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Abstract

This paper introduces the instrumental factor model, which extends conventional

factor models in two ways. First, we develop a factor model for high-dimensional

data, moving from scalar-valued data to functional data, which has gained fast-

growing popularity. Second, while the standard estimation approach using Principal

Component Analysis (PCA) requires both a large cross-sectional dimension and a

long time horizon of data, our proposed method, which incorporates additional

characteristic variables as instruments, ensures estimator consistency as long as the

cross-sectional dimension is sufficiently large. We then introduce the eigenvalue ratio

method to consistently estimate the unknown number of factors. Our numerical

experiments suggest that our estimation approach outperforms the conventional

PCA-based method, especially for short panel data. We conclude by conducting an

empirical study to examine the long-term relationship between climate change and

the European cereal market.
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1 Introduction

In recent years, factor models have become a popular framework to analyze high-dimensional

data, which are commonly available in economics, finance, and many other areas due to

rapid advancements in data technology. In such contexts, high-dimensional data is typi-

cally characterized as a large collection of N time series observed over T period of time.

The mechanism of factor models is built upon the idea that a dataset can be decomposed

into two components; a common component that can be explained by a few number of

factors, and an idiosyncratic component that is weakly correlated. The pioneering work

of approximated factor model by Chamberlain (1983), and Chamberlain and Rothschild

(1983) greatly broadens the scope of factor models, especially when the factors are un-

observed, and it has been extensively studied in economics and finance. Early empirical

studies of latent factor model include Stock and Watson (2002a), Stock and Watson

(2002b), Bernanke et al. (2005), and Bai and Ng (2010) focusing on dimensionality reduc-

tion of high-dimensional data. Further theoretical developments are done by Bai and Ng

(2002), Bai (2003), Onatski (2010), and Ahn and Horenstein (2013), providing asymp-

totic properties of model estimators. The factor model is also applied in the realm of

correlated panel data studies by Pesaran (2006), Bai (2009), Pesaran and Tosetti (2011),

and Beyhum and Gautier (2021), known as the interactive fixed-effect model. Xiong and

Pelger (2019), and Bai and Ng (2021) use the factor model for the matrix completion and

causal inference.

The principal component analysis (hereafter, PCA) is the most commonly used method

to estimate the factors, and the factor loadings by recovering the first few principal com-

ponents that capture the variation in the data. A major limitation of the PCA method is

that the existing asymptotic properties are built upon not only the large cross-sectional

dimension (N) but also the large time dimension (T ). However, such a requirement may

be infeasible in many applications where only a short panel data is available. Even if

a long panel is available, there may be structural instability over a long time span, and

thus the standard factor framework may not be directly applicable. Hence, this is an

important constraint we wish to handle in our methodology.

The other aspect of our interest is functional data analysis (hereafter, FDA). Classi-

cal functional data consist of a random sample of square-integrable functions y(r) on

an interval [a, b]. The well-known monographs of FDA include Bosq (2000), Ramsay

and Silverman (2005), Horváth and Kokoszka (2012), Hsing and Eubank (2015), and

Kokoszka and Reimherr (2017), providing theoretical overview and FDA applications in

many fields. With various regularization approaches, FDA is also actively used in re-

gression analysis. See, for example, Ramsay and Dalzell (1991), Hastie and Mallows

(1993), Hall and Horowitz (2007), and Benatia et al. (2017). Combining the elements of

high-dimensionality and FDA, Tavakoli et al. (2021) introduced a factor model for high-

dimensional functional time series data, allowing each observation is defined in a general
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Hilbert space. Specifically, they consider datasets that consist of a large N collection of

function-valued time series over a T period of time. Their model and estimation strat-

egy can be viewed as the functional counterparts of the conventional factor models for

scalar-valued data by Stock and Watson (2002a), Stock and Watson (2002b), Bai and Ng

(2002). In the analogy of Bai and Ng (2002), Tavakoli et al. (2021) demonstrate their

PCA estimators are consistent when min{N, T} → ∞, and thus, the very same limitation

we have discussed still exists for functional data.

To overcome the earlier mentioned limitation, we propose the instrumental factor model

for high-dimensional functional data and provide the identification and estimation method-

ology of our model. Under some regularity conditions analogous to Bai (2003), we show

our estimators are consistent as long as N → ∞ regardless of T being fixed or diverging.

The existing asymptotic theory of factor analysis cannot be applied directly as the ran-

dom elements are now extended from the real number to functional spaces. However, we

illustrate that the underline intuition and mechanism remain to be similar to scalar data.

We then provide the eigenvalue-ratio estimator, analogous to Ahn and Horenstein (2013),

for the number of factors which is unknown in practice.

Our estimation strategy is motivated by the Projected-PCA (hereafter, PPCA) approach

of Fan et al. (2016) that achieves the consistency of the factors and the loadings esti-

mators as long as N is large, and labels our method as Functional-PPCA (hereafter,

FPPCA). The important feature of the PPCA is, in addition to the main panel, there

exist time-invariant characteristics relevant to the main panel through the factor load-

ings, the framework of Connor and Linton (2007) and Connor et al. (2012) that model

the loading as a function of characteristics. Assuming the idiosyncratic noise is indepen-

dent of the characteristics, it can be removed by projecting the data matrix onto a space

spanned by the characteristics even when the time dimension T is finite. The PPCA

then recovers the loadings and factors by applying the PCA to the projected data. This

allows us to consistently estimate the model when the cross-sectional size is large while

the conventional method requires the size of both dimensions to be large. This so-called

‘characteristics-based’ factor model has been widely recognized especially in Finance lit-

erature, see for instance Fan et al. (2017), Kokoszka and Reimherr (2017), Lettau and

Pelger (2020), Kelly et al. (2020), Fan et al. (2021), and Kim et al. (2021). In particu-

lar, Kim et al. (2021) extended the PPCA method by introducing a non-zero mispricing

term that is a function of covariates. Their estimators neither require large T as in the

PPCA method.1 Similarly, Kelly et al. (2020) proposed Instrumented-PCA for dynamic

factor models, but their asymptotic properties require both N and T to be large, which

is unsuited for our study.

Our finite-sample experiments confirm that the factors and loadings are accurately recov-

ered by the FPPCA method as long as N is sufficiently large. In particular, our estimators

1The model by Fan et al. (2015) is a special case of zero mispricing term.
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significantly outperform the PCA method by Tavakoli et al. (2021) for short panel data

even if not all characteristic variables are observed. We then apply our methodology to

the economic analysis of climate change. Using a continually collected globally gridded

air temperature dataset, we conducted a factor-augmented VAR approach to analyze the

long-run relationship between the global temperature and world GDP.2

The remainder of the paper is organized as the following. Section 2 introduces the instru-

mental factor model. Section 2.2 describes the estimators for the factor and the loadings.

In Section 3, we provide the asymptotic properties of the proposed estimators and address

the identification of the number of factors. Section 4 assesses the finite-sample properties

of the proposed estimators using simulated data, and the empirical application is pre-

sented in Section 5. Section 6 concludes the paper. All technical derivations are provided

in Appendices.

Notation and Preliminaries: Throughout the paper, we use the following notations.

A panel of our interest is denoted by

YN,T = {yit : i = 1, . . . , N, t = 1, . . . , T}, (1)

where {yit : t ≥ 1} takes values in a real separable Hilbert space Hi with the inner

product 〈· , ·〉Hi
and the norm ‖ · ‖Hi

= 〈· , ·〉1/2Hi
. Here, N is the number of cross-sections,

and T is the time horizon of data. We call YN,T high-dimensional functional data when

N is large enough.

Let SN = H1⊕H2⊕· · ·⊕HN , where ⊕ denotes the orthogonal direct sum of spaces. Then

any element v ∈ SN can be expressed as v = (v1, . . . , vN)
′, where vi ∈ Hi for i = 1, . . . , N .

The inner product of the space SN is defined by

〈v, w〉SN
=

N∑

i=1

〈vi, wi〉Hi
, ∀v, w ∈ SN ,

and the norm ‖ · ‖SN
= 〈· , ·〉1/2SN

. The simplest example is when Hi = R for all i, then

SN = R
N . Hence, 〈v, w〉SN

=
∑N

i=1〈vi, wi〉R =
∑N

i=1 viwi, which is the usual inner product

of N -dimensional real vectors. A case of our interest is Hi = L2([a, b], R) for all i, the

space of square-integrable functions from a closed interval [a, b] to R, equipped with the

inner product 〈x, y〉L2 =
∫ b
a
x(r)y(r)dr for x, y ∈ L2([a, b], R). Without loss of generality,

we set the interval to [0, 1]. Then we have

〈v, w〉SN
=

N∑

i=1

〈vi, wi〉L2 =
N∑

i=1

∫ 1

0

vi(r)wi(r)dr,

where the inner product in SN involves integral for each vi, wi for i ≤ N . In this paper,

we assume Hi = H = L2([0, 1], R) for all i ≤ N , hence SN is the N direct sum of square

2The air temperature dataset is collected from the National Centers for Environmental Prediction

(NCEP) and the National Center for Atmospheric Research (NCAR).
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integrable functions.

Let D1 and D2 be any separable Hilbert spaces equipped with inner products 〈· , ·〉D1
and

〈· , ·〉D2
, respectively, and define L(D1,D2) to be the space of bounded linear operators

from D1 to D2. An operator V ∈ L(D1,D2) is said to be a Hilbert-Schmidt operator if

for an (complete) orthonormal basis {ej : j ≥ 1} of D1

‖V ‖HS :=

(
∑

j≥1

‖V ej‖2D2

)1/2

<∞,

where ‖ · ‖HS is called the Hilbert-Schmidt norm. Then for any operator V ∈ L(D1,D2),

the corresponding adjoint operator V ∗ ∈ L(D2,D1) satisfy 〈V x1 , x2〉D2
= 〈x1 , V ∗x2〉D1

for all x1 ∈ D1, x2 ∈ D2. For the brevity of notations, we write ‖ · ‖ = ‖ · ‖HS. In a

special case D1 = R
N and D2 = R

T , ‖ · ‖ is the Frobenius norm, and V ∗ = V ′.

For an illustration, we present an operator example relevant to our factor model. Define

an operator Λ ∈ L(RK ,HN) such that for any f ∈ R
K ,

Λf =




∑K
k=1 λ1kfk

...∑K
k=1 λNkfk


 ∈ HN ,

where λik ∈ H = L2([0, 1], R) for all i ≤ N . Note that Λf is similar to the usual matrix

multiplication of N × K matrix Λ on a K × 1 vector f , except now λik is a functional

element. The matrix Λ will be the loading matrix and f will be the latent factors at a

given time in our model. If we fix r ∈ [0, 1], Λf corresponds to the usual real-valued matrix

multiplication of Λ(r)f . The adjoint operator Λ∗ must satisfy 〈Λf, y〉HN
= 〈f,Λ∗y〉RK for

all f ∈ R
K , y ∈ HN . Then we define the adjoint operator as

Λ∗y =




∑N
i=1

∫ 1

0
λi1(r)yi(r) dr
...∑N

i=1

∫ 1

0
λiK(r)yi(r) dr


 ∈ R

K .

With some abuse of notations, Λ∗y =
∫ 1

0
Λ(r)′y(r) dr where we treated Λ(r), y(r) as a

real-valued matrix and vector for a fixed r ∈ [0, 1]. By the above definitions, we have

〈Λf, y〉HN
= 〈f,Λ∗y〉RK =

K∑

k=1

N∑

i=1

fk

∫ 1

0

λik(r)yi(r) dr.

Let us introduce the operator of the inner product matrix. The operator Λ∗Λ ∈ L(RK ,RK)

can be written as K ×K real-valued matrix:

Λ∗Λ =




∑N
i=1

∫ 1

0
λi1(r)λi1(r) dr · · ·

∑N
i=1

∫ 1

0
λi1(r)λiK(r) dr

...
. . .

...∑N
i=1

∫ 1

0
λiK(r)λi1(r) dr · · · ∑N

i=1

∫ 1

0
λiK(r)λiK(r) dr


 ∈ R

K×K ,
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where RK×K denotes K ×K real-valued matrix. We can treat this matrix as the integral

of Λ(r)′Λ(r) over r ∈ [0, 1], that is, Λ∗Λ =
∫ 1

0
Λ(r)′Λ(r) dr. If we take a special case that

λik ∈ R, the matrix Λ∗Λ is the inner product matrix, Λ′Λ.

2 Instrumental Factor Model

2.1 Model

Our interest lies in estimating the instrumental factor model (hereafter, IFM)

yit(r) =
K∑

k=1

λik(r)ftk + εit(r), r ∈ [0, 1], i ≤ N, t ≤ T, (2)

where yit(r), λik(r), εit(r) ∈ H and ftk ∈ R. The scalar variables ftk are called latent

factors; λik(r) are the factor loadings; εit(r) are called idiosyncratic errors. The model

(2) follows a typical factor structure in the literature that is decomposed into two unob-

served components; the first summation term is called the common component with K

factors, and the error component is orthogonal and additively separable to the common

component. In addition, we give a structure to the loading coefficient as follows:

λik(r) = gk(Xi, r) + γik(r),

where Xi = (Xi1, . . . , XiH)
′ ∈ R

H is a vector of time-invariant characteristics, and γik(r)

is the remaining component unexplained by Xi. For example, if yit is the air temperature

in region i, Xi can be regional-specific characteristics such as longitude, latitude, and

amplitude. Let ft = (ft1, . . . , ftK)
′ be a vector of K factors, and the error component

εt(r) = (ε1t(r), . . . , εNt(r))
′. We assume {Xi, ft}i≤N,t≤T is independent of {εt(r)}t≤T for all

r ∈ [0, 1], and {Xi}i≤N is independent of {γik(r)}i≤N for all r ∈ [0, 1], k ≤ K. Moreover,

we assume gk(Xi, r) has an additively separable structure such that

gk(Xi, r) = gk(Xi1, . . . , XiH , r) =
H∑

h=1

gkh(Xih, r),

for all i ≤ N, k ≤ K. Then for each h ≤ H, gkh is approximated by the J sieve functions

{φ1(x), φ2(x), . . . , φJ(x)}, i.e.,

gkh(Xih, r) =
J∑

j=1

bj, kh(r)φj(Xih) +Rkh(Xih, r),

where Rkh is the sieve approximation error that tends to zero as J → ∞. For an illustra-

tion, suppose H = 2 and J = 2. Then we can write

gk(Xi, r) = gk1(Xi1, r) + gk2(Xi2, r)

=
2∑

j=1

2∑

h=1

bj, kh(r)φj(Xih) +
2∑

h=1

Rkh(Xih, r).
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Thus, for each k, we have J ×H = 4 number of sieve coefficients.

The IFM can be viewed as a general framework that encompasses various forms of factor

models for high-dimensional data in the literature.

Factor Model for Time Series: Consider the factor model for scalar data studied by

Bai and Ng (2002), and Bai (2003) that

yit =
K∑

k

λikftk + εit. (3)

The model (3) is a special case of IFM with yit, λik, εit ∈ R, and the characteristics X

has no explanation power, that is, gk(X) = 0. Hence, the remaining component γik itself

becomes the loading.

Semiparametric Factor Model for Time Series: If we maintain the above assump-

tion but g(X) 6= 0, the IFM represents the semiparametric factor model

yit =
K∑

k=1

{gk(Xi) + γik}ftk + εit,

which is proposed by Fan et al. (2016). If we further assume γik = 0, our model coincides

with Connor and Linton (2007), and Connor et al. (2012).

Factor Model for Functional Time Series: The factor model representation for high-

dimensional functional time series by Tavakoli et al. (2021) is

yit(r) =
K∑

k

λik(r)ftk + εit(r), (4)

where yit(r), λik(r), εit(r) ∈ H. Similar to the conventional factor model for scalar data,

our model reduces to (4) if we assume that gk(X, r) = 0, hence γik(r) becomes the loading

component.

In the following, we describe the matrix representation of the model. Hereafter, whenever

possible, we omit r in functional elements for the brevity of notations. In matrix form,

the model is expressed as

Y = ΛF ′ + ε

= [G(X) + Γ]F ′ + ε,
(5)

where Y is the N × T matrix of yit; Λ is the N ×K matrix of λik; F is the T ×K matrix

of ftk; ε is the N × T matrix of εit; G(X) is the N ×K matrix of gk(Xi); X is the N ×H

matrix of Xih; and Γ is the N×K matrix of γik. Let us elaborate on G(X) in terms of the

basis functions. Define JH-dimensional vector b′k = (b1, k1, . . . , bJ, k1, . . . , b1, kH , . . . , bJ, kH),

and φ(Xi)
′ = (φ1(Xi1), . . . , φJ(Xi1), . . . , φ1(XiH), . . . , φJ(XiH)). Then for each k ≤ K,

gk(Xi) = φ(Xi)
′bk +

H∑

h=1

Rkh(Xih).
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Let B = (b1, . . . , bK) be the (JH) ×K matrix of bj, kh; Φ(X) = (φ(X1), · · · , φ(XN))
′ be

the N × (JH) matrix of φj(Xih); and R(X) be N ×K matrix of
∑H

h=1Rkh(Xih). Then,

we can write G(X) = Φ(X)B +R(X), and thus we have

Y = [Φ(X)B + Γ]F ′ +R(X)F ′ + ε.

Lastly, we define P as the projection matrix onto the space spanned by basis functions of

X, written as

P = Φ(X) [Φ(X)′Φ(X)]
−1

Φ(X)′ ∈ R
N×N ,

and denote Ŷ = PY , the projected data onto the space spanned by X. Assuming the

sieve error is negligible and the orthogonal condition of (X, ε,Γ),

Ŷ = P [Φ(X)B + Γ]F ′ + PR(X)F ′ + Pε

≈ Φ(X)BF ′,

as N → ∞. Hence, Ŷ is approximately noiseless when N is large enough and T can be

either fixed or divergent.

2.2 Estimation

Our estimation strategy is inspired by the PPCA method proposed by Fan et al. (2016),

which applies the PCA method to the projected data Ŷ rather than the original data Y . In

the conventional factor model, it is assumed that the main panel data of interest is the only

observed information to econometricians. On the other hand, the key assumption of the

PPCA method is that, in addition to the main panel, there exist characteristics variables

that are relevant to the main panel through the loading components and independent of

the idiosyncratic errors. By the independence condition, Ŷ is asymptotically noiseless

as long as N → ∞, whether T is fixed or not. Hence, the factors and the loadings can

be consistently estimated by applying the PCA method on Ŷ . The above asymptotic

properties can also be heuristically explained in terms of the eigenvalues of the covariance

matrix. Consider the conventional factor model

Y = ΛF ′ + ε,

where (Y,Λ, ε) are matrices of real numbers, and we impose the normalization conditions

F ′F

T
= IK ,

Λ′Λ

N
= diagonal matrix with non-zero elements,

where IK denotes the K × K identity matrix. For simplicity, we assume that PΛ = Λ,

that is, the observed characteristics fully explain the loading. Let ψk(A) denote the k-th

largest eigenvalue of a matrix A. In the case of PCA estimation, for k ≤ K

ψk

(
1

NT
Y ′Y

)
= ψk

(
1

NT
FΛ′ΛF ′

)

︸ ︷︷ ︸
Op(1)

+ψk

(
1

NT
ε′ε

)

︸ ︷︷ ︸
Op(1/min{N,T})

+ψk

(
1

NT
(FΛ′ε+ ε′ΛF ′)

)

︸ ︷︷ ︸
Op(1/

√
NT )

,
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that is, the eigenvalues of the noise terms of the sample covariance matrix vanish when

both the cross-sectional dimension (N) and the time horizon (T ) are large. On the other

hand, the sample covariance matrix of the projected data has

ψk

(
1

NT
Y ′PY

)
= ψk

(
1

NT
FΛ′PΛF ′

)

︸ ︷︷ ︸
Op(1)

+ψk

(
1

NT
ε′Pε

)

︸ ︷︷ ︸
Op(1/N)

+ψk

(
1

NT
(FΛ′Pε+ εP ′ΛF ′)

)

︸ ︷︷ ︸
Op(1/(

√
NT ))

.

Therefore, the eigenvalues of the noise terms vanish as long as N → ∞, and thus F and

Λ are consistently estimated without large T .

We now elaborate on our FPPCA estimation procedure of the instrumental factor model

for high-dimensional functional data. Suppose we have a factor model for high-dimensional

functional data

Y = [Φ(X)B + Γ]F ′ +R(X)F ′ + ε,

and the number of factors K is assumed to be known for the moment, and we will treat

the identification issue of unknown K in Section 3. For scalar data, the PCA/PPCA

method is simply applying the eigendecomposition of the sample covariance matrix which

can be seen as the inner product of the data matrix. Likewise, we first compute the inner

product matrix of the projected functional data

Ŷ ∗Ŷ

NT
=

1

NT



〈ŷ1 , ŷ1〉 . . . 〈ŷ1 , ŷT 〉

...
. . .

...

〈ŷT , ŷ1〉 . . . 〈ŷT , ŷT 〉


 ∈ R

T×T , (6)

where ŷt = (ŷ1t, . . . , ŷNt)
′ is the t-th column vector of Ŷ . We name the matrix (6) as

the integrated autocovariance matrix 3 since each element is integrated, 〈ŷs , ŷt〉 =∑N
i=1

∫ 1

0
ŷis(r)ŷit(r)dr. The integrated covariance matrix can be decomposed as

Ŷ ∗Ŷ

NT
= UV U ′ (7)

where V ∈ R
K×K is a diagonal matrix where the diagonal elements are the K leading

eigenvalues of (6) in descending order, and U ∈ R
T×K is a matrix whose k-th column is

the eigenvector corresponding to k-th largest eigenvalue. In analogy to the PPCA method

by Fan et al. (2016), the estimator for the factors is F̂ =
√
TU , and for r ∈ [0, 1], the

estimator for G(X, r) and Λ(r) are

Ĝ(X, r) =
1

T
Ŷ (r)F̂ , Λ̂(r) =

1

T
Y (r)F̂ .

Given that Γ(r) = Λ(r)−G(X, r), the estimator for the remaining component Γ is

Γ̂(r) = Λ̂(r)− Ĝ(X, r).

3Our definition is distinctive from the notion of the integrated covariance matrix in finance literature.

Following our notations, suppose T = 1 and yi1(r) denotes stock i’s price in a continuous time interval

r ∈ [a, b]. Then, the integrated covariance matrix refers to E
[∫ b

a
y1(r)y

′
1
(r)dr

]
∈ R

N×N , and if N = 1,

it is known as integrated volatility.
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Lastly, the estimator for the sieve parameter matrix is

B̂(r) =
1

T
[Φ(X)′Φ(X)]−1Φ(X)′Y (r)F̂ ,

where it comes from regressing PY (r)F̂ on Φ(X).

A covariance matrix for scalar data can be understood as a special case of (6) if we assume

that ŷt ∈ R
N , and our estimation procedure coincides with the PCA/PPCA method for

scalar data. In addition, the estimation of the parameters is also possible by applying

the eigendecomposition of Ŷ Ŷ ∗/(NT ), and its eigenfunctions are now the estimators

for the loading components. However, the computation would be much heavier than

the eigendecomposition of the matrix (6) as the matrix Ŷ Ŷ ∗ is a functional operator in

L(HN ,HN). This is an analogy to the scalar data case that when N > T , it is more costly

to handle a larger matrix Y Y ′ ∈ R
N×N than Y ′Y ∈ R

T×T .

3 Asymptotic Theory

In this section, we present the asymptotic properties of the estimators introduced in

Section 2.2. For now, we maintain the assumption that K is known, and the estimator of

the number of factors and its asymptotic results are provided in Section 3.2.

3.1 Factors, Loadings, and Common Component

We first formally state the regularity conditions to demonstrate the consistency of the

estimators described in Section 2.2.

Assumption 3.1 (Random elements).

For all i ≤ N, t ≤ T, k ≤ K, yit, λik and εit belong to L2([0, 1], R), and ftk ∈ R.

Assumption 3.1 is to incorporate functional elements to the latent factor model that allows

us to build a framework for high-dimensional functional data.

Assumption 3.2 (Identification).

(i) Almost surely,
F ′F

T
= IK ,

G(X)∗G(X)

N
= D,

where D ∈ R
K×K is a diagonal matrix with distinctive elements.

(ii) There exists two positive constants cmin and cmax such that with probability approach-

ing one, as N → ∞

cmin ≤ ψmin

(
G(X)∗G(X)

N

)
≤ ψmax

(
G(X)∗G(X)

N

)
≤ cmax.

Condition (i) is a typical identification restriction that allows us to separately identify

factors and loading. Condition (ii) is known as the pervasiveness that all K factors have

a nontrivial contribution to the integrated covariance matrix.

10



Assumption 3.3 (Basis functions).

(i) As N → ∞, with probability approaching one

dmin ≤ ψmin

(
Φ(X)′Φ(X)

N

)
≤ ψmax

(
Φ(X)′Φ(X)

N

)
≤ dmax,

where dmin and dmax denote two positive constants.

(ii) max
j≤J,i≤N,h≤H

E[φj(Xih)
2] <∞.

For simplicity, if we assume that Φ(X) = X, Assumption 3.3 implies the covariance matrix

E[XiX
′
i] is well-defined and {Xi}i≤N can be weakly dependent as long as the law of large

number holds that N−1
∑N

i=1XiX
′
i

p→ E[XiX
′
i].

Assumption 3.4 (Data generating process).

(i) A mean zero functional process {εt}t≤T is independent of {Xi, ft}i≤N,t≤T .

(ii) {ft, εt}t≤T is strictly t-stationary.4

(iii) Weak dependence: Let M1 be a positive constant. Then

max
i≤N

N∑

q=1

∫ 1

0

|E[εit(r1)εqt(r2)]|dr1dr2 < M1

1

NT

N∑

i=1

N∑

q=1

T∑

t=1

T∑

s=1

∫ 1

0

|E[εit(r1)εqs(r2)]|dr1dr2 < M1

max
i≤N

1

NT

N∑

q=1

N∑

m=1

T∑

t=1

T∑

s=1

∫ 1

0

|cov[εit(r1)εqt(r2), εis(r1)εms(r2)]|dr1dr2 < M1

(iv) Mixing condition: There exist A, a1 > 0 such that for all T > 0,

α(T ) < exp(−AT a1),

where the α-mixing coefficient is defined as

α(T ) = sup
Θ1∈F0

−∞
,Θ2∈F∞

T

|P (Θ1)P (Θ2)− P (Θ1 ∩Θ2)|

for σ-algebras F0
−∞ and F∞

T generated by {ft, εt}t≤0 and {ft, εt}t≥T , respectively.

(v) Light-tailed distribution: There are positive constants a2, a3 and c1, c2 such that

a−1
1 + a−1

2 + a−1
3 > 1, and for any δ > 0,

sup
r∈[0,1]

P (|εit(r)| > δ) ≤ exp {− (δ/c1)
a2} , P (|ftk| > δ) ≤ exp {− (δ/c2)

a3} ,

for all i ≤ N , t ≤ T , and k ≤ K.

4If {εit(r)}t≤T is a strictly t-stationary process, E[εit(r)] does not depend on t, and E[εit(r1)εjs(r2)]

only depends on |t− s| for all i, j ≤ N, r1, r2 ∈ [a, b].
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Assumption 3.4 is analogous to the standard weak cross-sectional and time dependency

conditions in the approximate factor model, see for instance Bai and Ng (2002), and Fan

et al. (2016). Our assumption essentially implies that the standard weak dependency

conditions are satisfied for each r ∈ [0, 1].

Assumption 3.5 (Loading components).

(i) {γik}i≤N,k≤K is independent of {Xi}i≤N , and E[γik(r)] = 0 for all r ∈ [0, 1].

(ii) Let ρN = sup
r∈[0,1], k≤K

1
N

∑N
i=N E[γ

2
ik(r)], and ρN <∞. Then we have

sup
r1,r2∈[0,1],i≤N,k≤K

N∑

q=1

|E[γik(r1)γqk(r2)]| = O(ρN).

(iii) sup
r∈[0,1],i≤N,k≤K

E[g2k(Xi, r)] <∞.

Here, we assume that the unexplained component is independent of the characteristic

variables and allow weak cross-sectional dependency.

Assumption 3.6 (Sieve approximation).

(i) For all h ≤ H, k ≤ K, the loading component gkh(·) belongs to a Hölder space

G(ω, β, L) defined as

G(ω, β, L) = {g : |D ωg(v1)−D ωg(v2)| ≤ L‖v1 − v2‖β}

for some L > 0, v1, v2 ∈ R× [0, 1].

(ii) Suppose κ = (ω + β) ≥ 2. As J → ∞, the sieve coefficients {bk, jh}j≤J satisfy

sup
r∈[0,1], x∈Xh

|gkh(x, r)−
J∑

j=1

bk, jh(r)φj(x)|2 = O(J−κ), for all h ≤ H, k ≤ K,

where Xh denotes the support of Xih.

(iii) sup
r∈[0,1], k≤K,j≤J,h≤H

b2k, jh(r) <∞.

Assumption 3.6 is a technical condition to control the smoothness of the function gkh(, )

to ensure the approximation error decays at the rate of O(J−κ) for κ ≥ 2.

Theorem 3.1.

Suppose J = o(
√
N), and Assumptions 3.1-3.6 are satisfied. As N, J → ∞ (T may stay

constant or simultaneously grow with N and J),

1

T
‖F̂ − F‖2 = Op

( 1

N
+

1

Jκ

)
,

1

N
‖Ĝ(X)−G(X)‖2 = Op

( J

N2
+

J

NT
+

J

Jκ
+
JρN
N

)
,

‖B̂ −B‖2 = Op

( J

N2
+

J

NT
+

J

Jκ
+
JρN
N

)
.
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Theorem 3.1 implies the consistency of the estimators without a condition T → ∞, which

is an important feature of the FPPCA method in the case of a short-time horizon. In

practice, there is no guarantee that a time series model is stable over a long period of

time, hence we may need to restrict ourselves to a short period even if large sample data

is available. Therefore, our FPPCA method would be more appealing than the PCA

method by Tavakoli et al. (2021) in such context.

Corollary 3.1.

Under the assumptions of Theorem 3.1, as T → ∞ simultaneously with N and J ,

1

N
‖Γ̂− Γ‖2 = Op

( J

N2
+

1

T
+

1

Jκ
+
JρN
N

)
. (8)

Given that Γ̂(r) = Λ̂(r) − Ĝ(X, r), and Λ̂(r) comes from the regression of the original

data Y on F̂ , the consistency requires T → ∞.

3.2 Number of Factors

We have so far assumed that the number of factors is known, however, such an assumption

is unrealistic in practice. For scalar data, Bai and Ng (2002), Hallin and Lǐska (2007), Bai

and Ng (2007), and Alessi et al. (2010) proposed an information criteria-based method to

estimate the number of factors. Other popular approaches based on eigenvalues criteria

include Onatski (2010), Lam and Yao (2012), Ahn and Horenstein (2013), and Fan et al.

(2016). In the functional context, Tavakoli et al. (2021) proposed a consistent estimator

based on an information criterion extending the idea of Bai and Ng (2002). An attractive

feature of the eigenvalue ratio estimator is that a penalty function and the maximum

number of factors do not need to be pre-specified. Moreover, it is well-known that the

finite-sample accuracy of the information criteria approach could heavily depend on the

choice of a penalty function and the maximum number. Hence, we adopt the eigenvalue

ratio method by Ahn and Horenstein (2013) and Fan et al. (2016) in the context of

projected functional data. The criterion employed is the ratio of two adjacent eigenvalues

of Ŷ ∗Ŷ defined as

ER(ℓ) =
ψℓ

(
Ŷ ∗Ŷ

)

ψℓ+1

(
Ŷ ∗Ŷ

) , ℓ = 1, . . . , ℓmax.

Here, we heuristically describe the underline mechanism of the eigenvalue ratio criterion

to identify the number of factors. As we have discussed in Section 2.2, ψℓ (·) is persistent
for ℓ ≤ K uniformly over N and T . For ℓ > K, ψℓ (·) is solely determined by the noise

terms that vanish asymptotically. Therefore, ER(ℓ) is bounded for ℓ 6= K and diverges

when ℓ is correctly chosen as K. Following the above intuition, we now define the number

of factors estimator as

K̂ = argmax
1≤ℓ<ℓmax

ψℓ

(
Ŷ ∗Ŷ

)

ψℓ+1

(
Ŷ ∗Ŷ

) .
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Assumption 3.7 (Number of factors).

The error matrix ε(r) can be decomposed as

ε(r) = A
1/2
N U(r)Z

1/2
T ,

(i) AN ∈ R
N×N and ZT ∈ R

T×T are non-stochastic positive definite matrices where

eigenvalues are bounded away from zero and infinity.

(ii) U(r) is the N × T matrix of uit(r), where the functional process {uit}i≤N,t≤T is

mean-zero and independent over i and t. In addition, ut = (u1t, . . . , uNt)
′ is iid

sub-Gaussian, that is, there exists M2 > 0 such that

E [exp{τ〈ut, v〉}] ≤ exp{τ 2M2‖v‖2},

for all τ > 0, v ∈ HN .

(iii) Almost surely,

dmin ≤ ψmin

(
Φ(X)′Φ(X)

N

)
≤ ψmax

(
Φ(X)′Φ(X)

N

)
≤ dmax,

where dmin and dmax denote two positive constants.

Condition (i) is analogous to the standard assumption proposed by Ahn and Horenstein

(2013). AN captures the cross-sectional correlation of ε, while RT controls the structure

of time dependency. In a special case that AN and RT are diagonal matrices, then εit is

independent over i and t. The sub-Gaussianity condition in (ii) is to apply the asymptotic

theory of high-dimensional random matrix by Vershynin (2010) and Vershynin (2018).

Theorem 3.2.

Suppose Assumptions 3.1-3.7 holds, and 1 ≤ K < JH/2. Then as N, T → ∞, and

J = o (min{N, T}), we have

P (K̂ = K) → 1.

Theorem 3.2 shows that the estimator K̂ is consistent when both N, T → ∞. Large T

is a necessary condition to ensure that the eigenvalues of U(r) are bounded away from

zero and infinity, hence denominator of ER(ℓ) is well-defined for ℓ ≥ K. If we impose

an alternative condition that the eigenvalues of U(r) are bounded away from zero and

infinity almost surely, Theorem 3.2 still holds without T → ∞.

4 Numerical Experiments

This section reports numerical experiment results to assess the finite-sample performance

of the FPPCA estimators for factors, loadings, and common components. The purpose of

the numerical experiment is to compare the finite-sample performance of our estimators

in Section 2.2 to the PCA proposed by Tavakoli et al. (2021) in various settings. We
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first introduce the data generating process for the panel {yit : i ≤ N, t ≤ T}. Consider a
model with K factors

yit(r) =
K∑

k=1

gk(Xi, r)ftk + εit(r),

where all functional elements are generated using the Fourier series {φ1(r), . . . , φL(r)},
and our results are invariant with the choice of basis functions. The factor loadings are

generated as

gk(Xi, r) =
H∑

h=1

Xihbkh(r) =
H∑

h=1

Xihβkhφk(r), k ≤ K,

where Xih ∼ N(0, 1). The coefficient βkh is initially drawn from U(0, 1) and treated

as a deterministic parameter for all data generations. In this design, each k-th loading

component is generated by using one basis function φk(r), and thus we ensure to set L ≥
K. The factors ftk are drawn from the standard normal distribution. The idiosyncratic

errors are generated by {φ1(r), . . . , φL(r)} that

εit(r) =
L∑

ℓ=1

aℓ,itφℓ(r),

where aℓ,it ∼ N(0, 1). By using the above model, we simulate the data with two different

sets of panel sizes; the fixed N samples, and the fixed T samples. The fixed N samples

allow us to demonstrate the relative performance of the FPPCA to the PCA, especially

when the T is small. The fixed N samples visually illustrate our theoretical result that

the estimators are consistent as long as N is large. It is well-known that the factors

and the loadings are not separately identified; for any invertible H ∈ R
K×K , we have

Λ0F
′
0 = Λ0(H

−1)′H ′F ′
0 = ΛF ′, where F = F0H and Λ = Λ0(H

−1)′. Hence, we choose H

such that the identification conditions, 1
T
HF ′

0F0H = IK and 1
N
H−1Λ∗

0Λ0(H
−1)′ = D are

satisfied. Then the proposed estimators target the rotated factors and loadings F and Λ.

4.1 Estimation of Factors, Loadings, and Common Component

We set (K,H,L) = (2, 3, 5), and the fixed N samples and the fixed T samples are

{N = 100 & T = 10, 20, . . . , 150} and {T = 100 & N = 10, 20, . . . , 150}, respectively.
For each choice of N and T , we estimate the factors, loadings and common components

using the method proposed in Section 2.2 and the PCA estimators by Tavakoli et al.

(2021). In analogy to the conventional PCA estimators for scalar data, Tavakoli et al.

(2021) applies the eigendecomposition on the real T ×T matrix Y ∗Y
NT

. Their method coin-

cides with the conventional PCA method if Y ∈ R
N×T . The finite-sample performance is

measured by 1√
T
‖F̂−F‖, 1√

N
‖Λ̂−Λ‖, and 1√

NT
‖Ĉ−C‖, where C and Ĉ denotes the com-

mon component matrix and its estimator, respectively. The three values are computed

as the average over 1000 replications for each size of N and T . The simulation results

are depicted in Figure 1, the left column shows the fixed N sample results and the right

column shows the fixed T samples.
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Figure 1 demonstrates that the FPPCA estimators outperform the PCA estimators in all

cases. For fixed N samples in the left column, the performance gap is much wider when T

is small which is in line with our theory. As N is fixed, the improvements on the FPPCA

are marginal as T increases, hence the performance gap becomes smaller. Nevertheless,

our estimators still achieve lower errors than the PCA estimators for larger T . In the case

of fixed T samples, our estimators start to perform even better than the PCA estimators

when N grows larger. This matches with the theory that the convergence rate of the PCA

estimator is Op(1/min{
√
N,

√
T}).

4.2 Estimation with Weak Instrument

In this simulation, we modify the loading component that

yit(r) =

[
Xi1β1φ1(r) +Xi2

β2φ2(r)

D

]
ft + εit(r), (9)

where D → ∞ when max{N, T} → ∞. The model (9) is similar to the weak instrument

model studied by Staiger and Stock (1994) that the parameter for X2 is modeled as local-

to-zero. Hence, the strength of X2 on the loading component decays as the panel size

increases. The objective of this experiment is to examine the performance our estimators

when we partially observe the characteristics that are either strong or weak. Even if not

all characteristics are observed, the experiment result shows that our estimator for factors

to work well as long as the characteristics are strong.

We fix (K,H,L) = (1, 2, 3), and the fixed N samples and the fixed T samples are

{N = 100, T = 20, 40, . . . , 140, D = T} and {T = 100, N = 20, 40, . . . , 140, D = N}.
The estimation errors are averaged over the 500 replications for each N and T . X1 and X2

follow the standard normal distribution with cov(X1, X2) = 0.5. The results are presented

in three different cases; Case 1 : (X2, X2) are observed, Case 2 : (X1) is observed, and

Case 3 : (X2) is observed. We choose β1, β2 ∈ {0, 0.5, 1.0}, hence there are nine possible

values of (β1, β2). The size of βs may be important when the characteristics are partially

observed. For instance, in Case 2, the best scenario is when (β1, β2) = (1, 0), and the

worst scenario is when (β1, β2) = (0, 1). If β1 = 0, we expect all estimators for factors

to fail in all cases. Followed by the eigenvalue argument in Section 2.2, not only the

eigenvalues of the error terms but also the estimation of the eigenvalues of the common

component is not persistent, hence the estimation is not possible.

Figure 2 and 3 report the estimation results of Case 1 for the fixed N samples and the

fixed T samples, respectively. The results are similar to the ones in Section 4.1 that the

FPPCA estimators clearly outperform the PCA when β1 > 0. As we anticipated, both

the FPPCA and the PCA do not work well if β1 = 0. The estimation results for Case 2

are presented in Figure 4 and 5. As long as β1 > 0, our estimators still outperform the

PCA, and thus the results demonstrate that our method works well even if we partially
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observe characteristics, as long as they are strong characteristics.

In contrast to the previous results, our estimator does not work well when only the weak

characteristic X2 is observed. In Figure 6 and 7, the factor is better estimated by the

PCA method in all cases. This confirms our asymptotic theory and intuition that as X2

loses its relevant power on the dependent variable y, the projection not only eliminates the

idiosyncratic noise but also the common component, hence our estimator fails to perform

well.

5 European Cereal Markets and Temperature

Recent climate changes in Europe are characterized by record-breaking high temperatures

and severe weather events, which pose a great risk to crop yields and are expected to in-

tensify in the near future [Campbell (2022), and Pörtner et al. (2022)]. Identifying the

climate threat to agricultural production is essential not only to sustain the current food

security but in the coming decades. To examine the effect of climate change on food se-

curity, we quantify the effect of temperature rise on the European cereal markets; barley,

maize, and wheat which are the three major cereal crops compromise up to 70 percent of

the world’s production of cereals in a year. Cereal grains have been the prime component

of the human diet, accounting for more than half of daily caloric intake and 47 percent

of daily protein intake worldwide [Awika (2011)]. The importance of cereals and cereal

products is also supported by the annual figure that global food security depends largely

on cereal production, which yearly amounts to approximately 2,700 million tons. Produc-

tion shares of cereal production by continent are summarized in Figure 8. Overall, Europe

is an influential player in cereals production. For barley, it is the largest producer in the

world with a 65 percent share of the production per year. Moreover, Europe accounts for

37 percent of the global wheat production which is only one percentage point below the

largest producer, Asia, and 13 percent of maize is cultivated in Europe. Another crucial

cereal, rice, is not considered in this analysis since Europe only accounts for less than 1

percent of global rice production.

To quantify the effect of temperature rise on the barley, maize, and wheat markets, we

employ the VAR approach to estimate the impulse response of short-run temperature

shock on the annual growth rate of cereal prices and productions for the three cereal

markets. It is well-known that simply inspecting the global average temperature does

not fully capture the temperature trend; there is significant cross-sectional heterogeneity

in the trends [IPCC (2014), and Rivas and Gonzalo (2020)]. Therefore, we consider the

NCEP/NCAR5 Reanalysis dataset that recorded daily air temperature across globally

gridded 2629 stations from 1948 to 2020. Given a large number of stations, the standard

VAR model falls into the curse of dimensionality problem, and we thus use the factor-

5The National Centers for Environmental Prediction, and the National Center for Atmospheric Re-

search.
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augmented VAR approach in the spirit of Bernanke et al. (2005) by applying the FPPCA

method to recover factors from the NCEP/NCAR dataset.

Following the notations in Section 2, we denote yit(r) as the station i’s air temperature

(in Kelvin scale) of r-th day in a given month t from January 1948 to December 2020.

We use three characteristics variables for each station i: latitude, longitude, and the

Köppen–Geiger climate classification system. Latitude and longitude are the primary

characteristics that affect the temperature by determining the amount and the angle of

solar radiation to a location. The Köppen-Geiger system classifies the climate of a lo-

cation into thirty different types based on the geographical and ecological elements that

affect the air temperature.

In addition to temperature, precipitation has also been regarded as a vital weather fac-

tor for crop cultivation [Deschênes and Greenstone (2007), Auffhammer (2018), and Xie

et al. (2019)]. Similar to temperature, regional heterogeneity in precipitation needs to be

considered for the analysis. Hence, we acquire information on precipitation from NOAA6

Precipitation Reconstruction over Land (PREC/L) dataset. It records a monthly precip-

itation rate (mm per day) over the global grid of 144 × 72 stations from 1948 to 2021.

Using the three characteristics explained above, we employ the IFM method to recover

factors from the dataset.

Figure 9 shows the IFM estimation result of the NCEP/NCAR Reanalysis and NOAA

PREC/L data. For our analysis, stations in European territories are selected only;

NCEP/NCAR Reanalysis contains 447 stations and NOAA PREC/L has 593 stations.

The number of factors is chosen as one according to the eigenvalue ratio estimator pro-

posed in Section 3.2. The first factor explains over 95% of the data in terms of the relative

size of its eigenvalue for both temperate and precipitation datasets, and we find that all

the empirical results in this section are robust to the choice of the number of factors. For

ease of interpretation, we plot the annual values averaged over all stations. In compar-

ison to the actual trends, our estimation method performs well in capturing the overall

trajectories of temperature and precipitation in European territories.

To estimate the impulse response of short-run temperature shock for each cereal market,

we employ a VAR model with four key variables; temperature, precipitation rate, cereal

production growth rate, and cereal price growth rate. We collected annual figures on

cereal production and cereal price from the FAO7 statistical database and the World

Bank Commodity Price dataset for the period of 1962 - 2020. Given the limitation of

the average temperature and precipitation rate, we make use of the estimated factors to

capture the climate information in Europe. The model of our interest is the following. For

t = 1962, . . . , 2020, define Zt = (F tem
t , F pre

t , Qt, Pt)
′ where (F tem

t , F pre
t ) indicates factors

6National Oceanic and Atmospheric Administration.
7Food and Agriculture Organization of the United Nations.
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for temperature and precipitation rate in Europe respectively, and (Qt, Pt) denotes the

growth rates of cereal production and price. Then, the VAR(1) model8 we consider is

Zt = AZt−1 +Dut, (10)

where we assume E[utu
′
t] = I, and D is a lower triangular impact matrix, that is, we

assume that a temperature shock has a contemporaneous effect on cereal markets.

Figure 10 outlines the response of the barley market to a temperature shock (by one

standard deviation). The contemporaneous effect occurs in the opposite directions for

price and production; the growth rate of price is expected to rise by 2.8 percentage points

whereas the rate for production decreases by 2.6 percentage points. We provided weak

evidence that the contemporaneous responses to the shock are statistically significant at

68 percent confidence level in Figure 11. Overall, the short-run temperature shock dissi-

pates after period six while there is an oscillation in the growth rate of production. The

temperature shock causes the price (resp. production) level to increase (resp. decrease)

permanently by 3.0 percent (resp. 1.2). As evidenced by Figure 12 and 13, the effect

of temperature shock on maize market analogous to barley market. Our results are in

line with the existing evidence that the temperature rise negatively affects agricultural

outputs [Dell et al. (2012), Chen et al. (2016), Burke and Emerick (2016), and Pörtner

et al. (2022)].

6 Conclusion

This paper proposes a new factor model approach, labeled the instrumental factor model,

to analyze high-dimensional data with function-valued observations. The approach follows

the characteristics-based factor model by Connor and Linton (2007) and Connor et al.

(2012) that assume the factor loading as a function of observed characteristic variables.

Our model also provides a general framework that encompasses the conventional factor

model for scalar data, yet the existing intuition and mechanism of the conventional model

still apply.

We then introduce the FPPCA estimators for the factors and the loadings, motivated

by Fan et al. (2016), that first, we project functional data onto the space spanned by

the characteristic variables and then apply the PCA on the projected data to recover

the factors and the loadings. Since idiosyncratic errors are removed after projecting data

onto the characteristics space, our theory demonstrates that the FPPCA estimators for

the factors and the loadings are asymptotically valid even if T is fixed, an appealing fea-

ture when only a short panel data is available. In addition, we introduce an eigenvalue

ratio estimator for the number of factors that can be used for high-dimensional func-

tional data. The finite-sample experiment supports our expectation that the estimators

8We found that the estimation results are invariant to the VAR models with larger lags.
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are more attractive for short-panel data. We show the FPPCA estimators outperform

the PCA estimators by Tavakoli et al. (2021), especially when T is small and/or not all

characteristics are observed. However, the FPPCA does not perform well if we observe

weak instruments only. We then apply the FPPCA method to quantify the relationship

between global warming and the cereal markets by conducting a factor-augmented VAR

approach. The results support the existing evidence that temperature rise leads to a de-

cline in agricultural output.

We conclude by highlighting some key areas for future research. The first issue is to

develop a statistical procedure to test whether the observed characteristic variables have

explaining power on the loading, and if so, whether the characteristics fully/partially

explain the loading. In addition, our asymptotic theory is limited to the consistency of

the estimators only, and therefore, another important area for the future is to provide the

asymptotic distribution of the estimators comparable to Bai (2003).
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Figure 1: Averaged errors of estimators for factors, loadings and common components in

Section 4.1. Left column shows the fixed N samples errors and the right column is for the

fixed T samples.

21



20 40 60 80 100 120 140

T

1.15

1.2

1.25

1.3

1.35

1.4

E
rr

o
r

1
 = 0, 

2
 = 0

20 40 60 80 100 120 140

T

0.2

0.25

0.3

0.35

E
rr

o
r

Factor estimation : Fixed N

1
 = 0.5, 

2
 = 0

PCA

FPPCA

20 40 60 80 100 120 140

T

0.105

0.11

0.115

0.12

0.125

E
rr

o
r

1
 = 1, 

2
 = 0

20 40 60 80 100 120 140

T

1.15

1.2

1.25

1.3

1.35

1.4

E
rr

o
r

1
 = 0, 

2
 = 0.5

20 40 60 80 100 120 140

T

0.2

0.25

0.3

0.35

E
rr

o
r

1
 = 0.5, 

2
 = 0.5

20 40 60 80 100 120 140

T

0.105

0.11

0.115

0.12

0.125

E
rr

o
r

1
 = 1, 

2
 = 0.5

20 40 60 80 100 120 140

T

1.15

1.2

1.25

1.3

1.35

1.4

E
rr

o
r

1
 = 0, 

2
 = 1

20 40 60 80 100 120 140

T

0.2

0.25

0.3

0.35

E
rr

o
r

1
 = 0.5, 

2
 = 1

20 40 60 80 100 120 140

T

0.105

0.11

0.115

0.12

0.125

E
rr

o
r

1
 = 1, 

2
 = 1

Figure 2: Averaged errors of estimator for factors with fixed N samples, where both X1, X2

are observed.
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Figure 3: Averaged errors of estimator for factors with fixed T samples, where both X1, X2

are observed.
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Figure 4: Averaged errors of estimator for factors with fixed N samples, where only X1 is

observed.
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Figure 5: Averaged errors of estimator for factors with fixed T samples, where only X1 is

observed.
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Figure 6: Averaged errors of estimator for factors with fixed N samples, where only X2 is

observed.
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Figure 7: Averaged errors of estimator for factors with fixed T samples, where only X2 is

observed.
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Figure 8: Annual average production share by region 1961 - 2020
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Figure 9: IFM estimation results of the NCEP/NCAR Reanalysis dataset and NOAA

PREC/L from 1960 to 2020 in European territory. The left panel shows the temperature

index and the estimated yearly average temperature, and the right panel shows the actual

and estimated annual average precipitation rate.
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Figure 10: Impulse response functions temperature shock on barely market
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Figure 11: 68% confidence intervals of IRF on barely market

1 2 3 4 5 6 7 8 9 10

Year

-0.04

-0.02

0

0.02

0.04

0.06
Maize Market : Temp Shock

Temp

Preci

Production

Price

1 2 3 4 5 6 7 8 9 10

Year

0.98

1

1.02

1.04

1.06
Maize Market : Accumulated

Production

Price

Figure 12: Impulse response functions temperature shock on maize market
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Figure 13: 68% confidence intervals of IRF on maize market
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Figure 14: Impulse response functions temperature shock on wheat market
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Figure 15: 68% confidence intervals of IRF on wheat market
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Appendix

A Bounded Linear Operators

In this section, we briefly define bounded linear operators used for the theoretical proofs.

Let D1, D2 be any separable Hilbert spaces equipped with inner products 〈· , ·〉D1
, 〈· , ·〉D2

respectively, and define L(D1,D2) to be the space of bounded linear operators from D1

to D2. For any V ∈ L(D1,D2), the operator norm is

‖V ‖∞ := sup
x∈D1,x 6=0

‖V x‖D2

‖x‖D1

<∞.

An operator V is called trace class if for an (complete) orthonormal basis {ej : j ≥ 1} of

D1

‖V ‖TR :=
∑

j≥1

〈(V ∗V )1/2ej, ej〉D1
<∞.

Let sj[·] be the j-th largest singular value of an operator. By the singular value decompo-

sition, ‖V ‖HS =
(∑

j≥1 s
2
j [V ]

)1/2
and ‖V ‖TR =

∑
j≥1 sj[V ]. Then, a trace-class operator

V is also Hilbert–Schmidt since

‖V ‖HS ≤
(
s1[A]

∑

j≥1

sj[V ]

)1/2

= (s1[V ]‖V ‖TR)1/2 <∞.

In addition, for any W ∈ L(D2,D3) and Hilbert-Schmidt operator V ∈ L(D1,D2), we

have ‖WV ‖HS ≤ ‖W‖∞‖V ‖HS. For more details of bounded linear operators, see Hsing

and Eubank (2015).

B Proofs for Section 3

B.1 Proof of Theorem 3.1

Proof. We begin our proof by showing the convergence rate of F̂ in Part 1, and the

convergence rates for Ĝ(X) and B̂ are proved in Part 2 and Part 3 respectively.

Part 1: 1
T
‖F̂ − F‖2

Define V to be a K × K diagonal matrix of the K largest eigenvalues of 1
NT

(PY )∗PY

such that the following holds

1

NT
(PY )∗PY F̂ = F̂ V, (11)

and since V is invertible F̂ = 1
NT

(PY )∗PY F̂V −1. In addition, we define

H = 1
NT

(Φ(X)B)∗(Φ(X)B)F ′F̂ V −1. Given that

F̂ − F = F̂ − FH + F (H − IK),
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we require to bound 1
T
‖F̂ − FH‖2 and 1

T
‖F (H − IK)‖2. First, we prove 1

T
‖F̂ − FH‖2 =

Op(
1
N
+ 1

Jκ ). Recall the model in matrix representation,

Y = [G(X) + Γ]F ′ + ε

= [Φ(X)B +R(X) + Γ]F ′ + ε.

Then,

F̂ − FH =

(
15∑

m=1

Wm

)
V −1,

where

W1 =
1

NT
FB∗Φ(X)′εF̂ , W2 =

1

NT
ε∗Φ(X)BF ′F̂ , W3 =

1

NT
ε∗PεF̂ ,

W4 =
1

NT
FB∗Φ(X)′R(X)F ′F̂ , W5 =

1

NT
FR(X)∗Φ(X)BF ′F̂ , W6 =

1

NT
FR(X)∗PR(X)F ′F̂ ,

W7 =
1

NT
FR(X)∗PεF̂ , W8 =

1

NT
ε∗PR(X)F ′F̂ , W9 =

1

NT
FB∗Φ(X)′ΓF ′F̂ ,

W10 =
1

NT
FΓ∗Φ(X)BF ′F̂ , W11 =

1

NT
FΓ∗PεF̂ , W12 =

1

NT
ε∗PΓF ′F̂ ,

W13 =
1

NT
FR(X)∗PΓF ′F̂ , W14 =

1

NT
FΓ∗PR(X)F ′F̂ , W15 =

1

NT
FΓ∗PΓF ′F̂ .

By Lemma B.1,

1

T
‖F̂ − FH‖2 =

[
Op

(
1

N

)
+Op

(
1

Jκ

)]
Op(1)

= Op

(
1

N
+

1

Jκ

)
.

(12)

ρN is at most a constant. Hence, the speed of W9 = Op(ρN/N) at least as fast as

W1 = Op(1/N).

Second, to prove 1
T
‖F (H − IK)‖2 is bounded, it is equivalent to bound ‖H − IK‖2 since

1
T
‖F‖2 = Op(1). By Lemma B.6, we have

‖H − IK‖2 = Op

(
1

N2
+

1

NT
+

1

Jκ
+
ρN
N

)
. (13)

Hence, by (12) and (13),

1

T
‖F̂ − F‖2 = 1

T
‖F̂ − FH +HF − F‖2

≤ 1

T
‖F̂ − FH‖2 + ‖H − IK‖2 +

2

T
‖F̂ − FH‖‖H − IK‖

≤ 2

T
‖F̂ − FH‖2 + 2‖H − IK‖2

= Op

(
1

N
+

1

Jκ

)
,
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where the third line is implied by the inequality
(
‖F̂ − FH‖ − ‖H − IK‖

)2
≥ 0.

Part 2: 1
N
‖Ĝ(X)−G(X)‖2

By Lemma B.7, 1
N
‖Ĝ(X)−G(X)H‖2 = Op

(
J
N2 +

J
NT

+ J
Jκ + JρN

N

)
. Hence,

1

N
‖Ĝ(X)−G(X)‖2 = 1

N
‖Ĝ(X)−G(X)H +G(X)H −G(X)‖2

≤ 2

N
‖Ĝ(X)−G(X)H‖2 + 2

N
‖G(X)(H − IK)‖2

≤ 2

N
‖Ĝ(X)−G(X)H‖2 + 2

N
‖G(X)‖2∞‖H − IK‖2

= Op

(
J

N2
+

J

NT
+

J

Jκ
+
JρN
N

)
,

where the third inequality holds because 1
N
‖G(X)‖22 = Op(1) by the assumption 3.2, and

‖AB‖ ≤ ‖A‖∞‖B‖.

Part 3: ‖B̂ −B‖2

By Lemma B.6 and B.7, we have ‖H − IK‖2 = Op

(
1
N2 +

1
NT

+ 1
Jκ + ρN

N

)
, and

‖B̂ −BH‖2 = Op

(
J
N2 +

J
NT

+ J
Jκ + JρN

N

)
. Then

‖B̂ − B‖2 = ‖B̂ −BH + BH −B‖2

≤ 2‖B̂ −BH‖2 + 2‖B(H − IK)‖2

≤ 2‖B̂ −BH‖2 + 2‖B‖2‖H − IK‖2

= Op

(
J

N2
+

J

NT
+

J

Jκ
+
JρN
N

)
,

since ‖B‖2 = Op(J).

B.2 Proof of Corollary 3.1

By Lemma B.6 and B.7, we have ‖H − IK‖2 = Op

(
1
N2 +

1
NT

+ 1
Jκ + ρN

N

)
, and

1
N
‖Γ̂− ΓH‖2 = Op(

1
Jκ + JρN

N
+ J

N2 +
1
T
). Then

1

N
‖Γ̂− Γ‖2 = 1

N
‖Γ̂− ΓH + ΓH − Γ‖2

≤ 2

N
‖Γ̂− ΓH‖2 + 2

N
‖Γ(H − IK)‖2

≤ 2

N
‖Γ̂− ΓH‖2 + 2

N
‖Γ‖2∞‖H − IK‖2

= Op

(
1

Jκ
+
JρN
N

+
J

N2
+

1

T

)
+Op(ρN)Op

(
1

N2
+

1

NT
+

1

Jκ
+

1

N

)

= Op

( 1

Jκ
+
JρN
N

+
J

N2
+

1

T

)
.
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B.3 Lemmas for Theorem 3.1

Lemma B.1.

1. ‖V ‖∞ = Op(1), ‖V −1‖∞ = Op(1), ‖H‖∞ = Op(1).

2. 1
T ‖W1‖2 = Op

(
1
N

)
, 1

T ‖W2‖2 = Op

(
1
N

)
.

3. 1
T ‖W3‖2 = Op

(
J2

N2

)
, 1

T ‖W4‖2 = Op (J
−κ) , 1

T ‖W5‖2 = Op (J
−κ) .

4. 1
T ‖W6‖2 = Op

(
J−2κ

)
, 1

T ‖W7‖2 = Op

(
1

NJκ−1

)
, 1

T ‖W8‖2 = Op

(
1

NJκ−1

)
.

5. 1

T
‖W9‖2 = Op

(
ρN

N

)
, 1

T
‖W10‖2 = Op

(
ρN

N

)
, 1

T
‖W11‖2 = Op

(
J2ρN

N2

)
, 1

T
‖W12‖2 = Op

(
J2ρN

N2

)
.

6. 1

T
‖W13‖2 = Op

(
ρN

NJκ−1

)
, 1

T
‖W14‖2 = Op

(
ρN

NJκ−1

)
, 1

T
‖W15‖2 = Op

(
JρN

N3

)
.

Proof of Lemma B.1.

1. Recall that V is a K × K diagonal matrix of the first K largest eigenvalues of
1
NT

(PY )∗PY such that the following holds

1

NT
(PY )∗(PY )F̂ = F̂ V.

Since the square matrix Φ(X)′Φ(X)/N has the full rank in probability, we can write

1

NT
(PY )∗PY =

1

NT
Y ∗Φ(X)(Φ(X)′Φ(X))−1/2(Φ(X)′Φ(X))−1/2Φ(X)′Y.

Define A to be the outer product of 1√
NT

(Φ(X)′Φ(X))−1/2Φ(X)′Y ,

A =
1

NT
(Φ(X)′Φ(X))−1/2Φ(X)′Y Y ∗Φ(X)(Φ(X)′Φ(X))−1/2,

then, A and V have the same K largest eigenvalues. Given Y = ΛF ′ + ε, we can

write

A =
4∑

i

Ai,

where

A1 =
1

N
(Φ(X)′Φ(X))−1/2Φ(X)′ΛΛ∗Φ(X)(Φ(X)′Φ(X))−1/2,

A2 =
1

NT
(Φ(X)′Φ(X))−1/2Φ(X)′ΛF ′ε∗Φ(X)(Φ(X)′Φ(X))−1/2,

A3 =
1

NT
(Φ(X)′Φ(X))−1/2Φ(X)′εFΛ∗Φ(X)(Φ(X)′Φ(X))−1/2,

A4 =
1

NT
(Φ(X)′Φ(X))−1/2Φ(X)′εε∗Φ(X)(Φ(X)′Φ(X))−1/2.

We show that the K largest eigenvalues of A are determined by A1 (in probability),

and the rest three terms are negligible when N → ∞ and J = o(N). Similar to

the construction of A, we know that the eigenvalues of A1 are the same as those of
1
NT

(PΛ)∗PΛ, therefore the K largest eigenvalues of A1 are bounded away from zero
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and infinity under the assumption 3.2. Hence, ‖V ‖∞ and ‖V −1‖∞ are both Op(1).

Let us now prove that the eigenvalues of A and A1 coincides in probability. Since

A∗
2 = A3, we only prove the convergence rate of ‖A2‖∞.

‖A2‖∞ =
1

NT
‖ (Φ(X)′Φ(X))

−1/2
Φ(X)′ (ΛF ′ε∗) Φ(X) (Φ(X)′Φ(X))

−1/2 ‖∞

≤ 1

NT
‖ (Φ(X)′Φ(X))

−1 ‖∞‖Φ(X)‖∞‖Λ‖‖F ′ε∗Φ(X)‖

=
1

NT
Op

(
1

N

)
OP (

√
N)OP (

√
N)Op(

√
NTJ)

= Op

(√
J

NT

)
,

as ‖F ′ε∗Φ(X)‖ = Op(
√
NTJ) by Lemma C.1.

By Lemma C.1, we have

‖A4‖∞ =
1

NT
‖ (Φ(X)′Φ(X))

−1/2
Φ(X)′εε∗Φ(X) (Φ(X)′Φ(X))

−1/2 ‖∞

≤ 1

NT
‖ (Φ(X)′Φ(X))

−1 ‖∞‖Φ(X)′ε‖2

=
1

NT
Op

(
1

N

)
Op(NTJ)

= Op

(
J

N

)
.

Hence, as N → ∞, J = o(N),

|ψk(A)− ψk(A1)| ≤ ‖A− A1‖∞
= ‖A2 − A3 − A4‖∞

= Op

(√
J

NT
+
J

N

)
,

for k ≥ 1.

Recall H = 1
NT
B∗Φ(X)′Φ(X)BF ′F̂ V −1. By the assumptions 3.2 and 3.6, we have

‖G(X)‖2∞ = Op(N), ‖R(X)‖2 = Op(NJ
−κ). Then

‖H‖∞ = ‖ 1

NT
B∗Φ(X)′Φ(X)BF ′F̂ V −1‖∞

=
1

N
‖(G(X)−R(X))∗(G(X)−R(X))

F ′F̂

T
V −1‖∞

≤ 1

N
‖G(X)∗G(X) +R(X)∗R(X)− 2R(X)∗G(X)‖∞‖F

′F̂

T
‖‖V −1‖∞

≤ 1

N
(‖G(X)∗G(X)‖∞ + ‖R(X)∗R(X)‖∞ + 2‖R(X)∗G(X)‖∞) ‖F

′F̂

T
‖‖V −1‖∞

≤ 2

N

(
‖G(X)‖22 + ‖R(X)‖2

)
‖F

′F̂

T
‖‖V −1‖∞

=
2

N

(
Op(N) +Op(J

−κ)
)
Op(1)Op(1) = Op(1).
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2. By Lemma C.2, ‖B∗Φ(X)′ε‖2 = Op(NT ). Then

1

T
‖W1‖2 =

1

T
‖ 1

NT
FB∗Φ(X)′εF̂‖2

≤ 1

T 3N2
‖F‖2‖B∗Φ(X)′ε‖2‖F̂‖2

= Op

(
1

N

)
.

Similarly, ‖W2‖ = Op

(
1
N

)
.

3. By Lemma C.1, ‖Φ(X)′ε‖ = Op(NTJ), and the assumption 3.3 implies that

‖(Φ(X)′Φ(X))−1‖2∞ = Op

(
1
N2

)
. Then

1

T
‖W3‖2 =

1

T
‖ 1

NT
ε∗PεF̂‖2

≤ 1

T 3N2
‖Φ(X)′ε‖4‖(Φ(X)′Φ(X))−1‖2∞‖F̂‖2

= Op

(
J2

N2

)
.

By the assumption 3.5 and 3.6, ‖R(X)‖2 = Op(NJ
−κ), and

‖Φ(X)B‖∞ ≤ ‖G(X)‖∞ + ‖R(X)‖ = Op(
√
N), dominated by ‖G(X)‖∞. Hence

1

T
‖W4‖2 =

1

T
‖ 1

NT
FB∗Φ(X)′R(X)F ′F̂‖2

≤ 1

T 3N2
‖F‖4‖F̂‖2‖Φ(X)B‖2∞‖R(X)‖2

=
1

T 3N2
Op(T

2)Op(T )Op(N)Op(NJ
−κ)

= Op(J
−κ).

The same method applies to 1
T
‖W5‖2.

4. As ‖P‖∞ = ‖Φ(X)(Φ(X)′Φ(X))−1Φ(X)′‖∞ = Op(1),

1

T
‖W6‖2 =

1

T
‖ 1

NT
FR(X)∗PR(X)F ′F̂‖2

≤ 1

T 3N2
‖F‖4‖F̂‖2‖R(X)‖4‖P‖4∞

=
1

T 3N2
Op(T

2)Op(T )Op(N
2J−2κ)Op(1)

= Op(J
−2κ).

By Lemma C.1,

1

T
‖W7‖2 =

1

T
‖ 1

NT
FR(X)∗PεF̂‖2

≤ 1

T 3N2
‖F‖2‖F̂‖2‖R(X)‖2‖Pε‖2

=
1

T 3N2
Op(T )Op(T )Op(NJ

−κ)Op(TJ)

= Op

(
1

NJκ−1

)
.

Similarly, 1
T
‖W8‖2 = Op(

1
NJκ−1 ).
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5. By Lemma C.2, ‖B∗Φ(X)′Γ‖ = Op(NρN).

1

T
‖W9‖2 =

1

T
‖ 1

NT
FB∗Φ(X)′ΓF ′F̂‖2

≤ 1

T 3N2
‖F‖4‖F̂‖2‖B∗Φ(X)′Γ‖2

= O
(ρN
N

)
.

The same method applies to 1
T
‖W10‖2.

By Lemma C.2, ‖Φ(X)′Γ‖2 = Op(JNρp).

1

T
‖W11‖2 =

1

T
‖ 1

NT
FΓ∗PεF̂‖2

≤ 1

T 3N2
‖F‖2‖F̂‖2‖Γ∗Φ(X)‖2‖(Φ(X)′Φ(X))−1)‖2∞‖Φ(X)′ε‖2

= Op

(
J2ρN
N2

)
.

Similarly, 1
T
‖W12‖2 = Op

(
J2ρN
N2

)
.

6. By Lemma C.2,

1

T
‖W13‖2 =

1

T
‖ 1

NT
FR(X)∗PΓF ′F̂‖2

≤ 1

T 3N2
‖F‖4‖F̂‖2‖R(X)‖2‖Φ(X)(Φ(X)′Φ(X))−1‖2∞‖Φ(X)′Γ‖2

= Op

( ρN
NJκ−1

)

Similarly, 1
T
‖W14‖2 = Op

(
ρN

NJκ−1

)
.

7. Again, by Lemma C.2

1

T
‖W15‖2 =

1

T
‖ 1

NT
FΓ∗PΓF ′F̂‖2

≤ 1

T 3N2
‖F‖4‖F̂‖2‖Γ∗Φ(X)‖4‖(Φ(X)′Φ(X))−1‖2∞

= Op

(
J2ρ2N
N2

)
.

Lemma B.2 (Improved convergence rate).

1. 1
T
‖W1‖2 = Op

(
1
N2 +

1
NJκ + 1

NT

)
.

2. 1
T
‖W3‖2 = Op

(
J2

N3 +
J4

N4 +
J2−κ

N2 + J2

N2T

)
.

3. 1
T
‖W7‖2 = Op

(
J1−κ

N2 + J3−κ

N3 + J1−2κ

N
+ J1−κ

NT

)
.

4. 1
T
‖W11‖2 = Op

(
J2ρN
N2 [ 1

N
+ 1

T
+ 1

Jκ ]
)
.
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Proof of Lemma B.2.

The improved convergence rates are achieved by using the by product result of Theorem

1, 1
T
‖F̂ − FH‖2 = Op

(
1
N
+ 1

Jκ

)
.

1. Using Lemma C.1, and C.2

1

T
‖W1‖2 =

1

T
‖ 1

NT
FB∗Φ(X)′εF̂‖2

≤ 1

T 3N2
‖F‖2‖B∗Φ(X)′ε(F̂ − FH + FH)‖2

≤ 1

T 3N2
‖F‖2

(
2‖B∗Φ(X)′ε‖2‖F̂ − FH‖2 + 2‖B∗Φ(X)′εF‖2‖H‖2

)

=
1

T 3N2
Op(T )

[
Op(NT )Op

(
T

N
+
T

Jκ

)
+Op(NT )Op(1)

]

= Op

(
1

N2
+

1

NJκ
+

1

NT

)
.

2.

1

T
‖W3‖2 =

1

T
‖ 1

NT
ε∗PεF̂‖2

≤ 1

T 3N2
‖ε∗Φ(X)‖2‖(Φ(X)′Φ(X))−1‖2∞

(
‖Φ(X)′ε(F̂ − FH + FH)‖2

)

≤ 1

T 3N2
‖ε∗Φ(X)‖2‖(Φ(X)′Φ(X))−1‖2∞

(
‖Φ(X)′ε‖2‖F̂ − FH‖2 + ‖Φ(X)′εF‖2‖H‖2

)

=
1

T 3N2
Op(NTJ)Op

(
1

N2

)[
Op(NTJ)Op

(
T

N
+
T

Jκ

)
+Op(NTJ)Op(1)

]

= Op

(
J2

N3
+
J4

N4
+
J2−κ

N2
+

J2

N2T

)
.

3.

1

T
‖W7‖2 =

1

T
‖ 1

NT
FR(X)∗PεF̂‖2

≤ 1

T 3N2
‖F‖2‖R(X)‖2‖Φ(X)(Φ(X)′Φ(X))−1‖2∞

(
‖Φ(X)′ε(F̂ − FH + FH)‖2

)

≤ 1

T 3N2
‖F‖2‖R(X)‖2‖Φ(X)(Φ(X)′Φ(X))−1‖2∞

(
‖Φ(X)′ε‖2‖F̂ − FH‖2 + ‖Φ(X)′εF‖2‖H‖2

)

=
1

T 3N2
Op(T )Op(NJ−κ)Op

(
1

N

)[
Op(NTJ)Op

(
T

N
+

T

Jκ

)
+Op(NTJ)Op(1)

]

= Op

(
J1−κ

N2
+

J3−κ

N3
+

J1−2κ

N
+

J1−κ

NT

)
.

4.

1

T
‖W11‖2 =

1

T
‖ 1

NT
FΓ∗PεF̂‖2

≤ 1

T 3N2
‖F‖2‖Γ∗Φ(X)‖2‖(Φ(X)′Φ(X))−1‖2∞

(
‖Φ(X)′ε(F̂ − FH + FH)‖2

)

≤ 1

T 3N2
‖F‖2‖Γ∗Φ(X)‖2‖(Φ(X)′Φ(X))−1‖2∞

(
‖Φ(X)′ε‖2‖F̂ − FH‖2 + ‖Φ(X)′εF‖2‖H‖2

)

=
1

T 3N2
Op(T )Op(JNρN )Op

(
1

N2

)[
Op(NTJ)Op

(
T

N
+

T

Jκ

)
+Op(NTJ)Op(1)

]

= Op

(
J2ρN

N2

[
1

N
+

1

T
+

1

Jκ

])
.
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Lemma B.3.

1. 1
T 2‖F ′W2‖2 = Op

(
1
NT

)
.

2. 1
T 2‖F ′W3‖2 = Op

(
J2

N3T
+ J2

N2TJκ + J2

N2T 2

)
.

3. 1
T 2‖F ′W8‖2 = Op

(
J

NTJκ

)
.

4. 1
T 2‖F ′W12‖2 = Op

(
J2

N3T
NρN

)
.

Proof of Lemma B.3.

1. By Lemma C.2, ‖B∗Φ(X)′εF‖2 = Op(NT ). Hence,

1

T 2
‖F ′W2‖2 =

1

T 4N2
‖F ′ε∗Φ(X)BF ′F̂‖2

=
1

T 4N2
‖F ′ε∗Φ(X)B‖2‖F‖2‖F̂‖2

= Op

(
1

NT

)
.

2. By Lemma C.1,

1

T 2
‖F ′W3‖2 =

1

T 4N2
‖F ′ε∗PεF̂‖2

≤ 1

T 4N2
‖F ′ε∗Φ(X)‖2‖(Φ(X)′Φ(X))−1‖2∞‖Φ(X)′εF̂‖2

≤ 1

T 4N2
‖F ′ε∗Φ(X)‖2‖(Φ(X)′Φ(X))−1‖2∞

[
‖Φ(X)′ε(F̂ − FH)‖2 + ‖Φ(X)′εFH‖2

]

=
1

T 4N2
Op(NTJ)Op

(
1

N2

)[
Op(NTJ)Op

(
T

N
+
T

Jκ

)
+Op(NTJ)Op(1)

]

= Op

(
J2

N3T
+
J2−κ

NT
+

J2

N2T 2

)
.

3. By Lemma C.1

1

T 2
‖F ′W8‖2 =

1

T 4N2
‖F ′ε∗PR(X)F ′F̂‖2

≤ 1

T 4N2
‖F ′ε∗Φ(X)‖2‖(Φ(X)′Φ(X))−1Φ(X)‖2∞‖R(X)‖2‖F‖2‖F̂‖2

=
1

T 4N2
Op(NTJ)Op

(
1

N

)
Op(NJ

−κ)Op(T
2)

= Op

(
J1−κ

NT

)
.

36



4. By Lemma C.1 and C.2,

1

T 2
‖F ′W12‖2 =

1

T 4N2
‖F ′ε∗PΓF ′F̂‖2

≤ 1

T 4N2
‖F ′ε∗Φ(X)‖2‖(Φ(X)′Φ(X))−1‖2∞‖Φ(X)′Γ‖2‖F‖2‖F̂‖2

=
1

T 4N2
Op(NTJ)Op

(
1

N2

)
Op(JNρN)Op(T

2)

= Op

(
J2

N3T
NρN

)
.

Lemma B.4.

1. 1
T
‖F ′(F̂ − FH)‖ = Op

(
1
N
+ 1√

NT
+ 1

Jκ/2 +
√

ρN
N

)
.

2. 1
T
‖F̂ ′(F̂ − FH)‖ = Op

(
1
N
+ 1√

NT
+ 1

Jκ/2 +
√

ρN
N

)
.

Proof of Lemma B.4.

1. Note that F ′(F̂ − FH) =
∑15

n=1 F
′WnV

−1, where Wn are defined in Section B.1.

Then, it follows by Lemma B.3,

1

T 2

(
‖F ′W2‖2 + ‖F ′W3‖2 + ‖F ′W8‖2 + ‖F ′W12‖2

)
= Op

(
1

NT

)
.

Let us consider the rest of the terms. By Lemma B.1-B.2,

1

T 2
‖F ′Wn‖2 ≤

1

T
‖Wn‖2,

for all n = 1, 4-7, 9-11, 13-15 (Those terms all start with F , and thus we use the

assumption that F ′F/T = IK). Then,

1

T 2

(
‖F ′W1‖2 + ‖F ′W4‖2 + · · ·+ ‖F ′W15‖2

)
≤ 1

T

(
‖W1‖2 + ‖W4‖2 + · · ·+ ‖W15‖2

)

= Op

(
1

N2
+

1

NT
+

1

Jκ
+
ρN
N

)
.

Using the result of Lemma B.3 of the rest of terms (W2,W3,W8,W12),

1

T
‖F ′(F̂ − FH)‖ ≤ 1

T

15∑

n=1

‖F ′Wn‖‖V −1‖∞

= Op

(
1

N
+

1√
NT

+
1

Jκ/2
+

√
ρN
N

)
.
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2. By the result above,

1

T
‖F̂ ′(F̂ − FH)‖ =

1

T
‖(F̂ − FH + FH)′(F̂ − FH)‖

=
1

T
‖(F̂ − FH)′(F̂ − FH) +H ′F ′(F̂ − FH)‖

≤ 1

T
‖F̂ − FH‖2 + 1

T
‖F ′(F̂ − FH)‖‖H‖∞

= Op

(
1

N
+

1

Jκ

)
+

1

T
Op(1)Op

(
1

N
+

1√
NT

+
1

Jκ/2
+

√
ρN
N

)

= Op

(
1

N
+

1√
NT

+
1

Jκ/2
+

√
ρN
N

)
.

Lemma B.5.

1. ‖H ′H − IK‖ = Op

(
1
N
+ 1√

NT
+ 1

Jκ/2 +
√

ρN
N

)
.

2. ‖H−1‖∞ = Op(1).

Proof of Lemma B.5.

1. By the assumption 3.2, (FH)′(FH)/T = H ′H almost surely. Then,

H ′H =
1

T
(FH − F̂ + F̂ )′FH

=
1

T
(FH − F̂ )′FH +

1

T
F̂ ′FH

=
1

T
(FH − F̂ )′FH +

1

T
F̂ ′(FH − F̂ + F̂ )

=
1

T
(FH − F̂ )′FH +

1

T
F̂ ′(FH − F̂ ) + IK ,

where F̂ ′F̂ /T = IK by the definition of the estimator. Hence,

‖H ′H − IK‖ ≤ 1

T
‖(FH − F̂ )′F‖‖H‖∞ +

1

T
‖F̂ ′(FH − F̂ )‖

= Op

(
1

N
+

1√
NT

+
1

Jκ/2
+

√
ρN
N

)
,

where it is follows by Lemma B.4.

2. Given the previous result, we have ψmin(H
′H) ≥ 1 + op(1). Hence,

‖H−1‖2∞ = ψmax(H
−1(H−1)′) = ψ−1

min(H
′H) = Op(1).

Lemma B.6.

‖H − IK‖ = Op

(
1

N
+

1√
NT

+
1

Jκ/2
+

√
ρN
N

)
.
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Proof of Lemma B.6.

Let δNTJ = 1
N
+ 1√

NT
+ 1

Jκ/2 +
√

ρN
N
. Then by Lemma B.4,

1

T
F̂ ′F =

1

T
(F̂ − FH + FH)′F

=
1

T
(F̂ − FH)′F +H ′

= H ′ +Op(δNTJ).

By the definition of H = 1
NT
B∗Φ(X)′Φ(X)BF ′F̂ V −1 and the above, we have

HV =
1

NT
B∗Φ(X)′Φ(X)BF ′F̂

=
1

N
B∗Φ(X)′Φ(X)B(F ′F̂ /T )

=
1

N
B∗Φ(X)′Φ(X)BH +Op(δNY J).

By the assumption 3.6, and since G(X) = Φ(X)B +R(X), we have

‖G(X)∗G(X)/N −B∗Φ(X)′Φ(X)B/N‖ = Op

(
1

Jκ/2

)
. Hence,

1

N
G(X)∗G(X)H = HV +Op(δNTJ). (14)

In addition, Lemma B.5 implies that

IK = H ′H +Op(δNTJ). (15)

We will show that H satisfies (14) and (15) if and only if ‖H − IK‖ = Op(δNTJ).

Let hnm be the (n,m)-th element of H, gn be the n-th diagonal element of G(X)∗G(X)/N ,

and vn be the n-th diagonal element of V . Note that G(X)∗G(X)/N and V are K ×K

diagonal matrices. Our task here is to prove that for n,m = 1, . . . , K,

hnm =




1 +Op(δNTJ), if n = m

Op(δNTJ), if n 6= m

In element-wise representation, (14) implies

gnhnm = hnmvm +Op(δNTJ), n,m ≤ K. (16)

By Lemma B.5, ‖H ′H − IK‖ = op(1), and thus hnn must be non-zero elements in proba-

bility for all n = 1, . . . , K. Hence,

gn = vn +Op(δNTJ), n ≤ K. (17)

Therefore, by (16) and (17),

(gn − gm)hnm = Op(δNTJ), n,m ≤ K. (18)

The assumption 3.2 ensures gn is non-zero and distinctive for all n = 1, . . . , K, almost

surely. So we have hnm = Op(δNTJ) for all n 6= m by the equality (18). Combined
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with this result, (15) implies that h2nn − 1 = Op(δNTJ) for all n = 1, . . . , K, thus, hnn =

±1+Op(
√
δNTJ). Without loss of generality, we assume that hnn = 1+Op(

√
δNTJ) since

the sign of hnn can be adjusted by simply multiplying −1 to both F̂ and Ĝ(X). Note

that our task is to show hnn = 1 +Op(δNTJ), and it can be achieved since

hnn − 1 =
1

2

[
h2nn − 1− (hnn − 1)2

]
= Op(δNTJ).

As a result,

‖H − IK‖2 =
∑

n 6=m
h2nm +

K∑

n=1

(hnn − 1)2 = Op(δ
2
NTJ). (19)

Lemma B.7.

1. ‖B̂ − BH‖2 = Op

(
J
N2 +

J
NT

+ J
Jκ + JρN

N

)

2. 1
N
‖Ĝ(X)−G(X)H‖2 = Op

(
J
N2 +

J
NT

+ J
Jκ + JρN

N

)

3. 1
N
‖Γ̂(X)− ΓH‖2 = Op

(
1
Jκ + JρN

N
+ J

N2 +
1
T

)

Proof of Lemma B.7.

1. Recall that Y = ΛF ′ + ε = [Φ(X)B + Γ +R(X)]F ′ + ε.

B̂ =
1

T
(Φ(X)′Φ(X))−1Φ(X)′Y F̂

= BH +
5∑

n=1

Dn

where

D1 =
1

T
(Φ(X)′Φ(X))−1Φ(X)′R(X)F ′F̂ , D2 =

1

T
(Φ(X)′Φ(X))−1Φ(X)′εFH,

D3 =
1

T
(Φ(X)′Φ(X))−1Φ(X)′ε(F̂ − FH), D4 =

1

T
BF ′(F̂ − FH),

D5 =
1

T
(Φ(X)′Φ(X))−1Φ(X)′ΓF ′F̂ .

Let us now begine with ‖D1‖. By the assumption 3.2, 3.3 and 3.6

‖D1‖2 =
1

T 2
‖(Φ(X)′Φ(X))−1Φ(X)′R(X)F ′F̂‖2

≤ 1

T 2
‖(Φ(X)′Φ(X))−1Φ(X)′‖2∞‖R(X)‖2‖F‖2‖F̂‖2

=
1

T 2
Op

(
1

N

)
Op(NJ

−κ)Op(T )Op(T )

= Op(J
−κ).
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By Lemma B.1 and Lemma C.1,

‖D2‖2 = ‖ 1
T
(Φ(X)′Φ(X))−1Φ(X)′εFH‖2

≤ 1

T 2
‖(Φ(X)′Φ(X))−1‖2∞‖Φ(X)′εF‖2‖H‖2∞

=
1

T 2
Op

(
1

N2

)
Op(NTJ)Op(1)

= Op

(
J

NT

)

By Lemma C.1, and the by-product result of Section B.1,

‖D3‖2 =
1

T 2
‖(Φ(X)′Φ(X))−1Φ(X)′ε(F̂ − FH)‖2

≤ 1

T
‖(Φ(X)′Φ(X))−1‖2∞‖Φ(X)′ε‖2 1

T
‖F̂ − FH)‖2

=
1

T
Op

(
1

N2

)
Op(NTJ)Op

(
1

N
+

1

J−κ

)

= Op

(
J

N2
+

J

NJκ

)
.

By Lemma B.4,

‖D4‖2 =
1

T 2
‖BF ′(F̂ − FH)‖2

≤ ‖B‖2 1

T 2
‖F ′(F̂ − FH)‖2

= Op(J)Op

(
1

N2
+

1

NT
+

1

Jκ
+
ρN
N

)

= Op

(
J

N2
+

J

NT
+

J

Jκ
+
JρN
N

)
.

By Lemma C.2,

‖D5‖2 =
1

T 2
‖(Φ(X)′Φ(X))−1Φ(X)′ΓF ′F̂‖2

≤ 1

T 2
‖(Φ(X)′Φ(X))−1‖2∞‖Φ(X)′Γ‖2‖F‖2‖F̂‖2

= Op

(
1

N2

)
Op(JNρN)

= Op

(
JρN
N

)
.

Finally,

‖B̂ −BH‖2 ≤
5∑

n=1

‖Dn‖2

= Op

(
J

N2
+

J

NT
+

J

Jκ
+
JρN
N

)
.
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2. By definition, G(X) = Φ(X)B +R(X), and Ĝ(X) = Φ(X)B̂. Then

1

N
‖Ĝ(X)−G(X)H‖2 = 1

N
‖Φ(X)B̂ − Φ(X)BH +R(X)H‖2

≤ 2

N
‖Φ(X)‖2∞‖B̂ −BH‖2 + 2

N
‖R(X)‖2‖H‖2∞

=
1

N
Op(N)Op

(
J

N2
+

J

NT
+

J

Jκ
+
JρN
N

)
+

1

N
Op(NJ

−κ)Op(1)

= Op

(
J

N2
+

J

NT
+

J

Jκ
+
JρN
N

)
.

3. Recall that Γ̂ = Λ̂− Ĝ(X) = 1
T
(IK − P )Y F̂ . Then

Γ̂ = ΓH +
6∑

n=1

En,

where

E1 =
1

T
(IK − P )ΓF ′(F̂ − FH), E2 =

1

T
ε(F̂ − FH),

E3 = −PΓH, E4 = (IK − P )R(X)

[
1

T
F ′(F̂ − FH) +H

]
,

E5 = − 1

T
Pε(F̂ − FH), E6 =

1

T
(IK − P )εFH.

Finally, by Lemma B.8,

1

N
‖Γ̂− ΓH‖2 ≤ 1

N

6∑

n=1

‖En‖2

= Op

(
1

Jκ
+
JρN
N

+
J

N2
+

1

T

)
,

where

E1 =
1

T
(IK − P )ΓF ′(F̂ − FH), E2 =

1

T
ε(F̂ − FH),

E3 = −PΓH, E4 = (IK − P )R(X)

[
1

T
F ′(F̂ − FH) +H

]
,

E5 = − 1

T
Pε(F̂ − FH), E6 =

1

T
(IK − P )εFH.

Lemma B.8.

This lemma is for the third part of Lemma B.7 only.

1. ‖ 1
T
(IK − P )ΓF ′(F̂ − FH)‖2 = Op

(
ρN
[
1
N
+ 1

T
+ N

Jκ + ρN
])
.

2. ‖ 1
T
ε(F̂ − FH)‖2 = Op

(
N
JκT

+ 1
T
+ 1

N

)
. 3. ‖PΓH‖2 = Op(JρN).

4. ‖(IK−P )R(X)[ 1
T
F ′(F̂ −FH)+H]‖2 = Op

(
N
Jκ

)
. 5. ‖ 1

T
Pε(F̂ −FH)‖2 = Op

(
J
N
+ J

Jκ

)
.

6. ‖ 1
T
(IK − P )εFH‖2 = Op

(
N
T

)
.

Proof of Lemma B.8.
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1. By Lemma B.4,

‖ 1
T
(IK − P )ΓF ′(F̂ − FH)‖2 ≤ ‖IK − P‖2∞‖Γ‖‖ 1

T
F ′(F̂ − FH)‖2

= Op(1)Op(NρN)Op

(
1

N2
+

1

NT
+

1

Jκ
+
ρN
N

)

= Op

(
ρN

[
1

N
+

1

T
+
N

Jκ
+ ρN

])
.

2. Recall that F̂ − FH =
∑15

m=1WmV
−1. Then

‖ 1
T
ε(F̂ − FH)‖2 ≤

15∑

m=1

‖ 1
T
εWm‖2‖V −1‖2∞

= Op

(
N

JκT
+

1

T
+

1

N

)
.

This part is imcomplete.

(a) Assumption 3.4 (iii) : third one is need here.

(b) Fan et al. (2015) lemma C7-9 must be added here.

(c) lemma C7 and 9 = convergence for all εWm for all m.

(d) lemma C8 is needed for lemma c9. It can go to tech lemma.

3. By Lemma B.1 and C.2,

‖PΓH‖2 ≤ ‖Φ(X)(Φ(X)′Φ(X))−1‖2∞‖Φ(X)′Γ‖2‖H‖2∞

= Op

(
1

N

)
Op(JNρN)Op(1)

= Op(JρN).

4. By Lemma B.4,

‖(IK − P )R(X)[
1

T
F ′(F̂ − FH) +H]‖2 ≤ ‖(IK − P )‖2∞‖R(X)‖2

(
1

T 2
‖F ′(F̂ − FH)‖2 + ‖H‖2

)

= Op(1)Op(NJ−κ)

(
Op

(
1

N2
+

1

NT
+

1

Jκ
+

ρN

N
+

)
+Op(1)

)

= Op

(
N

Jκ

)
.

5. Using the result in Section B.1 and Lemma C.1,

‖ 1
T
Pε(F̂ − FH)‖2 ≤ ‖Φ(X)(Φ(X)′Φ(X))−1‖2∞‖Φ(X)′ε‖2 1

T 2
‖F̂ − FH‖2

= Op

(
1

N

)
Op(NTJ)

1

T
Op

(
1

N
+

1

Jκ

)

= Op

(
J

N
+

J

Jκ

)
.
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6. Following Lemma B.1,

‖ 1
T
(IK − P )εFH‖2 ≤ 1

T 2
‖IK − P‖∞‖εF‖2‖H‖2∞

=
1

T 2
Op(1)Op(NT )Op(1)

= Op

(
N

T

)
.
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B.4 Proof of Theorem 3.2

Proof. Assume that K < ℓmax where ℓmax = JH/2. Let us reiterate the eigenvalue ratio:

ER(ℓ) =
ψℓ

(
Ŷ ∗Ŷ
NT

)

ψℓ+1

(
Ŷ ∗Ŷ
NT

) , ℓ = 1, . . . , ℓmax,

and the estimator for the number of factors is

K̂ = argmax
1≤ℓ<ℓmax

ψℓ

(
Ŷ ∗Ŷ
NT

)

ψℓ+1

(
Ŷ ∗Ŷ
NT

) ,

where the choice of ℓmax is explained in Lemma B.11. Roughly speaking, the choice of

ℓmax is to ensure that the lower bound of ψℓ

(
Ŷ ∗Ŷ

)
is strictly greater than zero uniformly

in ℓ when ℓ < ℓmax, thus, ER(ℓ) is well defined.

We first show that ER(ℓ) = Op(1) when ℓ 6= K. If ℓ ≤ K − 1, it follows from Lemma B.9

that ER(ℓ) = Op(1). Now consider the case K + 1 ≤ ℓ ≤ JH/2− 1. From Lemma B.11,

we have

0 < δ1/N + op(1/N) ≤ ψK+m

(
Ŷ ∗Ŷ

NT

)
≤ δ2/N + op(1/N) <∞, (20)

uniformly for m = 1, . . . , JH − 2K, thus, ER(ℓ) = Op(1).

We now show the case for ℓ = K. It follows from Lemma B.9 that ψK

(
Ŷ ∗Ŷ
NT

)
= Op(1)

and the relation (20), there exist some δ̄ > 0,

ER(K) ≥ δ̄N + op(1).

Define L = {ℓ : ℓ 6= K and ℓ < JH/2}. Then for η > 0, there exist Cη > 0 such that

P

(
max
ℓ∈L

ER(ℓ) > Cη

)
< η.

This is because ER(ℓ) = Op(1) for ℓ 6= K. Hence, for all η > 0,

P (K̂ 6= K) ≤ P

(
max
ℓ∈L

ER(ℓ) ≥ ER(K)

)

≤ P

(
max
ℓ∈L

ER(ℓ) > Cη

)
+ P

(
ER(K) ≤ max

ℓ∈L
ER(ℓ) ≤ Cη

)

= P

(
max
ℓ∈L

ER(ℓ) > Cη

)
+ P

(
ER(K) ≤ Cη

)

< η,

as ER(K) is unbounded. Hence, P (K̂ = K) → 1.
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B.5 Lemmas for Theorem 3.2

Lemma B.9.

Suppose J = o(N). For ℓ = 1, . . . , K − 1, as N → ∞,

ER(ℓ) =
ψℓ

(
Ŷ ∗Ŷ
NT

)

ψℓ+1

(
Ŷ ∗Ŷ
NT

) = Op(1). (21)

Proof of Lemma B.9.

By Lemma B.1, ‖V ‖∞ and ‖V −1‖∞ are both Op(1). Hence, (21) is satisfied for all

ℓ ≤ K − 1.

Lemma B.10.

Define

Θ =
1

NT
Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)− 1

N
Φ(X)′A

1/2
N ΣuA

1/2
N Φ(X),

where Σu = E[ut ⊗ ut]. Suppose J = o(T ). Under the assumptions 3.4 and 3.7, as

N, T → ∞,

‖Θ‖∞ = op(1).

Note that we have

1

T
UU∗ =

1

T

T∑

t

(ut ⊗ ut),
1

T
E[UU∗] = E[ut ⊗ ut],

since ut is iid over t.

Proof of Lemma B.10.

By the assumption 3.7, for M2 > 0,

E [exp{τ〈v, ut〉}] ≤ exp{τ 2M2‖v‖2},

for all τ > 0, v ∈ HN . Then conditional on X, for any w ∈ HJH , ‖w‖ = 1

E
[
exp

{
τ〈A1/2

N Φ(X)w/
√
N, ut〉

} ∣∣X
]
≤ exp

{
τ 2M2‖A1/2

N Φ(X)/
√
N‖2

}
(22)

since A
1/2
N Φ(X)w ∈ HN . The right hand side of (22) is bounded because

‖A1/2
N Φ(X)/

√
N‖2 = ‖A1/2

N Φ(X)w/
√
N‖2 ≤ ‖A1/2

N Φ(X)/
√
N‖2∞‖w‖ = amax dmax,

where amax denotes the largest eigenvalue of AN . Therefore, qt := Φ(X)′A
1/2
N ut/

√
N is

also a sub-Gaussian vector conditional on X, that is, for all w

E [exp{τ〈w, qt〉}] ≤ exp
{
τ 2M2‖A1/2

N Φ(X)/
√
N‖2

}
.

Then by Lemma B.12, there exists C1, C2 > 0 such that

P

(
‖Θ‖∞ ≤ C1

√
JH

T
+

√
J

T

∣∣∣∣X
)

≥ 1− 2exp(−C2J),
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where C1, C2 does not depend on X. Specifically, C1, C2 depends on the sub-Gaussian

norm of qt :

‖qt‖ψ2
= sup

‖w‖=1

sup
m≥1

E[|〈w, qt〉|m]1/m√
m

< (amaxdmaxM2)
1/2 .

Hence, unconditional on X,

‖Θ‖∞ = Op

(√
J

T

)
= op(1),

given that J = o(T ).

Lemma B.11.

Suppose J = o(T ), and K ≤ JH/2. Under the assumptions of 3.1-3.6, and 3.7, for

m = 1, 2, . . . , JH − 2K,

δ1 + op(1) ≤ ψK+m

(
Ŷ ∗Ŷ /T

)
≤ δ2 + op(1) (23)

where δ1, δ2 are positive constants (uniformly for m ≤ JH − 2K).

Proof of Lemma B.11.

By assumption 3.7, there exist two positive constants π1, π2 such that uniformly in N, T ,

π1 ≤ ψN(AN), ψT (ZT ) and ψ1(AN), ψ1(ZT ) ≤ π2.

From Lemma B.14, we have

ψ1(ε
∗Pε/T ) = ψ1((A

1/2
N UZ

1/2
T )∗PA

1/2
N UZ

1/2
T /T ) = ψ1(Z

1/2
T U∗A

1/2
N PA

1/2
N UZ

1/2
T /T )

= ψ1(ZTU
∗A

1/2
N PA

1/2
N U/T )

≤ ψ1(ZT )ψ1(U
∗A

1/2
N PA

1/2
N U/T )

= ψ1(ZT )ψ1(U
∗A

1/2
N Φ(X)(Φ(X)′Φ(X))−1Φ(X)′A

1/2
N U/T )

= ψ1(ZT )ψ1(Φ(X)′A
1/2
N UU∗A

1/2
N Φ(X)(Φ(X)′Φ(X))−1/T )

= ψ1(ZT )ψ1(Φ(X)′A
1/2
N UU∗A

1/2
N Φ(X)/(NT ) (Φ(X)′Φ(X)/N)−1)

≤ ψ1(ZT )ψ1(Φ(X)′A
1/2
N UU∗A

1/2
N Φ(X)/(NT ))ψ1(Φ(X)′Φ(X)/N)−1)

≤ π2ψ1(Φ(X)′A
1/2
N UU∗A

1/2
N Φ(X)/(NT ))d−1

min

= π2d
−1
minψ1(Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)/(NT )).

From Lemma B.14, we obtain

ψJH(ε
∗Pε/T ) = ψJH(ZTU

∗A
1/2
N PA

1/2
N U/T )

≥ ψT (ZT )ψJH(U
∗A

1/2
N PA

1/2
N U/T )

= ψT (ZT )ψJH(Φ(X)′A
1/2
N UU∗A

1/2
N Φ(X)/(NT ) (Φ(X)′Φ(X)/N)−1)

≥ ψT (ZT )ψJH(Φ(X)′A
1/2
N UU∗A

1/2
N Φ(X)/(NT ))ψJH(Φ(X)′Φ(X)/N)−1)

≥ π1ψJH(Φ(X)′A
1/2
N UU∗A

1/2
N Φ(X)/(NT ))d−1

max

= π1d
−1
maxψJH(Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)/(NT )).
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Therefore, the eigenvalues of ε∗Pε/T are bounded by those of Φ(X)′A
1/2
N UU∗A

1/2
N Φ(X)/(NT ).

Let F̃ = F + ε∗PΛ(Λ∗PΛ)−1. Then

Y = ΛF ′ + ε = Λ(F̃ − ε∗PΛ(Λ∗PΛ)−1)′ + ε

= ΛF̃ ′ − Λ(Λ∗PΛ)−1Λ∗Pε+ ε

= ΛF̃ ′ + [IN − Λ(Λ∗PΛ)−1Λ∗P ]ε

We denote M̃ = IN − Λ(Λ∗PΛ)−1Λ∗P , and M̃ ∈ L(HN ,HN). Then M̃∗ = IN −
PΛ(Λ∗PΛ)−1Λ∗. Note that M̃PΛ = Λ∗PM̃ = 0. Moreover,

PM̃ = P − PΛ(Λ∗PΛ)−1Λ∗P = (IN − PΛ(Λ∗PΛ)−1Λ∗)P = M̃∗P

Hence, we have

Y ∗PY = (ΛF̃ ′ + M̃ε)∗P (ΛF̃ ′ + M̃ε)

= F̃Λ∗PΛF̃ ′ + ε∗M̃∗PΛF̃ ′ + F̃Λ∗PM̃ε+ ε∗M̃∗PM̃ε

= F̃Λ∗PΛF̃ ′ + ε∗M̃∗PM̃ε

= F̃Λ∗PΛF̃ ′ + ε∗PM̃M̃∗Pε

= F̃Λ∗PΛF̃ ′ + ε∗P (PM̃M̃∗P )Pε

= F̃Λ∗PΛF̃ ′ + ε∗P (PP − PΛ(Λ∗PΛ)−1Λ∗P )Pε

= F̃Λ∗PΛF̃ ′ + ε∗P (IN − Λ(Λ∗PΛ)−1Λ∗)Pε.

Then, by Lemma B.13

ψK+m(Y
∗PY ) = ψK+m(F̃Λ

∗PΛF̃ ′ + ε∗P (IN − Λ(Λ∗PΛ)−1Λ∗)Pε)

≤ ψK+1(F̃Λ
∗PΛF̃ ′) + ψm(ε

∗P (IN − Λ(Λ∗PΛ)−1Λ∗)Pε)

= ψm(ε
∗P (IN − Λ(Λ∗PΛ)−1Λ∗)Pε)

= ψm(ε
∗Pε− ε∗PΛ(Λ∗PΛ)−1Λ∗Pε)

≤ ψm(ε
∗Pε),

where the third equality used the fact that rank(Λ∗PΛ) = K; the last inequality is by

Lemma B.14. To find the lower bound,

ψK+m(Y
∗PY ) = ψK+m(F̃Λ

∗PΛF̃ ′ + ε∗P (IN − Λ(Λ∗PΛ)−1Λ∗)Pε)

≥ ψK+m(ε
∗P (IN − Λ(Λ∗PΛ)−1Λ∗)Pε)

= ψK+m(ε
∗Pε− ε∗PΛ(Λ∗PΛ)−1Λ∗Pε) + ψK+1(ε

∗PΛ(Λ∗PΛ)−1Λ∗Pε))

≥ ψ2K+m(ε
∗Pε),

where the second and the last lines follow by Lemma B.14, and the third line holds by

ψK+1(ε
∗PΛ(Λ∗PΛ)−1Λ∗Pε)) = 0.
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Hence, for 1 ≥ m ≤ JH − 2K, the bounds for ψK+m(Y
∗PY/T ) are

π1d
−1
maxψJH(Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)/(NT )) ≤ ψJH(ε

∗Pε/T )

≤ ψK+m(Y
∗PY/T ) ≤ ψ1(ε

∗Pε/T ) ≤ π2d
−1
minψ1(Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)/(NT )),

which can be simplied to

π1d
−1
maxψJH(Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)/(NT )) ≤ ψK+m(Y

∗PY/T )

≤ π2d
−1
minψ1(Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)/(NT )).

By Lemma B.10,

‖ 1

NT
Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)− 1

N
Φ(X)′A

1/2
N ΣuA

1/2
N Φ(X)‖∞ = op(1),

where the eigenvalues of second term is bounded away from zero and infinity under the

assumption 3.7. Hence, there exist positive constants δ1, δ2 such that

δ1 + op(1) ≤ π1d
−1
maxψJH(Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)/(NT )) ≤ ψK+m(Y

∗PY/T )

≤ π2d
−1
minψ1(Φ(X)′A

1/2
N UU∗A

1/2
N Φ(X)/(NT )) ≤ δ2 + op(1).

As a result, we prove that

δ1 + op(1) ≤ ψK+m

(
Ŷ ∗Ŷ /T

)
≤ δ2 + op(1).

For the remaining, we state a few technical Lemmas necessary for this section.

Lemma B.12.

Let A be a N × T random matrix with column vectors at that are independent and

sub-Gaussian, and denote Σ = E(at ⊗ at). Then for τ ≥ 0, with probability at least

1− 2exp(−C2τ
2) one has

‖ 1
T
AA∗ − Σ‖∞ ≤ max{δ, δ2}, δ = C1

√
N

T
+

τ√
T
,

where C1, C2 > 0 depend only on the sub-Gaussian norm maxt≤T ‖at‖ψ2
of the column

vectors. (See Theorem 5.39 of Vershynin 2010).

Lemma B.13.

Let A and B be T × T symmetric matrices. For m,n ≥ 1 and m+ n− 1 ≤ T ,

ψm+n−1(A+B) ≤ ψm(A) + ψn(B).

This is Weyl inequality.

Lemma B.14.

Suppose A and B are T × T positive definite and positive semidefinite matrices, then

ψm(AB) ≤ ψn(A)ψℓ(B), for n+ ℓ ≤ m+ 1

ψm(AB) ≥ ψn(A)ψℓ(B), for n+ ℓ ≤ m+ T.

In addition, if both A and B are positive definite,

ψm(A) ≤ ψm(A+ B), for m1, 2, . . . , T.
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C Technical Lemmas

Lemma C.1.

1. sup
r∈[0,1],k≤K,i≤N

max
t≤T

∑T
s=1 |cov(ftkuit(r), fskuis(r))| = O(1).

2. ‖εF‖2 = Op (NT ). 3. ‖Φ(X)′ε‖2 = Op (NTJ). 4. ‖Φ(X)′εF‖2 = Op (NTJ).

5. ‖Pε‖2 = Op (TJ).

Proof of Lemma C.1.

1. By Davydov’s inequality, for any t, s ≤ T , there exists η > 0

|cov(ftkuit(r), fskuis(r))| ≤ η[α(|t− s|)]1/2,

for all r ∈ [0, 1], k ≤ K, i ≤ N, t ≤ T , where α(t) is the α-mixing coefficient of

{ft, ut}. By the assumption 3.4,
∑T

t=1[α(t)]
1/2 <∞. Hence,

sup
r∈[0,1],k≤K,i≤N

max
t≤T

T∑

s=1

|cov(ftkuit(r), fskuis(r))| ≤ max
t≤T

T∑

s=1

η[α(|t− s|)]1/2 <∞.

2. Note that ‖F‖2, ‖F̂‖2 = Op(T ) by the assumption 3.2. Then

E‖εF‖2 = E
K∑

k=1

N∑

i=1

〈
T∑

t=1

εitftk,
T∑

t=1

εitftk〉

=
K∑

k=1

N∑

i=1

E



(∫ 1

0

T∑

t=1

εit(r)ftkdr

)2



=
K∑

k=1

N∑

i=1

∫ T∑

t=1

T∑

s=1

cov(ftkuit(r), fskuis(r))dr

≤
K∑

k=1

N∑

i=1

∫ T∑

t=1

(
sup

r∈[0,1],k≤K,i≤N
max
t≤T

T∑

s=1

|cov(ftkuit(r), fskuis)(r)|
)
dr

= O(NT ).

3.

E‖Φ(X)′ε‖2 = E

J∑

j=1

H∑

h=1

N∑

i=1

N∑

q=1

T∑

t=1

[
φj(Xih)φj(Xqh)

∫
εit(r)εqt(r) dr

]

=
J∑

j=1

H∑

h=1

N∑

i=1




N∑

q=1

E[φj(Xih)φj(Xqh)]
T∑

t=1

∫
E[εit(r)εqt(r)]dr




≤ JHN ×
(

max
j≤J,h≤H,i≤N,q≤N,

E[φj(Xih)φj(Xqh)]

)


T∑

t=1

∫
sup

r∈[0,1],i≤N

N∑

q=1

|E[εit(r)εqt(r)]|dr




≤ JHN ×
(

max
j≤J,h≤H,i≤N

E[φ2
j (Xih)]

)


T∑

t=1

∫
sup

r∈[0,1],i≤N

N∑

q=1

|E[εit(r)εqt(r)]|dr




= O(NTJ),

where the fourth equality holds by the Cauchy-Schwarz inequality, and the assump-

tions 3.3 and 3.4 implies that
∫
max
i≤N

∑N
q=1 |E[εit(r)εqt(r)]|dr < M2 <∞.
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4.

E‖Φ(X)′εF‖2 =
K∑

k=1

J∑

j=1

H∑

h=1

N∑

i=1

N∑

q=1

T∑

t=1

T∑

s=1

E[φj(Xih)φj(Xqh)]E[ftkfsk]

∫
E[εit(r)εqs(r)] dr

≤ O(NTJ)
1

NT

∫ N∑

i=1

N∑

q=1

T∑

t=1

T∑

s=1

|E[εit(r)εqs(r)]| dr

= O(NTJ),

where the last equality is due to the assumptions 3.4.

5. By the assumption 3.3,

‖Pε‖2 = ‖Φ(X) (Φ(X)′Φ(X))
−1

Φ(X)′ε‖2

≤ ‖Φ(X)‖22‖ (Φ(X)′Φ(X))
−1 ‖22‖Φ(X)′ε‖2.

= Op(N)Op

(
1

N2

)
Op(NTJ)

= Op(TJ).

Lemma C.2.

1. ‖ε∗Φ(X)B‖2 = Op (NT ). 2. ‖B∗Φ(X)′εF‖2 = Op (NT ).

3. ‖Φ(X)′Γ‖2 = Op (JNρN). 4. ‖B∗Φ(X)′Γ‖2 = Op (NρN). 5. ‖PΓ‖2 = Op (JρN).

6. ‖Γ‖2 = Op (NρN).

Proof of Lemma C.2.

1. By the definition of G(X),

E‖ε∗Φ(X)B‖2 = E‖ε∗G(X)− ε∗R(X)‖2

≤ E‖ε∗G(X)‖2 + E‖ε∗R(X)‖2.

Hence, our task is to bound the two terms on the right hand side of the inequality.

E‖ε∗G(X)‖2 =
K∑

k=1

N∑

i=1

N∑

q=1

T∑

t=1

E

[∫
εit(r)gk(Xi, r) dr

∫
εqt(w)gk(Xq, w) dw

]

=
K∑

k=1

N∑

i=1

N∑

q=1

T∑

t=1

∫
E [εit(r)εqt(w)]E [gk(Xi, r)gk(Xq, w)] drdw

≤ NK × sup
r∈[0,1],k≤K,i≤N

E[g2k(Xi, r)]
T∑

t=1

max
i≤N

N∑

q=1

∫ 1

0

|E[εit(r)εqs(w)]|drdw,

= O(NT ).

where the last equality holds by the assumption 3.4 and 3.5, and Cauchy-Schwarz

inequality.
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Define Rik =
∑H

h=1Rkh(Xih), which is the (i, k) element of R(X).

E‖ε∗R(X)‖2 =
K∑

k=1

T∑

t=1

N∑

i=1

N∑

q=1

E

[∫
εit(r)Rik(r) dr

∫
εqt(w)Rqk(w) dw

]

=

∫ K∑

k=1

T∑

t=1

N∑

i=1

N∑

q=1

E [εit(r)εqt(w)]E [Rik(r)Rqk(w)] drdw

≤ NK × sup
r∈[0,1],k≤K,i≤N

E[R2
ik(r)]

T∑

t=1

max
i≤N

N∑

q=1

∫ 1

0

|E[εit(r)εqt(w)]|drdw,

= O(NTJ−κ).

where the inequality is due to the assumption 3.4 and 3.6, and Cauchy Schwarz

inequality. Given the two results,

E‖ε∗Φ(X)B‖2 = O(NT ).

2. The same procedure applies in this section as before. By the definition of G(X),

E‖B∗Φ(X)′εF‖2 = E‖G(X)∗εF −R(X)∗εF‖2

≤ E‖G(X)∗εF‖2 + E‖R(X)∗εF‖2.

E‖G(X)∗εF‖2 =
K∑

k=1

K∑

ℓ=1

N∑

i=1

N∑

q=1

T∑

t=1

T∑

s=1

E

[∫
gℓ(Xi, r)εit(r)ftk dr

∫
gℓ(Xq, w)εqs(w)fsk dw

]

=

∫ K∑

k=1

K∑

ℓ=1

N∑

i=1

N∑

q=1

T∑

t=1

T∑

s=1

E[gℓ(Xi, r)gℓ(Xq, w)]E[ftkfsk]E[εit(r)εqs(w)]drdw

≤ K2 × sup
r∈[0,1],k,ℓ≤K,i≤N,t≤T

|E[g2ℓ (Xi, r)]E[f2
tk]|

N∑

i=1

N∑

q=1

T∑

t=1

T∑

s=1

∫ 1

0
|E[εit(r)εqs(w)]|drdw

= O(NT ),

where the third inequality holds by the assumption 3.4, and Cauchy-Schwarz in-

equality.

E‖R(X)∗εF‖2 =
K∑

k=1

K∑

ℓ=1

N∑

i=1

N∑

q=1

T∑

t=1

T∑

s=1

E

[∫
Riℓ(r)εit(r)ftk dr

∫
Rqℓ(w)εqs(w)fsk dw

]

=
K∑

k=1

K∑

ℓ=1

N∑

i=1

N∑

q=1

T∑

t=1

T∑

s=1

∫
E[Riℓ(r)Rqℓ(w)]E[ftkfsk]E[εit(r)εqs(w)]drdw

≤ K2 × sup
r∈[0,1],k,ℓ≤K,i≤N,t≤T

|E[R2
iℓ(r)]E[f2

tk]|
N∑

i=1

N∑

q=1

T∑

t=1

T∑

s=1

∫ 1

0
|E[εit(r)εqs(w)]|drdw

= O(NTJ−κ).

Hence,

E‖B∗Φ(X)′εF‖2 = O (NT ) .
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3. By the assumption 3.5,

E‖Φ(X)′Γ‖2 =
K∑

k=1

H∑

h=1

J∑

j=1

N∑

i=1

N∑

q=1

E

[∫
φj(Xih)γik(r) dr

∫
φj(Xqh)γqk(w) dw

]

=
K∑

k=1

H∑

h=1

J∑

j=1

N∑

i=1

N∑

q=1

E[φj(Xih)φj(Xqh)]

∫
E[γik(r)γqk(w)] drdw

≤ KHJN ×
(

max
j≤J,h≤H,i≤N

E[φ2
j (Xih)]

)
 max
k≤K,i≤N

N∑

q=1

∫ 1

0
|E[γik(r)γqk(w)]|drdw




= O(JNρN ).

4. By the definition of G(X),

E‖B∗Φ(X)′Γ‖2 ≤ E‖G(X)∗Γ‖2 + E‖R(X)∗Γ‖2.

First, we bound E‖G(X)∗Γ‖2.

E‖G(X)∗Γ‖2 =
K∑

k=1

K∑

ℓ=1

N∑

i=1

N∑

q=1

E

[∫
gℓ(Xi, r)γik(r) dr

∫
gℓ(Xq, w)γqk(w) dw

]

=

∫ K∑

k=1

K∑

ℓ=1

N∑

i=1

N∑

q=1

E [gℓ(Xi, r)gℓ(Xq, w)]E [γik(r)γqk(w)] drdw

≤ KHN ×
(

sup
r∈[0,1],k≤K,i≤N

E[g2k(Xi, r)]

)
 max
k≤K,i≤N

N∑

q=1

∫
|E[γik(r)γqk(w)]|drdw




= O(NρN ).

Second, we bound E‖R(X)∗Γ‖2.

E‖R(X)∗Γ‖2 =
K∑

k=1

K∑

ℓ=1

N∑

i=1

N∑

q=1

E

[∫
Riℓ(r)γik(r) dr

∫
Rqℓ(w)γqk(w) dw

]

=

∫ K∑

k=1

K∑

ℓ=1

N∑

i=1

N∑

q=1

E [Riℓ(r)Rqℓ(w)]E [γik(r)γqk(w)] drdw

≤ KHN ×
∫ (

sup
r∈[0,1],k≤K,i≤N

E[R2
ik(r)]

)(
sup

r,w∈[0,1],k≤K,i≤N

N∑

q=1

|E[γik(r)γqk(w)]|
)
drdw

= O(J−κNρN ).

Hence, we have E‖B∗Φ(X)′Γ‖2 = O(NρN).

5.

‖PΓ‖2 = ‖Φ(X) (Φ(X)′Φ(X))
−1

Φ(X)′Γ‖2

≤ ‖Φ(X) (Φ(X)′Φ(X))
−1 ‖22‖Φ(X)′Γ‖2

= Op

(
1

N

)
Op(JNρN)

= Op(JρN).

where ‖Φ(X)′Γ‖2 = Op(JNρN) follows by the previous result.
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6. We have

E‖Γ‖2 =
∫ K∑

k=1

N∑

i=1

E
[
γ2ik(r)

]
dr

≤
∫
KNρN dr

= O(NρN),

where the second inequality is due to the assumption 3.5.
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Deschênes, O. and Greenstone, M. (2011). Climate change, mortality, and adaptation:

Evidence from annual fluctuations in weather in the us, American Economic Journal:

Applied Economics 3(4): 152–85.

Fan, J., Ke, Y. and Liao, Y. (2021). Augmented factor models with applications to vali-

dating market risk factors and forecasting bond risk premia, Journal of Econometrics

222(1): 269–294.

Fan, J., Liao, Y. and Wang, W. (2015). Supplementary appendix to the paper projected

principal component analysis in factor models, Annals of statistics .

Fan, J., Liao, Y. and Wang, W. (2016). Projected principal component analysis in factor

models, Annals of statistics 44(1): 219.

56



Fan, J., Xue, L. and Yao, J. (2017). Sufficient forecasting using factor models, Journal of

econometrics 201(2): 292–306.

Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional

linear regression, The Annals of Statistics 35(1): 70–91.
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