- Prior to making a decision Receiver acquires information in 2 stages:
 - Sender strategically provides some information (commitment)
 - Receiver may obtain some additional information afterwards
- Receiver's (and Sender's) access to information is restricted

Preview of the results

 We uncover the new role for the information provision in the presence of a conflict of interests

ELE NOR

コンスモ

Preview of the results

- We uncover the new role for the information provision in the presence of a conflict of interests
- When the interests of Sender and Receiver are partially aligned or fully misaligned Sender is facing a trade-off:
 - To provide information on the dimension where interests are aligned if such exists
 - To prevent Receiver from discovering excessively the dimension of (greater) misalignment
- In the latter case Sender provides information in order to divert Receiver's attention

Preview of the results

- We uncover the new role for the information provision in the presence of a conflict of interests
- When the interests of Sender and Receiver are partially aligned or fully misaligned Sender is facing a trade-off:
 - To provide information on the dimension where interests are aligned if such exists
 - To prevent Receiver from discovering excessively the dimension of (greater) misalignment
- In the latter case Sender provides information in order to divert Receiver's attention
- Information provision is possible under fully misaligned interests!

Key intuition

 Receiver looks for information which reduces uncertainty the most ⇒ Receiver learns the most uncertain dimension

Key intuition

- Receiver looks for information which reduces uncertainty the most \Rightarrow Receiver learns the most uncertain dimension
- To divert attention from the dimension of misalignment Sender:
 - ▶ partially reveals this dimension to make it less uncertain
 - which forces Receiver to look for information on the other dimension

Key intuition

- Receiver looks for information which reduces uncertainty the most \Rightarrow Receiver learns the most uncertain dimension
- To divert attention from the dimension of misalignment Sender:
 - partially reveals this dimension to make it less uncertain
 - which forces Receiver to look for information on the other dimension

Other applications: privacy concerns, hiring process, expert advice ...

Contribution (theory)

- 1. Bayesian persuasion
 - Multidimensional environment: Tamura (2018); Khantadze, Kremer & Skrzypacz (2022)
 - Persuasion with private information acquisition Bizotto, Rudiger & Vigier (2020); Matyskova & Montes (2023)

This paper: combines the 2 strands as the only possibility to capture diverting attention motives

Contribution (applications)

2. Lobbying

Cotton & Dellis (2016); Ellis & Groll (2020); Cotton & Li (2018)

This paper: provides new insights on the lobbyist's motives and optimal PM's information

3. Other applications

Duggan & Martinelli (2011); Yuksel & Perego (2021); Yuksel (2021); Biglaiser et al. (2023)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 2 agents: Sender (S) and Receiver (R)

▲□▶▲□▶▲∃▶▲∃▶ ∃|∃ のの⊙

- 2 agents: Sender (S) and Receiver (R)
- Unknown state of the world: $\theta \in \mathbb{R}^2$

- 2 agents: Sender (S) and Receiver (R)
- Unknown state of the world: $\theta \in \mathbb{R}^2$
- R needs to take 2 actions: $a \in \mathbb{R}^2$

- 2 agents: Sender (S) and Receiver (R)
- Unknown state of the world: $\theta \in \mathbb{R}^2$
- R needs to take 2 actions: $a \in \mathbb{R}^2$
- R's payoff:

$$u_R(a, \theta) = -(a_1 - \theta_1)^2 - (a_2 - \theta_2)^2$$

– S's payoff:

$$u_{S}(a,\theta) = -\sum_{i \in \{1,2\}} \left(\underbrace{\beta_{i}(a_{i}-\theta_{i})^{2}}_{\text{correct action}} + \underbrace{(1-\beta_{i})(a_{i}-a_{i}^{*})^{2}}_{\text{S's bias}} \right)$$

- 2 agents: Sender (S) and Receiver (R)
- Unknown state of the world: $\theta \in \mathbb{R}^2$
- − R needs to take 2 actions: $a \in \mathbb{R}^2$
- R's payoff:

$$u_R(a, \theta) = -(a_1 - \theta_1)^2 - (a_2 - \theta_2)^2$$

– S's payoff:

$$u_{S}(a,\theta) = -\sum_{i \in \{1,2\}} \left(\underbrace{\beta_{i}(a_{i}-\theta_{i})^{2}}_{\text{correct action}} + \underbrace{(1-\beta_{i})(a_{i}-a_{i}^{*})^{2}}_{\text{S's bias}} \right)$$

General: $u_{i}(a,\theta) = \left\| Q_{i}^{\theta} \theta + Q_{i}^{a} a \right\|^{2}$

– S and R share prior beliefs about θ :

$$\boldsymbol{\theta} \sim \mathcal{N}\left(\begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix}, \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{v}_2 \end{pmatrix} \right)$$

– S and R share prior beliefs about θ :

$$\boldsymbol{\theta} \sim \mathcal{N}\left(\begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix}, \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{v}_2 \end{pmatrix}\right)$$

Allow for correlation between the dimensions

ELE NOR

– S and R share prior beliefs about θ :

$$\theta \sim \mathcal{N}\left(\begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} v_1 & 0\\0 & v_2 \end{pmatrix}\right)$$
 Allow for correlation between the dimensions

- S chooses a signal (dimension+noise):

$$S_S = \theta_i + \varepsilon_S$$

with $\varepsilon_S \sim \mathcal{N}(0, \sigma_S^2)$

000 E E 4 E + 4 E

– S and R share prior beliefs about θ :

$$\theta \sim \mathcal{N}\left(\begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} v_1 & 0\\0 & v_2 \end{pmatrix}\right)$$
 Allow for correlation between the dimensions

- S chooses a signal (dimension+noise):
 - $S_{S} = \theta_{i} + \varepsilon_{S} \qquad S_{S} = \alpha_{S_{1}}\theta_{1} + \alpha_{S_{2}}\theta_{2} + \varepsilon_{S}$ with $\varepsilon_{S} \sim \mathcal{N}(0, \sigma_{S}^{2})$ any number of linear signals

000 E E 4 E + 4 E

– S and R share prior beliefs about θ :

$$\theta \sim \mathcal{N}\left(\begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} v_1 & 0\\0 & v_2 \end{pmatrix}\right)$$
 Allow for correlation between the dimensions

- S chooses a signal (dimension+noise):

 $S_{S} = \theta_{i} + \varepsilon_{S} \qquad S_{S} = \alpha_{S_{1}}\theta_{1} + \alpha_{S_{2}}\theta_{2} + \varepsilon_{S}$ with $\varepsilon_{S} \sim \mathcal{N}(0, \sigma_{S}^{2})$ any number of linear signals

 Upon observing realization of S_S, R chooses a signal (dimension+noise):

$$S_R = \Theta_j + \varepsilon_R$$

with $\varepsilon_R \sim \mathcal{N}(0, \sigma_R^2)$

> < = > < = > = = = < < <

– S and R share prior beliefs about θ :

$$\theta \sim \mathcal{N}\left(\begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} v_1 & 0\\0 & v_2 \end{pmatrix}\right)$$
 Allow for correlation between the dimensions

- S chooses a signal (dimension+noise):
 - $S_{s} = \theta_{i} + \varepsilon_{s}$ $S_S = \alpha_{S_1}\theta_1 + \alpha_{S_2}\theta_2 + \varepsilon_S$ with $\varepsilon_{\rm S} \sim \mathcal{N}(0, \sigma_{\rm S}^2)$ any number of linear signals
- Upon observing realization of S_S , R chooses a signal (dimension+noise):
 - $S_R = \alpha_{R_1} \theta_1 + \alpha_{R_2} \theta_2 + \varepsilon_R$ $S_R = \theta_i + \varepsilon_R$ a unique linear signal with $\varepsilon_R \sim \mathcal{N}(0, \sigma_P^2)$

Timeline

< A

1 = 990

- S is an expert \Rightarrow signal is costless
- R's information is costly :

$$C(\check{v}, \widetilde{v}) = \frac{\lambda}{2} \left(\log \frac{\widetilde{v}}{\check{v}} \right)$$

where \check{v} and \widetilde{v} are the interim and posterior beliefs of R on the dimension of S_R (Mackowiak, Mat \check{e} jka, and Wiederholt (2018))

- S is an expert \Rightarrow signal is costless
- R's information is costly :

$$C(\check{v}, \widetilde{v}) = \frac{\lambda}{2} \left(\log \frac{\widetilde{v}}{\check{v}}\right)$$

where \check{v} and \widetilde{v} are the interim and posterior beliefs of R on the dimension of S_R (Mackowiak, Matějka, and Wiederholt (2018))

– Precision-dependent convex costs $c(1/\sigma_R^2)$, for instance

$$c(1/\sigma_R^2) = \frac{\kappa}{\sigma_R^2}$$

$$c(1/\sigma_R^2) = +\infty \cdot \mathbb{1}_{\sigma_R^2 < \bar{\sigma}^2}$$

$$u_R(a, \theta) = -(a_1 - \theta_1)^2 - (a_2 - \theta_2)^2$$

It follows:

 $- a_R = \mathbb{E}_{\widetilde{F}}[\theta]$ where \widetilde{F} - posterior belief of R

$$- \mathbb{E}_F[u_R(a,\theta)] = -\widetilde{v}_1 - \widetilde{v}_2$$

where \tilde{v}_1 , \tilde{v}_2 - posterior uncertainty of R

1 = 1 = 1 = 1 0 0 0

$$u_{S}(a,\theta) = -\sum_{i \in \{1,2\}} \left(\beta_{i}(a_{i} - \theta_{i})^{2} + (1 - \beta_{i})(a_{i} - a_{i}^{*})^{2} \right)$$

It follows (given the optimal actions of R!):

$$\mathbb{E}_F[u_S(a,\theta)] = -(2\beta_1 - 1)\widetilde{v}_1 - (2\beta_2 - 1)\widetilde{v}_2$$

- If $\beta_1 > 1/2$, $\beta_2 > 1/2$ - interests are aligned

- If $\beta_1 < 1/2$, $\beta_2 < 1/2$ interests are **misaligned**
- If $(\beta_1 1/2)(\beta_2 1/2) < 0$ interests are partially aligned

Diverting attention

S's signal **diverts R's attention** if:

- It provides information on the dimension where interests are misaligned
- In the absence of S's signal, R receives information on this dimension

Intuition: information is provided not to induce R's learning but to discourage information acquisition on the unfavorable dimension

Interim beliefs

Figure: Attainable set of interim beliefs

Margarita Kirneva (CREST-X)

Informing to Divert Attention

August 28, 2023

-

R is minimizing the remaining uncertainty + entropy costs of information acquisition:

∜

R learns the most uncertain dimension *i* so that $\tilde{v}_i = \lambda/2$

R is minimizing the remaining uncertainty + entropy costs of information acquisition:

 $\|$

R learns the most uncertain dimension *i* so that $\tilde{v}_i = \lambda/2$

Underlying assumption: $\lambda/2 < v_2 < v_1$

Posterior beliefs

Figure: Attainable set of posterior beliefs (given R's optimal response)

$$\mathbb{E}_F[u_S(a,\theta)] = -(2\beta_1 - 1)\widetilde{v}_1 - (2\beta_2 - 1)\widetilde{v}_2$$

Case 1: $\beta_1 < 1/2$, $\beta_2 > 1/2$ (interests misaligned on the more uncertain dimension) Figure

< ロ > < 同 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbb{E}_F[u_S(a,\theta)] = -(2\beta_1 - 1)\widetilde{v}_1 - (2\beta_2 - 1)\widetilde{v}_2$$

Case 1: $\beta_1 < 1/2$, $\beta_2 > 1/2$ (interests misaligned on the more uncertain dimension) Figure

$$\mathbb{E}[u_{S}(A)] = -(2\beta_{1} - 1)\lambda/2$$
$$\mathbb{E}[u_{S}(B)] = -(2\beta_{1} - 1)v_{2} - (2\beta_{2} - 1)\lambda/2$$

< ロ > < 同 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbb{E}_F[u_S(a,\theta)] = -(2\beta_1 - 1)\widetilde{v}_1 - (2\beta_2 - 1)\widetilde{v}_2$$

Case 1: $\beta_1 < 1/2$, $\beta_2 > 1/2$ (interests misaligned on the more uncertain dimension) Figure

$$\mathbb{E}[u_{S}(A)] = -(2\beta_{1} - 1)\lambda/2$$

$$\mathbb{E}[u_{S}(B)] = -(2\beta_{1} - 1)v_{2} - (2\beta_{2} - 1)\lambda/2$$

$$\frac{\lambda}{2} < \frac{-(2\beta_{1} - 1)}{2(\beta_{2} - \beta_{1})}v_{2} \implies \mathbb{E}[u_{S}(B)] > \mathbb{E}[u_{S}(A)]$$

$$\mathbb{E}_F[u_S(a,\theta)] = -(2\beta_1 - 1)\widetilde{v}_1 - (2\beta_2 - 1)\widetilde{v}_2$$

Case 1: $\beta_1 < 1/2$, $\beta_2 > 1/2$ (interests misaligned on the more uncertain dimension) Figure

$$\mathbb{E}[u_{S}(A)] = -(2\beta_{1} - 1)\lambda/2$$

$$\mathbb{E}[u_{S}(B)] = -(2\beta_{1} - 1)v_{2} - (2\beta_{2} - 1)\lambda/2$$

$$\frac{\lambda}{2} < \frac{-(2\beta_{1} - 1)}{2(\beta_{2} - \beta_{1})}v_{2} \implies \mathbb{E}[u_{S}(B)] > \mathbb{E}[u_{S}(A)]$$

BUT!

R is more informed in A than in B (total uncertainty) \mathbb{N}

Margarita Kirneva (CREST-X)

Informing to Divert Attention

< 口 > < 同

> = = > 000

Partially aligned interests

Figure: Attainable set of posterior beliefs

Partially aligned interests

Figure: Attainable set of posterior beliefs

Candidate A: S reveals information on dimension 2, R learns dimension 1

Partially aligned interests

Figure: Attainable set of posterior beliefs

Candidate A: S reveals information on dimension 2, R learns dimension 1

Candidate *B*: S partially reveals information on dimension 1 for R to learn dimension 2 (Back)

Margarita Kirneva (CREST-X)

Informing to Divert Attention

August 28, 2023

Observation 1

Observation

If

- interests are partially aligned
- misalignment on the more uncertain dimension
- R well-informed (low cost of information acquisition)

then S diverts R's attention away from the dimension of misalignment

Observation 2

The solution in which S diverts R's attention might be harmful for R even if the costs of information are low:

Observation

R's utility is non-monotonic in her costs of information acquisition: \exists an interval $(\lambda, \overline{\lambda})$ such that $\mathbb{E}[u_R(\lambda)] < \mathbb{E}[u_R(\lambda)]$ for all $\lambda \in (\lambda, \lambda)$.

Negative value of information for R!

Extensions

Misaligned interests Assume $\beta_1 < 1/2$, $\beta_2 < 1/2$

Candidate A: $(\tilde{v}_1, \tilde{v}_2) = (\lambda/2, v_2)$

Candidate *B*: $(\tilde{v}_1, \tilde{v}_2) = (v_2, \lambda/2)$

– Without S's signal: A is the solution

Misaligned interests Assume $\beta_1 < 1/2$, $\beta_2 < 1/2$

Candidate A: $(\tilde{v}_1, \tilde{v}_2) = (\lambda/2, v_2)$

Candidate *B*: $(\widetilde{v}_1, \widetilde{v}_2) = (v_2, \lambda/2)$

- Without S's signal: A is the solution
- If $\beta_2 > \beta_1$ (conflict of interests stronger on dimension 1) \Rightarrow S partially reveals information on dimension 1(*B* is the solution)

Observation 3

Observation

If

- interests are fully misaligned
- misalignment greater on the more uncertain dimension
- R well-informed (low cost of information acquisition)

then S diverts R's attention away from the dimension of higher misalignment

Extensions

Single action for R

$$u_R(a,\theta) = -(a - (\theta_C + \theta_P))^2$$
$$u_S(a,\theta) = -(a - \theta_C)^2$$

where θ_C - common component and θ_P - private component of R

But! R can observe only θ_C , or θ_P , but not a mixture

Arbitrary number of linear signals for R under a budget constraint

Conclusion

- We uncover a new role for information provision: to divert attention away from unfavorable issues
- We build a multidimensional Sender-Receiver framework with private information acquisition
- In such framework Sender's signals have two effects: standard information provision + diverting Receiver's attention
- In the presence of a conflict of interests, Sender diverts Receiver's attention by providing information on the dimension of (higher) misalignment of interests

Future Research

000 E E 4 E + 4 E

Thank you!

Observation 2

Figure: R's equilibrium utility as a function of cost parameter

Back

Image: A mathematical states and a mathem

● > < 글 > 글|글 < ⊙ > < 글

Future Research

- Substitutability/complementarity of signals:
 - utility?
 - cost function?
- Beyond normal distributions

Back

> = = ~ ~ ~

- A - TH

General

R's and S's ec-ante expected utilities can be presented as:

$$\mathbb{E}u_R(a,\theta) = -V_R^T \widetilde{\Sigma} V_R$$
$$\mathbb{E}u_S(a,\theta) = -V_S^T \widetilde{\Sigma} V_S$$

 V_R and V_S determine the conflict of interests