Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000	00	00000000	0000	000

Climatic Conditions, Somatic Capital, and the Timing of the Neolithic Transition

Lothar Grall, Christian Haas¹, Karol Kempa¹, and Jürgen Meckl²

¹Frankfurt School of Finance & Management, ²Justus-Liebig University Gießen

EEA-ESEM Barcelona, 28 August - 1 September 2023

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
•00	00	00000000	0000	000
Background				

- Research on long-run growth attempts to identify deep-rooted determinants of comparative economic development. (Galor, 2005, 2011; Galor & Moav, 2002; Galor & Weil, 2000)
- Key episode in human history is the Neolithic Transition: shift from hunting and gathering to plant cultivation and animal husbandry.
- Early adoption of agriculture seems to have induced a development head-start that is still prevalent in current income levels.
 (Ashraf & Galor, 2011; Ashraf et al., 2010; Bleaney & Dimico, 2011; Galor & Moav, 2007; Hibbs & Olsson, 2004; Olsson & Hibbs, 2005; Putterman, 2008; Putterman & Weil, 2010)
- Hence, it is important to identify factors that influenced the timing of the transition to agriculture.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000				
The T	iming of the N	eolithic Transition		

Factors affecting the Neolithic Transition include:

- Biogeography: availability of domesticable plants and animals (Diamond, 1997; Hibbs & Olsson, 2004; Olsson & Hibbs, 2005)
- Climatic conditions

(Ashraf & Michalopoulos, 2015; Dow et al., 2009)

- Distance to the Neolithic frontier (Baker, 2008)
- Excessive hunting and population growth

(Locay, 1989; Smith, 1975)

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000				
The	Timing of the Ne	eolithic Transition		

Factors affecting the Neolithic Transition include:

- Biogeography: availability of domesticable plants and animals (Diamond, 1997; Hibbs & Olsson, 2004; Olsson & Hibbs, 2005)
- Climatic conditions

(Ashraf & Michalopoulos, 2015; Dow et al., 2009)

- Distance to the Neolithic frontier (Baker, 2008)
- Excessive hunting and population growth (Locay, 1989; Smith, 1975)

We propose a new explanatory factor:

• Climate-induced variation in human somatic capital.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000				
Climatic	Conditions	& Somatic Capital		

Somatic Capital:

- In a physical sense: embodied energy.
- In a functional sense: physical stature, but also factors like immune function, coordination, and skill, all of which affect the profitability of activities like resource acquisition (Kaplan et al., 1995).

Analysis in a Nutshell:

- We develop a growth model to analyse the effect of climatic conditions on somatic capital and the ultimate effect on the timing of the Neolithic Transition.
- We provide causal evidence for the main prediction of the theory using archaeological-site-level data.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
	•0	00000000	0000	

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000	00	00000000	0000	000
The Model				

Model Setup:

- Evolutionary economic growth model with overlapping generations.
- Individuals choose somatic investment in offspring such as to maximise reproductive fitness (quantity vs. quality) for a given skill intensity (harshness) of the environment.
- Somatic capital increases the innovation capability of individuals and ultimately leads to a higher rate of productivity growth.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000	00	00000000	0000	000
The Model				

Model Setup:

- Evolutionary economic growth model with overlapping generations.
- Individuals choose somatic investment in offspring such as to maximise reproductive fitness (quantity vs. quality) for a given skill intensity (harshness) of the environment.
- Somatic capital increases the innovation capability of individuals and ultimately leads to a higher rate of productivity growth.

Theoretical Result (Hypothesis)

An increase in the skill intensity of the environment, i.e. harsher climatic conditions, has a positive effect on somatic investment per child, the growth rate of productivity, and ultimately (supports) an earlier transition to an agricultural society (Neolithic Transition).

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
		0000000	0000	

Data & Empirical Strategy

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
		0000000		
Combined	Data Sour	rces		

Key variables of interest (archaeological-site data):

- Neolithic Transition (NT) timing (832 sites)
 - Pinhasi et al., 2005
 - Fort et al., 2018
 - Isern et al., 2017
- Somatic capital (body mass, BM) for Pleistocene Homo Sapiens
 - Will et al., 2021
 - Stock et al., 2023

Other variables:

- Climatic and geographic controls
 - Galor and Özak, 2016, Harris et al., 2020, Kottek et al., 2006, Picard and Stepner, 2017
- Historical bioclimatic conditions (Instrument)
 - Beyer et al., 2020

Motiva	Motivation Theory Data & Empirical Strategy		Motivation		Theory			Results	Conclusion
000			00		00000000			0000	000
N I	11.1	_		0 0		~	1. I		

Neolithic Transition & Somatic Capital

Figure 1: Spatial Distribution of Neolithic and Body Mass Sites.

Motiva	Motivation Theory Data & Empirical Strategy		Motivation		Theory			Results	Conclusion
000			00		00000000			0000	000
N I	11.1	_		0 0		~	1. I		

Neolithic Transition & Somatic Capital

Figure 1: Spatial Distribution of Neolithic and Body Mass Sites.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
		00000000		
Combining	NT & BM	Data: IDW Metho	d	

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
		00000000		
Combining	NT & BM	Data: IDW Method		

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000	00	00000000	0000	000
Combini	NT & R	M Data: IDW/ Met	hod	

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000	00	00000000	0000	000
Combini	NT & R	M Data: IDW/ Met	hod	

Combining	NT 0. DN	Doto: IDW/ Moth	aad	
000	00	00000000	0000	000
Motivation	Theory	Data & Empirical Strategy	Results	Conclusion

Combining NT & BM Data: IDW Method

				000
		00000000		
Motivation	Theory	Data & Empirical Strategy	Results	Conclusion

Combining NI & BM Data: IDW Method

The predicted body mass for NT site j, \hat{y}_j , is equal to the weighted average of N observations i from different body mass sites, y_i :

$$\hat{y}_j = \sum_{i=1}^N \lambda_{ij} y_i. \tag{1}$$

Weights of observation *i* for site *j*, λ_{ij} , are set according to:

$$\lambda_{ij} = \begin{cases} \frac{\left(d_{ij}^{time} + \epsilon\right)^{-\alpha^{time}} + \left(d_{ij}^{geo} + \epsilon\right)^{-\alpha^{geo}}}{\sum_{k=1}^{N} \left(d_{kj}^{time} + \epsilon\right)^{-\alpha^{time}} + \left(d_{kj}^{geo} + \epsilon\right)^{-\alpha^{geo}}} & \text{if } d_{ij}^{time} \ge 0, \ \forall \ k : d_{kj}^{time} \ge 0; \\ 0 & \text{if } d_{ij}^{time} < 0. \end{cases}$$

$$(2)$$

- d_{ii}^{geo} : distance between NT site *j* and the site of BM observation *i*.
- d_{ij}^{time} : difference in the timing between NT site j and BM observation i.
- $\alpha^{\rm geo}, \alpha^{\rm time}:$ chosen to minimise the mean squared prediction error on BM dataset.
- We add a small ϵ to distances to avoid discontinuities in the weights.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
		000000000		
Identification	n Strategy			

Instrumental variable approach:

- Instruments based on empirical evidence from anthropology.
- Will et al. (2021) analyse the effect of environmental conditions on Homo sapiens body mass and brain size.
- Main finding: Interannual volatility of precipitation and net primary productivity (NPP) are the best predictors of body mass and, in particular, brain size:
 - Larger brain and body sizes reduce extinction risk in the presence of environmental variability and habitat instability.
 - Increased behavioural flexibility (brain) or physiological ability (body) is a buffer against variability and unpredictability.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000	00	000000000	0000	000
Identification	n Strategy			

Two instruments:

- Interannual volatility of precipitation/NPP long before the timing of the NT as instrumental variable for body mass.
- $\bullet\,$ Environmental variability $\uparrow \to$ body & brain mass $\uparrow \to$ earlier NT

Instrument validity:

- Relevance: The instruments are correlated with body mass (similar effect to Will et al. (2021), see first stage results).
- Exclusion restriction:
 - We use bioclimatic conditions between 21k YBP (at least 10k before earliest NT) and 40k (end of second Out-of-Africa migration wave).
 - No direct effect of these conditions on probability of NT.
 - Effect on NT only via persistent variation in somatic capital.

Motivation	Theory	Data & E	mpirical Strategy		Results		Conclusion
000	00	000000	0000		0000		000
A 1 11	. •	1.11	·	1.		11.1	

Adding Information on Historical Bioclimatic Conditions

Motivation		Theory	Data & Empirical Strategy		Results			Conclusion		
000		00	00000	0000			00	000		000
A 1 1*	1 C		1.12		1			~	11.1	

Adding Information on Historical Bioclimatic Conditions

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
		00000000		
Estimation E	Equation and	d Controls		

First stage (IV):

.

$$SomCap_{k} = \delta_{0} + \delta_{1}HistEnv_{k} + \delta_{2}Geo_{k} + \delta_{3}Clim_{k} + \delta_{4}\mu_{k} + \eta_{k}$$
(3)

Second stage (IV) and OLS:

$$YNT_{k} = \beta_{0} + \beta_{1}\widehat{SomCap}_{k} + \beta_{2}\operatorname{Geo}_{k} + \beta_{3}\operatorname{Clim}_{k} + \beta_{4}\mu_{k} + \epsilon_{k} \qquad (4)$$

- YNT_k : years since the Neolithic Transition at site k.
- HistEnv_k: $PrecVol_k$ and $NPPVol_k$ are the precipitation volatility and net primary productivity of the environment.
- SomCap_k: somatic capital (body mass) before NT.
- Geo_k and Clim_k: vectors of geographical and climatic controls.
- μ_k are fixed effects, ϵ_k and η_k are idiosyncratic error terms.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
		00000000	0000	

Results

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
			0000	
OLS Results	;			

Table 1: The Effect of Somatic Capital on NT Timing: OLS Estimates

	(1)	(2)	(3)	(4)	(5)
Pre-NT Body Mass	169.9***	134.3***	79.02***	76.59***	80.74***
	(15.45)	(14.06)	(13.43)	(13.11)	(12.94)
Log Distance to Neolithic Frontier		-1351.0***	-607.2***	-603.1***	-462.7***
		(132.2)	(115.7)	(118.7)	(131.4)
Absolute Latitude		. ,	-101.9***	-103.3***	-93.53***
			(7.002)	(6.735)	(13.20)
Elevation			0.146	0.142	0.222
			(0.110)	(0.111)	(0.136)
Climate Suitability			()	182.4**	174.6**
				(76.89)	(77.36)
Annual Mean Temperature				()	68.11**
					(28.54)
Annual Temperature Volatility					3225.5**
					(1284.1)
Annual Temperature Volatility SQ					-778.0*
					(424.8)
Continent & Island Fixed Effects	YES	YES	YES	YES	YES
Observations	832	832	832	832	832
R ²	0.577	0.639	0.759	0.763	0.771

The dependent variable is Years since Neolithic Transition. Robust standard errors are reported in parentheses. * p < .1, ** p < .05, *** p < .01.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000	00	00000000	0000	000
Instrumenta	l Variable R	esults		

Table 2: The Effect of Somatic Capital on NT Timing: IV Estimates

	Instrumen	t: Precipitatio	n Volatility	Instru	ment: NPP Vo	olatility
	(1)	(2)	(3)	(4)	(5)	(6)
			A. Second S	itage Results		
Pre-NT Body Mass	130.1***	124.6***	139.6***	209.6***	206.9***	228.8***
	(42.81)	(43.11)	(43.89)	(69.30)	(69.77)	(71.27)
			A. First St	age Results		
Log Historical Precipitation Volatility	1.136***	1.129***	1.113***			
	(0.137)	(0.137)	(0.139)			
Log Historical NPP Volatility				0.802***	0.799***	0.779***
				(0.160)	(0.160)	(0.163)
Geographical Controls	YES	YES	YES	YES	YES	YES
Biogeographic Controls	NO	YES	YES	NO	YES	YES
Climatic Controls	NO	NO	YES	NO	NO	YES
Continent & Island Fixed Effects	YES	YES	YES	YES	YES	YES
Montiel-Pflueger F Statistic	69.08	67.61	63.92	25.11	24.87	22.91
Observations	832	832	832	832	832	832

Robust standard errors are reported in parentheses.

* p < .1, ** p < .05, *** p < .01.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
000	00	000000000	000●	000
Overview &	Additional	Results		

- Spatial variation in somatic capital due to climatic conditions explains a difference in the timing of the Neolithic Transition (range of 11,000 years) of:
 - 229 years per kg body mass,
 - ▶ 3,400 years over the range of body mass in our dataset.
- First stage of the IV estimation is consistent with previous empirical findings (e.g., Will et al., 2021).
- Results remain consistent across different specifications, i.a.:
 - Inclusion of NT sites with minimum distance to BM site > 1000 km.
 - Alternative IDW power parameters, e.g. based on Olsson and Paik (2016).

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
		00000000	0000	000

Conclusion

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
Conclusion	00	00000000	0000	000

- We propose a new explanatory factor for the timing of the Neolithic Transition: Climate induced variation in somatic capital.
- Our theory predicts that harsher climatic conditions lead to higher investment in somatic capital and ultimately an earlier transition to agriculture.
- We empirically test this main prediction using data from neolithic and body mass sites.
- IV approach: Using historical bioclimatic conditions as an instrument, we find evidence for a causal effect of somatic capital on the transition to agriculture.

Motivation	Theory	Data & Empirical Strategy	Results	Conclusion
		00000000	0000	000

Thank you for your attention!

c.haas@fs.de

References I

- Ashraf, Q., & Galor, O. (2011). Dynamics and Stagnation in the Malthusian Epoch. *American Economic Review*, 101(5), 2003–41.
- Ashraf, Q., & Michalopoulos, S. (2015). Climatic Fluctuations and the Diffusion of Agriculture. The Review of Economics and Statistics, 97(3), 589–609.
- Ashraf, Q., Özak, Ö., & Galor, O. (2010). Isolation and Development. Journal of the European Economic Association, 8(2-3), 401–412.
 - Baker, M. J. (2008). A structural model of the transition to agriculture. *Journal of Economic Growth*, *13*, 257–292.
- Beyer, R. M., Krapp, M., & Manica, A. (2020). High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. *Scientific Data*, 7(1), 236.
- Bleaney, M., & Dimico, A. (2011). Biogeographical conditions, the transition to agriculture and long-run growth. European Economic Review, 55(7), 943–954.

References II

- Diamond, J. (1997). *Guns, Germs, and Steel : The Fates of Human Societies.* Norton.
- Dow, G. K., Reed, C. G., & Olewiler, N. (2009). Climate reversals and the transition to agriculture. *Journal of Economic Growth*, 14, 27–53.
- Fort, J., Merce Pareta, M., & Sørensen, L. (2018). Estimating the relative importance of demic and cultural diffusion in the spread of the neolithic in scandinavia. *Journal of the Royal Society Interface*, 15(148), 20180597.
- Galor, O. (2005). From Stagnation to Growth: Unified Growth Theory. In P. Aghion & S. N. Durlauf (Eds.), Handbook of economic growth (pp. 171–293). North–Holland.
- Galor, O. (2011). Unified Growth Theory. Princeton University Press.

Galor, O., & Moav, O. (2002). Natural Selection and the Origin of Economic Growth. Quarterly Journal of Economics, 117(4), 1133–1191.

References III

Galor, O., & Moav, O. (2007). The Neolithic Origins of Contemporary
Variations in Life Expectancy (Working Paper No 2007-14).
Brown University, Department of Economics.
Galor, O., & Özak, Ö. (2016). The Agricultural Origins of Time
Preference. American Economic Review, 106(10), 3064–3103.
Galor, O., & Weil, D. N. (2000). Population, Technology, and Growth:
From Malthusian Stagnation to the Demographic Transition and
Beyond. American Economic Review, 90(4), 806-828.
Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the
CRU TS monthly high-resolution gridded multivariate climate
dataset. Scientific data, 7(1), 109.
Hibbs, D. A., & Olsson, O. (2004). Geography, biogeography, and why
some countries are rich and others are poor. Proceedings of the
National Academy of Sciences, 101(10), 3715-3720.

References IV

Isern, N., Zilhão, J., Fort, J., & Ammerman, A. J. (2017). Modeling the role of voyaging in the coastal spread of the early neolithic in the west mediterranean. *Proceedings of the National Academy of Sciences*, 114(5), 897–902.

 Kaplan, H. S., Lancaster, J. B., Johnson, S. E., & Bock, J. A. (1995). Does observed fertility maximize fitness among New Mexican men? A test of an optimality model and a new theory of parental investment in the embodied capital of offspring. *Human Nature*, *6*, 325–360.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. *Meteorologische Zeitschrift*, 15(3), 259–263.

Locay, L. (1989). From Hunting and Gathering to Agriculture. *Economic Development and Cultural Change*, *37*(4), 737–756.

Olsson, O., & Hibbs, D. A. (2005). Biogeography and long-run economic development. *European Economic Review*, 49(4), 909–938.

References V

Olsson, O., & Paik, C. (2016). Long-run cultural divergence: Evidence from the Neolithic Revolution. Journal of Development Economics, 122, 197-213. Picard, R., & Stepner, M. (2017). Geo2xy: Stata module to convert latitude and longitude to xy using map projections. Pinhasi, R., Fort, J., & Ammerman, A. J. (2005). Tracing the Origin and Spread of Agriculture in Europe. *PLOS Biology*, 3(12), e410. Putterman, L. (2008). Agriculture, Diffusion and Development: Ripple Effects of the Neolithic Revolution. *Economica*, 75(300), 729-748 Putterman, L., & Weil, D. N. (2010). Post-1500 Population Flows and The Long-Run Determinants of Economic Growth and Inequality. Quarterly Journal of Economics, 125(4), 1627–1682. Smith, V. L. (1975). The Primitive Hunter Culture, Pleistocene Extinction, and the Rise of Agriculture. Journal of Political Economy, 83(4), 727-755.

References VI

Stock, J. T., Pomeroy, E., Ruff, C. B., Brown, M., Gasperetti, M. A., Li, F.-J., Maher, L., Malone, C., Mushrif-Tripathy, V., Parkinson, E., et al. (2023). Long-term trends in human body size track regional variation in subsistence transitions and growth acceleration linked to dairying. *Proceedings of the National Academy of Sciences*, 120(4), e2209482119.

Will, M., Krapp, M., Stock, J. T., & Manica, A. (2021). Different environmental variables predict body and brain size evolution in homo. *Nature Communications*, 12(1), 4116.