Is it Better to be First? Search with Endogenous Information Acquisition

Pavel Ilinov (CERGE-El and EPFL), Andrei Matveenko (Mannheim U), Salil Sharma (SSE)

Barcelona August 2023 Classical search in Simon (1955), Weitzman (1979):

- DM sequentially samples independent r.v.
- Binary technology for resolving uncertainty
- Fixed cost for item
- DM optimally stops, chooses best alternative

Classical search in Simon (1955), Weitzman (1979):

- DM sequentially samples independent r.v.
- Binary technology for resolving uncertainty
- Fixed cost for item
- DM optimally stops, chooses best alternative

DM has too passive learning strategy: sequential interview design

Endogenous info (RI): flexible learning at cost

Our Search & RI:

- DM sequentially samples iid alternatives
- Flexible learning about alternative
- Endogenous, history-dependent cost for alternative
- DM may learn nothing about alternative, no recall

DM conducts endogenous interviews sequentially

Optimal Interview Design: is it possible to characterise the optimal search rule?

Optimal Interview Design: is it possible to characterise the optimal search rule?

- Stationary threshold: satisficing (Simon, 1955; Caplin, Dean, Martin, 2011)
- Decreasing threshold: discounting (Salop, 1973)
- Our results: generalization of decreasing threshold rule via flexible information

Optimal Interview Design: is it possible to characterise the optimal search rule?

- Stationary threshold: satisficing (Simon, 1955; Caplin, Dean, Martin, 2011)
- Decreasing threshold: discounting (Salop, 1973)
- Our results: generalization of decreasing threshold rule via flexible information

Order Discrimination: does the order of inspection influences the probability of choice?

- Better to be first: flexible learning (Steiner et al. 2021); search (Armstrong, 2017)
- Mixed evidence: attention discrimination (Bartos et al. 2016); anectodical evidence (reddit.com)
- Our results: depends on cost function

• Extremes: no-learning or full learning

- Our DM:
 - obtains **noisy** estimate about quality of candidate
 - controls whole *distribution* of **noise**
 - choice is stochastic

- T candidates: iid binary r.v. $\theta_t = \{0,1\}$ with $P(\theta_t = 1) = \mu$
- DM learns at stage t about candidate t
- Learning
 - posterior distribution p_t : $p_t \in \Delta[0, 1]$: $\int_{[0,1]} x dp_t(x) = \mu$.

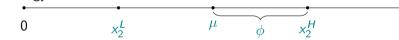
• cost for
$$p_i$$
: $C(p_t) = k \int_{[0,1]} c(x) dp_t(x)$.

- DM chooses one candidate without recall
- DM's payoff: expected posterior minus cost of learning

- no recall \Rightarrow
- no state variable in dynamic problem \Rightarrow
- in period t after learning two actions available: choose candidate / continue search with exogenous outside option V_{T−t} ⇒
- collection of static problems with different outside options

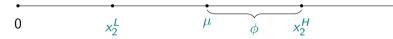
Definition 1

Interview (x^{L}, x^{H}) is more difficult then (y^{L}, y^{H}) if $x^{L} > y^{L}, x^{H} > y^{H}$


Optimality of interviews with decreasing difficulties as feature of flexible learning

• Restricted Model:

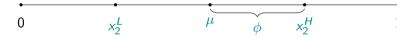
- $\mu = 0.5$
- Function c(x) is symmetric around μ , $c(\mu) = 0$
- Only symmetric posteriors available: $x_t^H \mu = \mu x_t^L$


• Restricted Model:

- $\mu = 0.5$
- Function c(x) is symmetric around μ , $c(\mu) = 0$
- Only symmetric posteriors available: $x_t^H \mu = \mu x_t^L$
- Learning Strategy:

• Restricted Model:

- $\mu = 0.5$
- Function c(x) is symmetric around μ , $c(\mu) = 0$
- Only symmetric posteriors available: $x_t^H \mu = \mu x_t^L$
- Learning Strategy:



• Expected payoff:

 $0.5(0.5+\phi)+0.5V_{T-t}-\tilde{c}(\phi)$

• Restricted Model:

- $\mu = 0.5$
- Function c(x) is symmetric around μ , $c(\mu) = 0$
- Only symmetric posteriors available: $x_t^H \mu = \mu x_t^L$
- Learning Strategy:

• Expected payoff:

 $0.5(0.5+\phi)+0.5V_{T-t}-\tilde{c}(\phi)$

• Optimal ϕ is independent from T: satisficing threshold

- Fix symmetric posteriors and increase both by δ : $\Delta x_t^H = \Delta x_t^L = \delta$
- Probabilities and rewards change: $p_t^H \downarrow$, $x_t^H \uparrow$, $p_t^L \uparrow$

- Fix symmetric posteriors and increase both by δ : $\Delta x_t^H = \Delta x_t^L = \delta$
- Probabilities and rewards change: $p_t^H \downarrow$, $x_t^H \uparrow$, $p_t^L \uparrow$
- First-order effect of reward:

$$egin{aligned} p_t^H \Delta x_t^H + \Delta p_t^H V_{T-t} - \Delta p_t^H x_t^H = & [ext{symmetry, } \mu = 0.5] \ & = \Delta p_t^H (V_{T-t} - 0.5) > 0 \end{aligned}$$

It is better to increase both posteriors!

Theorem 1

Let c(x) be convex, twice differentiable then

 x_t^L, x_t^H are decreasing in t

Moreover,

$$\lim_{t \to \infty} x_t^L = \mu, \qquad \lim_{t \to \infty} x_t^H = x'$$

Optimal Posteriors

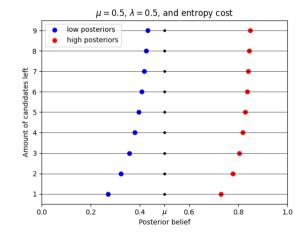


Figure: Optimal posterior beliefs given the amount of candidates left

- x_t^H dynamics: cherry-picking
- **2** x_t^L dynamics: rational procrastination, postponing info acquisition
- **3** $x_t^H \& x_t^L$ dynamics: interview t is more difficult than interview t-1

better to be first

hired if success

better to be last

the easiest interview

better to be first

hired if success

better to be last

the easiest interview

Proposition 1

Let $c(x) = k(x - \mu)^2$ then

unconditional probabilities of choice P_t are decreasing in t

It is better to be first!

- *T* = 2
- c(x) is symmetric around point y, smooth enough

• *T* = 2

• c(x) is symmetric around point y, smooth enough

Proposition 2

If c'(x) is concave on (0, y) and c'(x) is convex on (y, 1) then exists y', y'' such that if $\mu \in (y'', y)$ then $P_2 > P_1$; if $\mu \in (y, y')$ then $P_1 > P_2$

• Condition for c'(x) holds for entropy cost: if $\mu > 0.5$ DM chooses first more often, if $\mu < 0.5$ DM chooses second more often

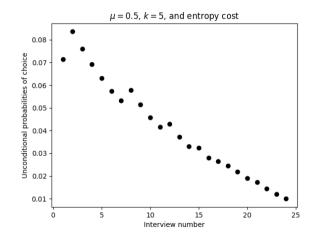


Figure: Non-monotone unconditional probabilities

Optimal search rule: DM decreases difficulty of interviews

- Cherry-picking
- Postponing info acquisition

Discrimination: depends of cost function properties

- if c'''(x) = 0 better to be first
- (2) if $c'''(x) \neq 0$ and T = 2 attention discrimination