The Central Bank's Dilemma:

Look through supply shocks or control inflation expectations?

Paul Beaudry

Thomas Carter
Amartya Lahiri

August 29, 2023

Introduction

- Inflation spurt since 2021 elicited similar policy responses
- Initially most central banks didn't respond
- rationale: inflation due to temporary supply shocks
- Sudden pivot after months of continuing bad inflation data
- rationale: need to keep inflation expectations anchored
- fear of wage-price spiral

Issues

- Should central banks look through supply shocks?
- Does risk of de-anchoring of inflation expectation limit this looking-through?
- Can one rationalize observed central bank behavior?
- Look-through supply-drive inflation shocks initially
- Sudden monetary tightening

Two Modifications

- Relax rational expectations
- Introduce bounded rationality: level-k thinking
- nests rational expectations and adaptive expectations
- inflation expectations also respond to current inflation
- Assume wages stickier than prices
- generates potential wage-price spiral

Results 1

- Under rational expectations, optimal policy looks-through supply-driven inflation shocks
- Under adaptive expectations, optimal policy always responds proportionally to supply-driven inflation
- Neither case generates sudden policy pivot

Results 2

- Optimal response to supply shocks under level-k thinking
- initially look-through but pivot sharply if inflation deviations cross threshold
- Arises when
- the central bank cares "enough" about employment

Model

- Builds on Blanchard-Kiyotaki (1987)
- Closed economy with households, firms and a central bank
- Households supply differentiated labor: wage-setting power
- Firms supply differentiated goods: price-setting power

Model II

- All firms receive same productivity draw : $\theta_{j t}=\theta_{t}$ for all j
- Assumption: $\ln \theta_{t}=\ln \theta_{t-1}+\epsilon_{t}$ where $\epsilon_{t} \sim i i d\left(0, \sigma_{\theta}^{2}\right)$
- Interpret productivity shock as aggregate oil price shock
- Wages set before observing shocks for the period
- Wages and prices are both set for one-period

Phillips Curve

- Phillips curve in the model

$$
\pi_{t}-\pi^{*}=\mathbb{E}_{t-1}\left(\pi_{t}-\pi^{*}\right)+\mathbb{E}_{t-1}\left(\ln N_{t}-\ln \bar{N}\right)-\left(\ln \theta_{t}-\mathbb{E}_{t-1} \ln \theta_{t}\right)
$$

- Key features of this Phillips curve
- inflation at date t is driven by expectations at date $t-1$
- productivity shocks have direct effect on inflation
- no divine coincidence: stabilizing inflation expectations does not stabilize output

Monetary Policy Rule

- Monetary policy ϕ is set to have employment obey

$$
N_{t}=\bar{N}\left(\frac{1+\pi_{t}}{1+\pi^{*}}\right)^{-\phi_{t}}
$$

- Formulation directly recognizes an employment tradeoff in reducing inflation
- Use Euler equation to derive path of ι that implements rule
- Formulation more convenient for highlighting link between expectation formation and policy

Equilibrium System

- Inflation and employment

$$
\begin{aligned}
& \hat{\pi}_{t}=\mathbb{E}_{t-1} \hat{\pi}_{t}+\mathbb{E}_{t-1} \hat{N}_{t}-\hat{\theta}_{t} \\
& \hat{N}_{t}=-\phi_{t}\left[\mathbb{E}_{t-1} \hat{\pi}_{t}+\mathbb{E}_{t-1} \hat{N}_{t}-\hat{\theta}_{t}\right]
\end{aligned}
$$

- Notation

$$
\begin{aligned}
\hat{\pi}_{t} & =\pi_{t}-\pi^{*} \\
\hat{N}_{t} & =\ln N_{t}-\ln \bar{N} \\
\hat{\theta}_{t} & =\ln \theta_{t}-\mathbb{E}_{t-1} \ln \theta_{t}
\end{aligned}
$$

Level-k thinking

- Start with initial seed (level-0) about aggregate expectation
- Compute aggregate outcome under initial seed
- Update aggregate expectation and recompute aggregates
- Repeat k-times for level-k thinking
- Finite k iterations reflects bounded rationality

Level-k thinking II

- Let initial seed (level-0) expectation be

$$
\begin{aligned}
\mathbb{E}_{t-1} \hat{\pi}_{t}^{0} & =\hat{\pi}_{t-1} \\
\mathbb{E}_{t-1} \hat{N}_{t}^{0} & =\hat{N}_{t-1}
\end{aligned}
$$

- Equilibrium system

$$
\begin{aligned}
& \hat{\pi}_{t}^{K L T}=\left(1-\phi_{t}\right)^{k}\left[\hat{\pi}_{t-1}+\hat{N}_{t-1}\right]-\hat{\theta}_{t} \\
& \hat{N}_{t}^{K L T}=-\phi_{t}\left[\left(1-\phi_{t}\right)^{k}\left\{\hat{\pi}_{t-1}+\hat{N}_{t-1}\right\}-\hat{\theta}_{t}\right]
\end{aligned}
$$

Policy Problem

- Policymaker's problem

$$
\min _{\phi_{t}} \sum_{t=0}^{\infty} \beta_{G}^{t} \mathbb{E}_{t-1}\left({\hat{\pi_{t}}}^{2}+\mu \hat{N}_{t}^{2}\right)
$$

- Define $x_{t} \equiv \hat{\pi}_{t}+\hat{N}_{t}$
- Restated problem:

$$
\min _{\phi_{t}} \sum_{t=0}^{\infty} \beta_{G}^{t} \mathbb{E}\left[\left(1+\mu \phi_{t}^{2}\right)\left(\left(1-\phi_{t}\right)^{2 k} x_{t-1}^{2}+\sigma_{\theta}^{2}\right)\right]
$$

Rational and Adaptive Expectations

- Rational expectations: $k \rightarrow \infty$

$$
\phi_{t}^{R E}=0
$$

- Look through any deviations of inflation from target
- Adaptive expectations: $k=0$

$$
\phi_{t}^{A E}=\frac{\beta_{G} a_{1}}{\mu+\beta_{G} a_{1}} \in(0,1)
$$

- No policy pivot: $\phi^{A E}$ is constant

Level-k thinking: analytical results

- Analyze special case $\beta_{G}=0, k=1$
- Define $\tilde{x}_{t-1} \equiv \frac{x_{t-1}^{2}}{\sigma_{\theta}^{2}}$
- Optimal ϕ_{t} depends on \tilde{x}_{t-1}
- For $\mu>4$ there exist two functions: $\phi_{1}(\tilde{x}), \phi_{2}(\tilde{x})$
- functions represent local optima
- functions have overlapping domains
- Need to determine global optima in the overlapping zone

Proposition: Policy Pivot

If μ is sufficiently big, there exists a unique cutoff for \tilde{x}_{t-1}, such that at this cutoff, the global optimum $\hat{\phi}\left(\tilde{x}_{t-1}\right)$, jumps up discontinuously.

Intuition for Pivot: Non-convexity

- Policy tightening reduces employment directly
- Tightening reduces inflation expectations: raises employment indirectly
- Indirect effect rises with ϕ and is greater the larger is $\hat{\pi}$
- Direct effect overwhelmed by indirect effect at high enough $\hat{\pi}$
- Soft landing for output despite policy pivot

Dynamic model with $\beta_{G}=0.995$: Effect of k

Absolute expected deviation of

- Higher k shifts pivot point lower and reduces size of pivot
- Pivot disappears for sufficiently high k

Key Mechanism: Inflation Expectations and Policy

Note: Dashed vertical lines mark (i) the first post-COVID instance of headline inflation exceeding 3 percent; and (ii) the first post-COVID Fed hike.
"Pass-through rate" from headline inflation to oneyear breakevens

Conclusions

- Framework for studying monetary policy response to supply shocks
- Key ingredients
- bounded rationality: level-k thinking
- prices more flexible than wages
- Tradeoff between stabilizing output and de-anchoring inflation expectations
- Looking through supply shocks can be optimal, till some point
- Late or gradual tightening can be expensive

Slope of Phillips Curve

- Phillips curve in the model is

$$
\hat{\pi}_{t}=\mathbb{E}_{t-1} \hat{\pi}_{t}+\mathbb{E}_{t-1} \hat{N}_{t}-\hat{\theta}_{t}
$$

- Slope is unity: restrictive and empirically debatable
- Generalization with GHH preferences

$$
\mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \ln \left(C_{i t}-\eta \theta_{t} N_{i t}^{1+\lambda}\right)
$$

- Revised Phillips curve

$$
\hat{\pi}_{t}=\mathbb{E}_{t-1} \hat{\pi}_{t}+\lambda \mathbb{E}_{t-1} \hat{N}_{t}-\hat{\theta}_{t}
$$

Revised interpretation of μ

- Define $\tilde{\mu} \equiv \frac{\mu}{\lambda^{2}}$ and $\tilde{\phi}_{t} \equiv \lambda \phi_{t}$
- Policy problem can be written as

$$
\min _{\tilde{\phi}_{t}} \sum_{t=0}^{\infty} \beta_{G}^{t} \mathbb{E}\left[\left(1+\tilde{\mu} \tilde{\phi}_{t}^{2}\right)\left(\left(1-\tilde{\phi}_{t}\right)^{2 k} x_{t-1}^{2}+\sigma_{\theta}^{2}\right)\right]
$$

subject to

$$
x_{t}=\left(1-\tilde{\phi}_{t}\right)^{k+1} x_{t-1}-\left(1-\tilde{\phi}_{t}\right) \hat{\theta}_{t}
$$

- Same problem but with $\tilde{\phi}$ and $\tilde{\mu}$ replacing ϕ and μ
- Propositions with μ go through with $\tilde{\mu}$

Euler equation

- The Euler equation is

$$
\iota_{t+1}-\bar{\iota}=\mathbb{E}_{t}\left(\ln N_{t+1}-\ln N_{t}\right)+\mathbb{E}_{t}\left(\pi_{t+1}-\pi^{*}\right)
$$

- Solving forward, this gives

$$
\ln N_{t}-\ln \bar{N}=-\sum_{h=1}^{\infty} \mathbb{E}_{t} \cdots \mathbb{E}_{t+h-1}\left[\iota_{t+h}-\bar{\iota}-\left(\pi_{t+h}-\pi^{*}\right)\right]
$$

