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Abstract

We consider the impact of ambiguity on credit rating with feedback effects. A firm signals its

quality by surviving phases of apparent distress. A rating agency, whose analysts hold multiple

priors about the firm’s true asset value, for example, due to the difficulties in the valuation of

intangible assets, aims for unbiased ratings. Contrasting classical min-max results, the rating

agency selects a dynamically adjusted weighted average of multiple beliefs that overweight

uninformative beliefs. The ambiguity impact on ratings hinges on whether the disagreement

between the analysts has a common direction: When analysts jointly perceive the firm’s value

of intangibles as overstated, feedback effects make the firm delay default to benefit from the

rating agency’s learning.
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1 Introduction

Financial information is inherently dynamic, and outsiders generally do not have full information

in real time. Previous research indicates the importance of asymmetric information for credit risk

(Duffie & Lando 2001). Furthermore, the assessment of credit quality and financing conditions

interact and influence the decisions of the rated entity, that is, financial markets and the real economy

are interconnected by feedback effects (Manso 2013). Ambiguity captures the empirically well-

documented fact that financial information lacks exactly known probabilistic models. It turns out

to be a driving factor of credit risk, in particular, it can explain the credit spread increases during

the 2007-2008 U.S. financial crisis (Boyarchenko 2012) and significantly influences the pricing of

credit default swaps (Augustin & Izhakian 2020).

This paper considers how ambiguity influences the assessment of credit quality by a rating

agency that aims for accurate ratings and holds multiple priors over its incomplete information

about a firm’s cash flow, while the firm maximizes its value by selecting its default strategy. To

address the question of how to rate credit under ambiguity with feedback effects, we consider

ambiguity similar to recent work on security design (Malenko & Tsoy 2020) and corporate capital

structure (Izhakian et al. 2022). Our second building block forms the credit rating with feedback

effects. Specifically, the firm’s financing costs are connected to the rating agency trough a feedback

loop: The rating agency’s assessment influences the firm’s capital costs, which affects the firm’s

default considerations, which in turn feed back to the rating. Thus, the firm and the rating agency

are interconnected via performance sensitive debt (Manso et al. 2010, Manso 2013), and the rating
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agency learns the firm’s credit quality over time, as in Hilpert et al. (2022).

The rating agency faces a range of plausible distortions of the firm’s asset value. The latter

is not perfectly observable, for example due to disagreement on how to assess a firm’s intangible

assets. One interpretation of our setting is that the rating agency needs to aggregate the opinions

of several analysts into one rating, as it is the case for all major rating agencies.1 It is unable to

specify exact probabilities for each state of the world; instead, it faces ambiguity in the form of a

range of possible scenarios for each plausible distortion, that is, it holds multiple priors (Gilboa &

Schmeidler 1989).

The rating agency aims for accurate and time-consistent ratings to maximize its reputation over

time. If the estimated default threshold departs from the actual one, we assume that its reputation

suffers equally whether an under- or overestimation occurs. Either failure is indeed costly, as

underestimating the distance-to-default implies losses for the investors, whereas a too conservative

perspective may prevent business. As Kisgen et al. (2020) show, the rating agency’s objective

function is handed through to the analysts, as accurate analysts are more likely to be promoted and

less likely to depart. Contrasting standard approaches to decision making under ambiguity, the

rating agency aims to maximize its reputation based on its expectation of the stream of worst-case

reputation damages its rating incurs instead of selecting a reputation-optimizing strategy over

1For example, Moody’s (2009) states: “Moody’s ratings are initially determined or subsequently changed through
committee. The lead analyst for a given company, industry, country, or asset type frames the discussion, including
offering the rating recommendation and its rationale. At minimum, the committee includes a managing director or
other designated individual and the lead analyst. The committee may be expanded to include as many perspectives
and disciplines as are needed to address all analytical issues relevant to the issuer and the security being rated. Issues
affecting the size of the committee may include the size of the issuer, complexity of the security, geography, or whether
a transaction of the type has ever been done before.”
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the worst-case expectation of its reputation under a single prior, as, for example, Such a strategy

allows the rating agency to include multiple analyst opinions in its strategy and avoids myopic

reputation optimization that induces time-inconsistent rating strategies that occur, e.g. in Garlappi

et al. (2017).2

The firm’s manager-owner maximizes the firm value over its default strategy. As the rating

agency observes only a distorted version of its cash flow as a basis for its rating, the firm accounts

for the rating, and the subsequent capital costs, in its strategy. In particular, the firm includes the

learning of the rating agency over time: Should the observed cash flow imply that the firm is in

distress, the rating agency infers that the current situation is costly for the firm. Once the cash

flow deteriorates enough, the firm cannot sustain the costs and defaults. Therein lies a learning

opportunity for the rating agency. If it observes apparent distress but no default, the rating agency

updates its beliefs, for each prior,3 to exclude distortion levels for which the firm would have

defaulted already.

We show that under this learning mechanism, the firm follows, for each possible distortion

of the cash flow that the rating agency observes, a threshold strategy. The rating agency’s best

response then turns out to predict a dynamic updating of the estimated distance-to-default, based

on whichever distortion levels it can already eliminate from observing non-default. Hence, for

the estimated default threshold, the running minimum of the observed cash flow generates new

2This formulation allows us to avoid myopia-caused time inconsistency that from a game-theoretic perspective is
challenging to manage. In discrete time, Pahlke (2022) proposes a general approach to rule out dynamic inconsistency
given max-min expected utility for games featuring ambiguity.

3For tractability, we assume that the priors have identical support, i.e., sure and impossible events are identical.
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information because it identifies the distortion levels that the rating agency can rule out. However,

although the rating depends on the distance between the observed cash flow to the estimated default

threshold, the firm determines the actual default threshold based on the cash flow alone. As in

Hilpert et al. (2022), the rating agency can never obtain perfect information because the only time

in which it knows the true distortion level is the default time of the firm. The credit rating game

generally features a unique equilibrium.

Ambiguity has profound impact on credit rating. First, we argue that rating agency’s perceived

worst case differs from taking a conservative perspective on the firm’s credit risk, that is, its

estimated default threshold. This perhaps surprising result roots in the agency’s aim to estimate

the firm’s distance to default as precise as possible. Reputation concerns symmetrically affect the

rating agency: Both systematic deviations to over- or underestimate the default threshold are equally

unattractive. This preference for precision leads the rating agency to overweight uninformative

beliefs over pronounced opinions that are clearly positive or negative.

Second, contrasting classical min-max results rooting in ambiguity aversion in models of

multiple priors, the rating agency aggregates multiple prior beliefs in a weighted average. As

information unfolds, the rating agency adjusts the weights it places on each prior with the shifts in

direction within each prior. For example, if the rating agency considers a pessimistic distribution

featuring high probability mass on overvaluation and an optimistic distribution with a lot of

probability mass on undervaluation, learning from survival in apparent distress implies a substantial

shift in the pessimistic distribution whereas the optimistic belief remains largely stable. The reason
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lies in the rating agency’s learning: Under the pessimistic prior, the rating agency learns more, that

is, for the pessimistic distribution, the part of the support that is initially excluded carries more

probability mass compared to the optimistic distribution. It turns out that when pessimistic and

optimistic beliefs are equally present, the learning raises the informativeness of the pessimistic

belief compared to the optimistic one, which in turn causes the rating agency to sharply underweight

this particular belief.

Third, we show that the impact of the feedback effect under ambiguity critically hinges on

whether rating analysts show a common direction of disagreement. In case of pessimistic and

optimistic beliefs being equally present, the rating agency weighs beliefs to avoid deviating from

the true default threshold to achieve a balanced estimate. In this case, ambiguity has little impact on

either the firm’s or the rating agency’s aggregated strategy. In contrast, if they are jointly pessimistic,

that is, if they place high probability mass on the actual cash flow being below the currently observed

one, then the rating agency tends to select the most moderate belief it can justify as its sole prior.

This belief poses the worst case from the perspective of a rating agency aiming for accurate ratings

because it disperses the belief about the distortion as evenly as possible across the range of possible

cash flows.

This extreme response to ambiguity with jointly pessimistic beliefs affects both the rating

agency’s and the firm’s strategy via the feedback loop: As the rating agency now has a belief that

is more moderate than a weighted average, the firm delays default compared to the case under

asymmetric information, which we take as the average distribution across priors (Halevy 2007),
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to allow for the rating agency to learn its quality, because the balanced belief reduces the firm’s

capital costs. In equilibrium, the rating strategy responds accordingly. As the flip side of the coin,

the feedback loop with jointly optimistic beliefs accelerates firm defaults because the rating agency

takes a more conservative belief as the foundation of its choice, making it more expensive for the

firm to wait for the rating agency to learn its distortion. This finding is in line with Bachmann et al.

(2020) who document that firms switch between ambiguity beliefs in phases of crises and standard

beliefs without ambiguity when there is no prevalent pessimistic sentiment. In a related study, Dicks

& Fulghieri (2021) explain corporate innovation waves in a model of investor sentiment under

ambiguity, for which investor beliefs switch between optimism and pessimism.

Our paper contributes to the literature of credit rating and credit risk in dynamic settings.

Building on structural credit risk models with endogenous default, such as Black & Cox (1976),

Leland (1994), and Goldstein et al. (2001), Manso et al. (2010) consider performance-sensitive debt

to capture feedback loops. In turn, Manso (2013) considers credit rating with feedback effects. A

seminal paper, Duffie & Lando (2001) consider asymmetric information between the firm and its

creditors. This allows for learning of credit risk over time. While Duffie & Lando (2001) features

exogenous learning, Hilpert et al. (2022) analyze the learning of credit risk from strategic default.

Secondly, our paper contributes to the impact of ambiguity on corporate decisions. Going back

to the seminal work of Knight (1921), economists distinguish uncertainty and ambiguity from risk.

Originally proposed by Ellsberg (1961) in his famous paradox, ambiguity is a central building

block of many financial models. Malenko & Tsoy (2020) consider the optimal security design
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under ambiguity and show that ambiguity increases the attractiveness of equity over debt to finance

new projects. In a related paper, Izhakian et al. (2022) develop a static 2-period model of the

trade-off theory of capital structure under ambiguity and show that ambiguity-averse managers

tend to increase leverage. Garlappi et al. (2017) focus on investment dynamics and study how

multiple prior specifications differ in their investment predictions, emphasizing the importance of

ambiguity with heterogeneous decision-makers. Baillon et al. (2018) consider learning for initial

public offerings with ambiguous information. Furthermore, it can also explain why investors refrain

from investing in seemingly profitable investment opportunities in the first place, as Easley &

O’Hara (2009) explain.

This paper proceeds as follows. In Section 2, we present the model of a credit rating game

between a firm and a rating agency and detail the information structure and equilibrium concept.

Section 3 derives the best responses of the firm and rating agency. In particular, it explains the

learning mechanism. In Section 4, we establish the existence of the equilibrium of the rating game

and characterize its solution. The economic implications of this equilibrium as well as its empirical

implications follow in Section 5.

2 A Model of Credit Rating under Ambiguity

In this section, we build a model of a credit rating agency’s learning about a firm’s credit risk

under ambiguous and dynamic information. We set off by introducing the true and observed cash
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flow dynamics, followed by the ambiguous information structure and payoffs. The firm’s payoff

consists of its expected discounted stream of cash flows net of capital costs up to default. The rating

agency considers its reputation, which is the discounted stream of reputation costs, which are the

deviation of the estimated default threshold to the actual one. Then, we consider the strategy space,

consisting of the firm’s default strategy and the rating agency’s estimated default strategy as well as

the belief updating for the rating agency. We discuss economically reasonable strategies to allow

for a tractable analysis of ambiguity-extended version of Perfect Bayesian Nash Equilibria (Hanany

et al. 2020, Malenko & Tsoy 2020).

2.1 Ambiguity, Dynamics, and Payoffs

We consider a levered firm with one outstanding consol bond, managed by the sole owner of the

firm’s equity in a structural model of credit risk (Leland 1994, Goldstein et al. 2001). It generates

a cash flow X = (X(t))t≥0 and pays a coupon C = (Ct)t≥0 on its outstanding debt. The cash flow

satisfies

dX(t)
X(t)

= µdt +σdB(t), (1)

where µ < r and σ represents the cash-flow’s growth rate and volatility, respectively, with r being

the risk-free rate and B = (Bt)t≥0 being a Wiener process. The cash flow’s drift µ , its volatility σ

and r are constants and common knowledge. The firm’s cash flow X is the firm’s manager-owner’s

private information.
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The rating agency observes the firm’s cash flow only imperfectly due to a persistent measurement

error θ̃ , that is, the observed cash flow follows

Dt = θ̃Xt (2)

for t ≥ 0 and it has the same dynamics as the true cash flow X .4 The rating agency is ambiguity

averse and has n priors with differing beliefs πi = (πi,t)t≥0 about the law of θ̃ for i = 1, ...,n,

extending the information structure of Grenadier et al. (2016) and Hilpert et al. (2022).5 The beliefs

are common knowledge and initial beliefs are fully described by the densities φ πi,0 := φi, which

we call the priors. All priors are bounded away from zero and above and have the same support

Θ = [θ ,θ ] with 0 < θ < θ < ∞. The rating agency for each prior i dynamically updates its beliefs

with over t ≥ 0 and presumes that the density φ πi,t characterizes the distribution of the persistent

measurement error.6

The rating agency determines the rating as the estimated distance to default for its current

information. Formally, the rating equals

Rt =
Dt

D̂?
t
, (3)

4As in Hilpert et al. (2022), the persistent measurement error excludes statistical learning as in David (2007) and
Pastor & Veronesi (2009).

5The special case n = 1 delivers the model in Hilpert et al. (2022).
6 θ̃ is independent of the Wiener process W . As in Hilpert et al. (2022), the filtrations F= (Ft)t≥0 and G= (Gt)t≥0

capture the information generated by X and D, respectively. Formally, the firm’s information set at t is given by
σ(θ̃)∨Ft , for t ≥ 0. Since θ̃ is known to the firm at t = 0, we can condition on θ̃ = θ and work with F.
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the ratio of the current observed cash flow to the predicted default cash flow level D̂?
t at each time

t ≥ 0. A rating of R = 1 implies immediate default, whereas the rating diverges to infinity as the

observed cash flows approach infinity, that is, the default risk vanishes.

The rating agency selects the predicted default level D̂? = (D̂?
t )t≥0 as its strategy to minimize

the costs of the rating agency under ambiguity aversion, given by

Uπ
RA(τ, D̂

?) = E
[∫ τ

0
e−ρt

(
max

i=1,...,n
kπi

t

)
dt
]
, (4)

where ρ > 0 is the rating agencies internal discount rate, τ = (τ(θ))θ∈Θ the default strategy of the

firm and kπi
t the cost rate for the predicted default level D̂? of belief i. The latter is given by

kπi
t =

∫
Θ

(
D̂?

t −E[Dτ(θ) |Ft ]
)2

φ
πi,t (θ)dθ , (5)

where we account for Dτ(θ) being potentially not measurable with respect to the rating agency’s

filtration F . The given projection E[Dτ(θ) |Ft ] needs to be applied, however, later in Proposition 2

we show under some mild assumptions that the default time τ(θ) is the first hitting time of a default

threshold f (θ), and hence E[Dτ(θ) |Ft ] = f (θ).

The rating agency’s aim to minimize its reputation damage through its estimated default threshold

deviating from the correct one for the maximal cost rate at any given time in equation 4 deviates

from the standard max-min expected utility framework (Gilboa & Schmeidler 1989). Contrasting

the max-min expected utility framework, the above formulation implies a time-consistent rating
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agency that maximizes its reputation by considering the worst-case reputation costs for every time

point. Thus, it avoids a myopic optimization in which the rating agency considers worst-case

expectation over the entire horizon that may cause inconsistencies due to a switching worst case

over time in the spirit of Pahlke (2022).

The strategies of rating agency and the firm are connected in a game via a feedback loop.

Specifically, performance-sensitive debt as in Manso et al. (2010) and Manso (2013) reflects that

the firm’s capital costs, that is, the coupon reacts to the rating. The coupon follows a non-decreasing

function C : [1,∞] 7→ R+ depending on the firm’s rating:

Ct =C(Rt) (6)

We employ the coupon structure by Hilpert et al. (2022), to ensure that C is sufficiently smooth to

allow for an equilibrium.7

Assumption 1. Assume that the interest payment rate C satisfies for some 0 < LC < 1 that

C(z)≤C(z′)≤ (z/z′)LCC(z) , for 1≤ z′ ≤ z . (7)

The firm, on the other side, chooses the default strategy τ to maximize its equity value. The

firm owner is risk-neutral and maximizes the net present value of the cash flows net the interest

7Assumption 1 imposes Lipschitz continuity on the log-log scale; that is, for some LC, with 0 < LC < 1, it holds
that | logC(z)− logC(z′)| ≤ LC | log(z)− logz′|, for all z,z′ ≥ 1.
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payments on its outstanding debt. Since the firm is aware of the measurement error at the start, we

denote τ = (τ(θ))θ∈Θ, where τ(θ) is a stopping time implemented by type θ ∈Θ. With X = D/θ̃ ,

the firm’s equity value is given by

U (θ)
F (τ, D̂?) = E

[∫ τ(θ)

0
e−rt(Dt/θ −C(Dt/D̂?

t )
)
dt
]
. (8)

2.2 Markov Strategies and Belief Updating

To obtain a tractable model, we focus on Markov strategies from now own. Because our model,

and the beliefs in particular, are formed under ambiguity, Grenadier et al. (2016) and Hilpert et al.

(2022), we cannot directly employ Perfect Bayesian Nash equilibria in Markov strategies. Instead,

we use the sequential-optimality expansion by Hanany et al. (2020) in the implementation for

multiple priors by Malenko & Tsoy (2020).

The firm plays a default strategy of the type

τ(θ) = inf{s≥ 0 : D(s)≤ f (θ)}. (9)

The rating agency’s beliefs πi are updated via Bayes-Rule whenever possible. The rating agency’s

strategy must be sequentially optimal, and equals the predicted default level which is a function of

the observed cash flow’s running minimum Et = infs≤t Ds, that is D̂?
t = g(Et) for some measurable

g : R+→ R+. By Equation (3), the firm’s rating is then given by Rt = Dt/g(Et).
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(a) Initial beliefs (b) Updated beliefs

Figure 1: Belief updating: This figure shows two analysts’ beliefs, a pessimistic one (solid) and an optimistic one
(dashed). Panel 1a show both analysts’ beliefs at time zero in black. Panel 1b shows the same beliefs and the update
analysts’ beliefs (gray) after measurement errors above one have been ruled out.

As the rating agency aims to assess the firm’s default probability, the running minimum of the

observed cash flows Et carries information value (Hilpert et al. 2022). In combination with the

firm’s default strategy τ , each consistent belief i equals

φ
πi,t (θ) =

1{ f (θ)<Et}∫
Θ

1{ f (θ ′)<Et}φi(θ ′)dθ ′
φi(θ), for θ ∈Θ, (10)

with 0≤ t < τ and i ∈ {1, ...,n}.

Figure 1 illustrates the belief updating from Equation (10). Panel 1a shows the initial situation of

two analysts holding initial beliefs about the firm’s measurement error. In this case, one pessimistic

analyst places more probability mass on high measurement errors (solid line), while an optimistic

analyst thinks low measurement errors more likely (dashed line). Panel 1b displays the case in

which the minimum of the observed cash flows has decreased sufficiently to allow the rating agency

to eliminate measurement errors exceeding θ > 1. Thus, both analysts include this information
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and update their beliefs according to Equation (10). Panel 1b shows their initial beliefs in black,

whereas the updated beliefs are shown in gray.

To obtain a tractable game, we restrict our analysis to pure strategies, and additionally focus on

rating strategies that are economically reasonable in the spirit of Hilpert et al. (2022).8 We call a

rating strategy g economically reasonable, if it satisfies the following conditions:

g(e)≤ e, g(e) is non-decreasing and g(e)/e is non-increasing. (11)

The first inequality states that any predicted default level must be below the observed running-

minimum of the cash flow. The second condition ensures that firm’s survival of an distressed

period and recovery to an initial higher cash flow level improves the rating. Furthermore, the third

condition ensures that arrival at a new all-time low cash flow does not improve the rating. We denote

the set of rating strategies satisfying Equation (11) by Ag. Similarly, a firm’s default strategy f is

called economically reasonable if it is strictly increasing and continuous. We denote the set of such

strategies by A f .

3 Best Responses

In this section, we consider the best responses of the the firm and the rating agency based on

their information. If the rating agency follows an economically reasonable strategy, the firm’s best

8Note that in our setting, the more involved information structure with ambiguity demands sharper restrictions to
the rating agency compared to Hilpert et al. (2022).
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response is to default at a type-dependent default barrier. The rating agency’s best response is

the cost-minimizing expected default threshold given its current information. Depending on the

economic situation, the rating agency bases its default threshold prediction on the most moderate

prior assessment or a weighted average of beliefs.9 The rating agency weighs the estimated default

thresholds under each prior to obtain its overall estimate, where the weight for a particular prior

increases if it features higher residual variance, that is, the prior is less informative.

We characterize the firm’s best response default strategy τ for any economically reasonable

rating strategy g in the following proposition.

Proposition 1. For rating strategies g ∈Ag, θ ∈ Θ, the optimal stopping time of Equation (8) is

given by

τ(θ ;g) = inf{s≥ 0 : D(s)≤ f (θ ;g)}, (12)

where f (θ ;g) is some positive real constant. Moreover, f (·;g) is strictly increasing and continuous.

Proof. The firm’s best response is identical to Hilpert et al. (2022). For the proof, see Proposition 2

in their paper.

The firm’s optimal default strategy is the first hitting time of the imperfectly observed cash

flow D with respect to the default barrier f (θ ;g). More structure on the mapping θ 7→ f (θ ;g) is

provided in Lemma 2 in Appendix I.2.

9Formally, we show that for rating strategies g ∈ Ag, the firm’s best response default strategy is indeed of the
form (9) and described by a default threshold function f : Θ→ R+.
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Now, we turn to the dynamic learning and the best response ambiguity averse strategy of the

rating agency.

Proposition 2. Let a firm’s default strategy τ be given by some default threshold function f ∈A f ,

with τ(θ) = inf{s≥ 0 : Ds ≤ f (θ)}. The rating agency’s ambiguity averse best-response to f is

given D̂? = g(E; f ) with

g(e; f ) = argmin
D>0

{
max

i=1,...,n
Eπi,0

[
(D− f (θ̃))2 | f (θ̃)< e

]}
. (13)

for e≥ infθ∈Θ f (θ). Moreover, g is continuous with g(e)≤ e on its domain.

Proof. Continuity and boundedness of g by the identity follows from Lemma 3 and the arguments

in Lemma 4 in Appendix I.2.

Focusing on a specific prior πi,0 in its own right, the best response gi to a firm strategy f is given

by the conditional mean, see Proposition 1 in Hilpert et al. (2022). Denote by νi the corresponding

conditional variance, then

gi(e; f ) = Eπi,0
[

f (θ̃)
∣∣ f (θ̃)< e

]
, (14)

ν
2
i (e; f ) = Eπi,0

[(
gi(e, f )− f (θ̃)

)2
∣∣∣ f (θ̃)< e

]
, (15)

for e > infθ f (θ), and else gi(e; f ) = e and ν2
i (g; f ) = 0, i = 1, ...,n. Then the central equation of
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Proposition 2 reads

g(e; f ) = argmin
D>0

{
max

i=1,...,n
(D−gi(e; f ))2 +ν

2
i (e; f )

}
, (16)

and accordingly, the rating agency strives to minimize the worst case mean squared error over all

priors. It can be shown that the minimizing argument is either the intersection point of two mean

squared error curves of two priors, say, i and j, or it is the expected value of a single prior, say, i = j,

and is given by

g(e; f ) =
gi(e; f )+g j(e; f )

2
+1i6= j

1
2

ν2
i (e; f )−ν2

j (e; f )

gi(e; f )−g j(e; f )
, (17)

where (i, j) = (i(e; f ), j(e; f )) depends on the running minimum cash flow e. For better under-

standing, one may think of i being the most pessimistic and j the most optimistic prior, that is,

gi(e; f )≥ gk(e; f )≥ g j(e; f ), for all e≥ 0 and k = 1, ...,n.10 Equation (17) can be restated in terms

of weighted average of the best responses gi(·; f ) and g j(·; f ) as follows

g(e; f ) =w(e; f , i, j)gi(e; f )+(1−w(e; f , i, j))g j(e; f ) , (18)

w(e; f , i, j) =
1
2

(
1+1i 6= j

ν2
i (e; f )−ν2

j (e; f )[
gi(e; f )−g j(e; f )

]2
)

. (19)

The weight w for prior i increases (decreases) relative to prior j, if it has a higher (lower) residual

10This is not accurate but holds true in case the conditional variances are all identical, that is, ν2
i (e; f ) = ν2

j (e; f ),
for 1≤ i, j,≤ n.
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(a) Balanced analysts (b) Pessimistic analysts

Figure 2: Cost rates and prior weights: This figure shows how the rating agency balances the priors of two analysts
based on the reputation costs their prior implies. Panel 2a presents an optimistic analyst (solid) and a pessimistic one
(dashed). Panel 2b shows a pessimistic analyst (solid) and a super-pessimistic one (dashed).

variance, that is, it is less (more) informative.

Figure 2 illustrates the above weighting of the analysts’ priors by the rating agency. Panel 2a

presents a balanced case with a pessimistic analyst (solid line) and an optimistic one (dashed

line). The optimistic one predicts a lower default threshold than the pessimistic one. The rating

agency now aims to minimize the worst case reputation costs based on both beliefs: to do this,

it selects the minimum of the maximal costs it can justify. For example, if the rating agency

considers a very low predicted default threshold, the solid line exceeds the dashed one, whereas

for a high predicted default threshold the relations change. The overall minimum is obtained by

an intermediate predicted default threshold. Note that for this minimum, the rating agency follows

neither the optimistic nor the pessimistic analyst alone but its choices falls between their estimates.

In contrast, in Panel 2b the rating agency obtains minimal reputation costs by taking the predicted

default threshold that minimizes the less pessimistic analysts reputation costs (black), that exceeds

the costs from balancing both.
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4 Equilibrium

The best responses of the firm and rating agency allow us to discuss perfect Bayesian equilibria in

Markov strategies augmented for beliefs under ambiguity via sequential optimality as derived by

Hanany et al. (2020) in the implementation for multiple priors by Malenko & Tsoy (2020). Both

the rating agency and the firm use Markov strategies characterized by real-valued functions in

Propositions 1 and 2. We obtain an equilibrium by the Schauder fixed-point theorem for a feedback

loop with sufficiently smooth interest payments, building on Hilpert et al. (2022).

In the following, we first provide the existence of an equilibrium candidate in Proposition 3.

Then, Proposition 4 characterizes the solution and verifies the existence and uniqueness, provided

that specific technical conditions hold. To establish our equilibrium, we apply the Schauder fixed-

point theorem to the best responses. To do this, we must ensure that the best response g(; f ) is

an economically reasonable strategy by a suitable transform R. In particular, the transform R is

defined on the set of measurable functions g : R+→ R+ bounded by id, that is, g(e)≤ e, for all

e≥ 0, by

R(g)(e) =


e inf{sup{g(s)/z : 0 < s≤ z} : 0 < z≤ e} , for e > 0 ,

0, for e = 0 .

(20)

Then R(g) is economically reasonable as desired, see Lemma 1. As in Hilpert et al. (2022), we

apply the Schauder fixed-point theorem to the mapping T : ( f ,g) 7→ ( f (;g),R(g(; f ))), where f (;g)
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is the firm’s best response given in Proposition 1 and g(; f ) is the rating agency’s best response

given in Proposition 2.

Proposition 3. Suppose Assumption 1 holds. Then T : ( f ,g) 7→ ( f (·;g),R(g(·; f ))) has at least

one fixed point in the space of economically reasonable strategies. Let ( f ?,g?) be such a fixed point,

if R ◦g(·; f ?) = g(·; f ?), then ( f ?,g?) is an equilibrium.

Proof. See Appendix.

Proposition 3 is an existence result. It ensures that at least one candidate for an equilibrium exists

and this candidate is indeed an equilibrium if the condition R ◦g(·; f ?) = g(·; f ?) holds. However,

no particular guidance is given on how to actually compute such an equilibrium candidate. Proposi-

tion 4 characterizes an equilibrium candidate as the solution to a 2× (n+1)-dimensional ordinary

differential equation (ODE) under some technical assumptions. The strategies f and g depend on gi

and ν2
i the conditional mean and variance of each prior, see (17), explaining the dimension of the

setup. For the subsequent Proposition 4, the following transforms are useful ĝi(θ ; f ) = gi( f (θ); f )

and ν̂2
i (θ ; f ) = ν2

i ( f (θ); f ), for θ ∈ Θ, i = 1, ...,n. Both transforms are collected in a column

vector each, that is, Ĝ(·; f ) = (ĝ1(·; f ), ..., ĝn(·; f ))> and V̂ 2(·; f ) = (ν̂2
1 (·; f ), ..., ν̂2

n (·; f ))>, and

denote by � the pointwise product of vectors and matrices and by 1n = (1, ...,1)> the one vector

of dimension n. Define η =
µ− 1

2 σ2

σ2 +

√(
µ− 1

2 σ2

σ2

)2

+ 2r
σ2 , Φi(θ) =

∫
θ

θ
φi(t)dt, i = 1, ...,n, then set

Π = ( φ1
Φ1

, ..., φn
Φn

)>, and denote by b(·;θ ,g) the boundary that separates the default region from the

nondefault region depending on measurement error θ and rating agency strategy g. Finally, define

21



the function

L ( f , ĝ, ĝi, ĝ j, ν̂
2
i , ν̂

2
j , i, j,θ) =

1
2

φi(θ)

Φi(θ)
( f − ĝi)+

1
2

φ j(θ)

Φ j(θ)
( f − ĝ j) (21)

1i 6= j

2(ĝi− ĝ j)

(
φi(θ)

Φi(θ)

[
( f − ĝi)

2− ν̂
2
i −

ν̂2
i − ν̂2

j

ĝi− ĝ j
( f − ĝi)

]
−

φ j(θ)

Φ j(θ)

[
( f − ĝ j)

2− ν̂
2
j −

ν̂2
i − ν̂2

j

ĝi− ĝ j
( f − ĝ j)

])
.

Proposition 4. Given the setting of Proposition 3, denote by ( f ?,g?) a fixed point of T . Suppose

f ?,g?, (φi)i are continuously differentiable, and the collection of the firm’s equity values, denoted

by (v(·, ·;θ ,g?))θ∈Θ, is sufficiently differentiable. Denote by ( f , ĝ, Ĝ,V̂ 2) the solution of the ODE



f ′(θ)

ĝ′(θ)

Ĝ′(θ)

V̂ 2′(θ)


=



(1+η)σ2

2(r−µ)
( f (θ)/θ)2

C( f (θ)/ĝ(θ))− f (θ)/θ
+ ∂ b̂(θ ,θ ;g)

∂ θ̂

L ( f (θ), ĝ(θ), ĝi(θ)(θ), ĝ j(θ)(θ), ν̂
2
i(θ)(θ), ν̂

2
j(θ)(θ), i(θ), j(θ),θ)

Π(θ)� ( f (θ)1n− Ĝ(θ))

Π(θ)�
(
[ f (θ)1n− Ĝ(θ)]� [ f (θ)1n− Ĝ(θ)]−V̂ 2(θ)

)


(22)

on (θ ,θ) with initial condition f (θ) = θ f ?1 , ĝ(θ) = θ g?1, Ĝ(θ) = 1n θ g?1, and V̂ 2(θ) = 0, where

( f ?1 ,g
?
1) denotes the unique equilibrium of the case Θ= {1}with f ?1 = g?1, b̂(θ̂ ,θ ;g)= b( f ?(θ̂),θ ;g?),

for θ̂ ≤ θ , and (i(θ), j(θ)) are the minimizing indices of (16) as given in (17). If

0≤ ĝ′(θ)≤ f ′(θ)
ĝ(θ)
f (θ)

, for all θ ∈ (θ ,θ) , (23)
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then the fixed point is characterized by ( f ?,g?) = ( f , ĝ◦ f−1) and is moreover an equilibrium.

Proof. See Appendix.

The ODE in Equation (22) is explicit and admits a unique solution ( f , ĝ) that can be used

for computations. If Condition (23) holds, then ( f ?,g?) = ( f , ĝ◦ f−1) is the unique equilibrium

satisfying the differentiability conditions in Proposition 4.

5 Economic Implications of Credit Rating with Ambiguity

In this section, we shed light on the implications of ambiguity for the equilibrium strategies

of the firm and rating agency with an emphasis on learning. In the first part, we provide general

implications on the firm’s equilibrium equity value and its optimal default strategy. In our subsequent

numerical equilibrium analysis, we initially focus on a market with pessimistic and optimistic beliefs

being equally present. Thereafter, we shift the analysis to cases in which rating analysts show a

common direction of disagreement, where the ambiguity evolves around a either a pessimistic or an

optimistic distribution.

Throughout the numerical analysis, we use the parametrization by Hilpert et al. (2022). Specifi-

cally, the firm’s debt face value is scaled to unity; the cash flow features the expected growth rate of

µ = 0 and a volatility of σ = 0.30; the risk-free rate equals r = 0.0211; the interest payment rate C

follows the specification in Assumption 1. Both the risk-free rate and the interest payment rate are

calibrated as in Hilpert et al. (2022).
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5.1 General Implications of Equilibrium

In this section, we provide general implications on the firm’s equity value and its default strategy.

We present general implications that hold under information asymmetry (Hilpert et al. (2022)) and

are further valid in our setting under the consideration of ambiguity. We denote by ( f ?,g?) a unique

equilibrium and a corresponding firm’s equity value by v?(d,e;θ) = v?(d,e;θ ,g?) for θ ∈ Θ in

compliance with Proposition 4.

The first implication states that a firm benefits from surviving distressed periods: The firm

signals its quality by surviving an apparently distressed period and thereby improves its future

financing prospects. Formally, let D?(θ) = f ?(θ) be the firm’s observed cash flow based default

threshold, d the currently observed cash flow and e,e′ two minimum observed cash flows with

D?(θ)≤ e′ ≤ e≤ d. Then, it holds that

v?(d,e′;θ)≥ v?(d,e;θ). (24)

Surviving at a new all time low cash flow level e′ and recovering to the initial observed cash flow

level d increases the firm’s equity value.

Next, note that the observed cash flow of a firm that is subject to a high distortion parameter is

above its true cash flow. Thus, the rating of a firm with a high distortion parameter is too optimistic

and the cost of capital lower than accurate. A firm with a higher distortion parameter thereby delays

default compared to firm with a lower distortion parameter, since the latter faces less favorable cost
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of capital. On the other side, consider a situation of two firms with similar observed cash flows but

differing distortion parameters. Before one of them defaults, both firms have the same rating and

pay the same coupon, while the firm with a lower distortion parameter has higher true cash flow and

therefore will choose to survive longer. Let X?(θ) = D?(θ)/θ be the firm’s default threshold in

terms of its true cash flow. Then, it holds for θ ,θ ′ ∈Θ with θ ′ ≤ θ :

X?(θ ′)≥ X?(θ) and D?(θ ′)≤ D?(θ). (25)

Now, consider a fixed observed cash flow d and a fixed observed running minimum e. Let us regard

two firms with different distortion parameters: By the previous equation, the firm with the higher

distortion parameter defaults at a higher observed cash flow level. As before, up to the time when

latter firm defaults and for any observed cash flow level, both firms are going to have the same

rating and the same cost of capital. However, the firm with the lower distortion parameter constantly

has a higher true cash flow. Therefore, due to standard monotony arguments, equity value must be a

decreasing function in the distortion parameter. That is, for θ ′ ≤ θ , the firm’s equity value satisfies

v?(d,e;θ
′)≥ v?(d,e;θ). (26)

Finally, let us consider a firm’s fixed true cash flow level x and a fixed true running minimum y.

A higher distortion parameter leads to a higher equity value, since a higher observed cash flow is

associated with cheaper cost of capital. Formally, the observed cash flow is given by d = θx and

25



the observed running minimum by e = θy for any distortion parameter θ . The previous argument

translates to:

v?(θ ′x,θ ′y;θ
′)≤ v?(θx,θy;θ) (27)

for θ ′ ≤ θ . For formal and detailed proofs, see Hilpert et al. (2022). The following numerical

analysis captures the specific effect of ambiguity on the unique market equilibrium.

5.2 Learning of Credit Quality under Ambiguity

In this section, we discuss how ambiguity affects the rating agency’s learning of the firm’s default

threshold and rating over time. Consider the case of two priors (n = 2) having symmetric initial

beliefs. One prior, the pessimist, assigns high likelihood to cases in which the true cash flow is

upward distorted, that is, the firm is worse off than it looks. Conversely, the likelihood for the

downward distorted cases is low, that is, those in which the firm is better off than it looks. In

contrast, the other prior, called optimist, assigns high likelihood to cases in which the true cash flow

is downward distorted, and low likelihood to the upward distorted cases. Formally, the priors are

described by the densities φ1 and φ2 given by

φ1(θ) = 1[ 1
2 ,

3
2 ]
(θ)θ , and φ2(θ) = 1[ 1

2 ,
3
2 ]
(θ)(2−θ). (28)

The rating agency places weights ωi, with i = 1,2, on each prior, where the weights are given by

Equation (19).
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(a) Trajectory (b) Weights

Figure 3: Learning for sample path. This figure illustrates the rating agency’s learning of the firms default threshold
(Panel 3a) and the evolution of its weights (Panel 3b) for a sample trajectory of the observed cash flow. Panel 3a shows
the path of an observed cash flow (solid black line) and its observed running-minimum (dashed black line). Based on
the observed running minimum, the expected default threshold for the pessimistic prior and an optimistic prior follow
the grey dashed and dotted lines, respectively. The agency’s estimated default threshold is captured by the black dotted
line. Panel 3b displays the weights the rating agency places on the pessimistic (dashed line) and optimistic (dotted line)
priors. The black line shows an equal weighting for comparison.

To grasp the intuition of the rating agency’s learning, consider Figure 3. Figure 3 shows a

trajectory of the observed cash flow (Panel 3a) and the rating agency’s weights (Panel 3b). Panel 3a

shows the path of an observed cash flow (solid black line) and its observed running-minimum

(dashed black line). Based on the observed running minimum, the rating agency postulates an

expected default level for an optimistic (grey dotted line) and a pessimistic prior (grey dashed line).

Its strategy equals its expected default threshold (black dotted line). Panel 3b displays the weights

the rating agency places on the pessimistic (dotted line) and optimistic (dashed line) priors.

For this trajectory of the observed cash flow, each prior individually implies a default threshold

for the firm optimizing the stream of the agency’s expected reputation damage conditional on their

prior, which it updates as information unfolds. The optimistic prior postulates a lower expected

default threshold because the probability mass on the measurement errors for which the actual cash
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(a) Belief updating (b) Updated belief

Figure 4: Belief updating. This figure illustrates the updating of the beliefs for a pessimistic (solid lines) and optimistic
prior (dashed lines). Panel 4a shows the initial belief, i.e., the prior (black) and after two phases of learning (dark and
light grey). Panel 4b shows the updated belief after both phases on a larger scale. Note that the densities are rescaled
to the original scale to be comparable.

flow exceeds the currently observed one are lower. Conversely, the pessimistic prior implies a firm

default for a higher observed cash flow. Initially, the rating agency overweights the optimistic prior

slightly (Panel 3b).

Approximately at time 0.6, the observed cash flow deteriorates sufficiently for both priors to

discard the highest measurement error as implausible (recall that both priors have the same support).

Consequently, both adjust their expectation of the firm’s default threshold downwards. The learning

affects the pessimistic prior’s information stronger because the eliminated measurement errors carry

high weight in its belief, causing a higher relative shift in its belief. As the increasing perceived

distress of the firm deepens, the rating agency updates its expectation of the default threshold based

on both priors. However, its weights for the analysts shift with this updating: After the learning, the

rating agency considerably overweights the optimistic belief in forming the overall assessment.

This surprising result originates in the rating agency’s cost function. Figure 4 illustrates how the

rating agency’s learning shifts its prior beliefs over time. Panel 4a shows the initial belief, that is,
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the prior (black) and after two phases of learning (blue and red), for the pessimistic (solid lines) and

optimistic (dashed lines) priors, rescaled to be comparable. Panel 4b zooms in on the updated beliefs

after both phases. Because the rating agency aims to optimize its reputation costs under ambiguity, it

minimizes the maximal reputation damage, that is, the reputation damage with the highest reputation

cost rate. From this perspective, as the perceived distress worsens and more and more measurement

errors are excluded, the optimist’s belief is becomes increasingly uninformative: it distributes the

remaining probability mass substantially more evenly across the remaining measurement errors.

In contrast, the pessimistic belief shifts to a considerably more extreme position over time and

places most of its probability mass on default in the immediate future. Panel 4b shows a much

steeper slope for the pessimist. Consequently, the optimistic prior is more challenging from the

rating agency’s perspective because the beliefs allows for meaningful and likely deviations of the

actual default threshold from the estimate. The pessimistic prior, on the opposite, allows for high

confidence for the default to happen in a narrow corridor, allowing for a precise estimate with low

reputation cost. Hence, the optimistic prior presents actually the worst case for a rating agency that

aims for accurate ratings.

Continuing from Figure 3 that illustrates the rating strategy for a single trajectory of observed

cash flows for a firm that does not default during the displayed time interval, in contrast, Figure 5

presents the credit rating equilibrium in general for the state space; in particular, it illustrates the

firm and rating strategies in equilibrium independent of a concrete realization of the observed cash

flow. In Panels 5a and 5b, we show how a firm with a given measurement error responds to the
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(a) Firm strategy (b) Firm strategy (c) Rating strategy, plain

Figure 5: Rating Game Equilibrium under Ambiguity. This figure illustrates the equilibrium strategies for both the
firm and the rating agency. Panel 5a and 5b shows firm’s corresponding equilibrium default strategy in terms of the
firm’s actual and observed cash flow, respectively. Panel 5c presents the rating agency’s corresponding equilibrium
rating strategy. In this panel, the solid line represents the area for which the rating agency learns. The dashed line
indicates the rating strategy before learning (right part) and in case all possible firm types already defaulted (left part).

rating agency’s judgment in terms of its actual and the observed cash flow, respectively. Panel 5c

shows how the rating strategy, that is, how the estimated default threshold changes once rating

agency observes a lower minimum cash flow (distorted by the measurement error).

Consider the firm strategy first. In equilibrium, as Panels 5a and Panel 5b show, the firm default

at a cut-off threshold that depends on the distortion level. The default threshold decreases in the

distortion with which the rating agency observes the actual cash flow in terms of the true cash flow

and rises for the observed one. If the rating agency perceives the firm to have a higher cash flow, a

high distortion implies that the observed cash flow exceeds the actual one, that is, the firms true

cash flow decreases. In consequence, the firm defaults at a higher cash flow to mitigate losses from

high capital costs via the feedback loop. The flip side of the coin is that the firm profits from an

overvaluation of its cash flow under a high distortion for the same actual cash flow; hence the rising
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shape in Panel 5b because the firm decides to delay default to enjoy the lower capital costs the

feedback loop implies via the improved rating. Structurally, the firm strategy is similar, but not

identical, to Hilpert et al. (2022), however, the ambiguity implies equilibrium effects which we

discuss below.

Considering the rating agency, Panel 5c shows that its strategy consist of three distinct parts.

Initially, the running minimum of the observed cash flow is high. Without a phase of apparent

distress, the rating agency cannot learn anything; its expected default threshold remains constant

(dashed part on the right). Once the running minimum deteriorates, the rating agency learns from

survival that it can discard the highest part of the distribution as implausible because at these cash

flow levels, the firm would have defaulted already. Hence, the expected default threshold decreases

along the decreasing running minimum (solid line). The dashed part on the left presents the strategy

for the hypothetical case that the rating agency observes cash flow level for which the firm should

have defaulted regardless of the type. In this case, the rating agency expects immediate default.

As for the firm strategy, the rating strategy is structurally similar but not identical to Hilpert et al.

(2022).

To highlight the impact of ambiguity on the equilibrium of the rating game, Figure 6 presents the

rating strategy in more detail. Panel 6a shows the rating strategy (solid line) as well as the expected

default levels under the pessimistic (dashed line) and optimistic (dotted line) priors, respectively.

Panel 6b presents the weights the rating agency places on the pessimistic (dotted line) and optimistic

(dashed line) priors. The solid line indicates an equal weighting.
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(a) Rating strategy, plain (b) Weights

Figure 6: Ambiguity impact on rating strategy. This figure illustrates the impact of ambiguity on the rating agency.
Panel 6a presents the rating agency’s equilibrium rating strategy. The pessimistic prior expects the default threshold
indicated by the dotted line, whereas the optimistic prior expects default at the dashed line. Panel 6b displays the
weights the rating agency places on the pessimistic (dotted line) and optimistic (dashed line) prior, whereas the solid
line indicates equal weights for comparison.

As our initial example for the sample trajectory indicates, rating under ambiguity does not lead

to what might be expected as a classical “worst-case” behavior. That is, in the equilibrium above, the

first intuition might be that a rating agency that minimizes the costs of the worst case should adapt

the worst case prior, that is, the prior giving the most pessimistic estimate of the firm’s prospect.

After all, this seems to minimize the costs of deviating from the true default threshold, if the most

pessimistic prior indeed has the most appropriate assessment of the measurement error distribution.

As is obvious in the example above, this is not the case (Panel 6b). For the given case, the rating

agency does not follow a strategy that assigns a single worst-case prior. Rather, the rating agency

chooses a strategy that considers the expectations under each prior. Generalizing our previous

example, the rating agency does not place equal weight on each prior but balances them, and, as a

result of learning on both beliefs, considerably shifts the weights over time. The reason is that the

rating agency’s objective function is symmetric in nature, and the rating agency’s objective is to
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(a) Firm strategy (b) Firm strategy (observed CF) (c) Rating strategy

Figure 7: Ambiguity impact on equilibrium. This figure illustrates the impact of ambiguity on the equilibrium.
Panel 7a presents the firm’s equilibrium strategy in terms of the true cash flow, whereas Panel 7b displays it in terms of
the observed cash flow. Panel 7c shows the rating agency’s equilibrium rating strategy. The solid line represents the
area for which the rating agency learns. The dashed line indicates the rating strategy before learning (right part) and
in case all possible firm types already defaulted (left part). The case under ambiguity is indicated in black. The case
without ambiguity is captured by the grey lines.

produce a rating that is as accurate as possible.

That is why from the point of view of the rating agency, the worst case is not that the firm’s

cash flow distortion has a lot of weight on upward measurement errors. Rather, the worst case

is to deliver an estimate that is far away from the true situation – regardless whether it is too

optimistic or pessimistic. Thus, avoiding the worst case is effectively achieved by taking a middle

position between the possible extremes, rather than following the most pessimistic estimate of the

default threshold. The intuition of Figure 4 carries over to the equilibrium: The learning moderates

the optimistic prior, whereas the pessimistic becomes increasingly extreme in its predictions.

Consequently, the rating agency overweights the optimistic prior in this case.

Secondly, the impact of ambiguity on both the firm and the rating agency in this case of a

symmetric distribution of ambiguity, where the optimistic and pessimistic priors are balanced,
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(a) Jointly pessimistic priors (b) Jointly optimistic priors

Figure 8: Jointly pessimistic and optimistic priors. This figure displays the prior beliefs for jointly pessimistic priors
(Panel 8a) and jointly optimistic priors (Panel 8b). The black line indicates a moderate belief, whereas the dashed line
displays a more pronounced belief.

implies that the priors overall do not have a clear common direction.

This results in a structure of ambiguity for which the average distribution is uninformative,

that is, all measurement errors are effectively plausible and approximately equally likely. Figure 7

compares the equilibrium strategies for the firm (Panels 7a and 7b) and the rating agency (Panel 7c)

under ambiguity (solid line) to the case without ambiguity (dashed line), which we take as the

average distribution over both priors. The no-ambiguity case coincides with Hilpert et al. (2022). In

this case, ambiguity has no influence on either the firm or the rating agency as the information is

too dispersed for the rating agency to move its aggregated belief. Hence, the rating agency, and, in

turn, the firm ignore the ambiguity in their strategies.
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5.3 Credit Rating under Ambiguity with Common Direction of Disagree-

ment

In this section, we analyze how the firm and rating agency are influenced by ambiguity if the

disagreement between the analysts has a common direction. Yet, the analysts’ beliefs about how

high the value of the firm’s intangible assets actually is can remain heterogeneous.

Consider the case when analysts are pessimistic and jointly perceive the firm’s value of intangi-

bles as overstated. In this case, both priors imply that the firm features cash flows that are lower

than the currently observed ones although they have more nuanced beliefs about how bad the firm’s

prospect actually is. Likewise, when analysts are jointly optimistic and perceive the firm’s value of

intangibles as understated, all priors may agree that a firm has a good outlook and form beliefs that

underweight the likelihood that the firm has lower than observed cash flows.

Staying in the two-prior case (n = 2), we start with the case of both priors having a pessimistic

belief. Specifically, we consider initial prior beliefs follow the densities φ1 and φ2, given by

φ1(θ) = 1[ 1
2 ,

3
2 ]
(θ)

(
2
3
+

1
3

θ

)
, and φ2(θ) = 1[ 1

2 ,
3
2 ]
(θ)

(
1
6
+

5
6

θ

)
. (29)

The solid prior is more moderate than the dashed prior. For the jointly optimistic case, we consider

the two prior beliefs with the densities φ1 and φ2, given by

φ1(θ) = 1[ 1
2 ,

3
2 ]
(θ)

(
4
3
− 1

3
θ

)
, and φ2(θ) = 1[ 1

2 ,
3
2 ]
(θ)

(
11
6
− 5

6
θ

)
. (30)
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(a) Firm strategy (b) Firm strategy (observed CF) (c) Rating strategy

Figure 9: Ambiguity impact on equilibrium, pessimistic priors. This figure illustrates the impact of ambiguity on the
equilibrium for pessimistic priors. Panel 9a presents the firm’s equilibrium strategy in terms of the true cash flow,
whereas Panel 9b displays it in terms of the observed cash flow. Panel 9c shows the rating agency’s equilibrium rating
strategy. The solid line represents the area for which the rating agency learns. The dashed line indicates the rating
strategy before learning (right part) and in case all possible firm types already defaulted (left part). The case under
ambiguity is indicated in black. The case without ambiguity is captured by the grey lines.

Figure 9 shows the equilibrium strategies for this rating game, that is, we consider the priors

from Figure 8a. It features the same information as Figure 7. It highlights the impact of ambiguity

on the feedback loop: The rating agency, as in the previous section, takes the conservative view.

In this case, following the more nuanced prior is the prudent strategy, so in this case the rating

agency ignores the very pessimistic belief of the first prior. As the perspective, and subsequently the

strategy, of the rating agency is now deviating from a best response to an average distribution, the

firm responds by delaying its default compared to the case without ambiguity to benefit from the

rating that addresses the less pessimistic perspective on the market. In equilibrium, the feedback

loop implies that ambiguity in combination with an overall jointly pessimistic beliefs systematically

delays firm default.

Similar to Figure 9, Figure 10 shows the equilibrium results for the case of jointly optimistic
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(a) Firm strategy (b) Firm strategy (observed CF) (c) Rating strategy

Figure 10: Ambiguity impact on equilibrium, optimistic priors. This figure illustrates the impact of ambiguity on the
equilibrium for optimistic priors. Panel 10a presents the firm’s equilibrium strategy in terms of the true cash flow,
whereas Panel 10b displays it in terms of the observed cash flow. Panel 10c shows the rating agency’s equilibrium
rating strategy. The solid line represents the area for which the rating agency learns. The dashed line indicates the
rating strategy before learning (right part) and in case all possible firm types already defaulted (left part). The case
under ambiguity is indicated in black. The case without ambiguity is captured by the grey lines.

priors, that is, the priors displayed in Figure 8b. As expected, the feedback effect flips the impact of

ambiguity on both equilibrium strategies: The firm accelerates the default because the rating agency

places a relatively heavier weight on high distortion parameters and rates accordingly, that is, more

conservatively. The feedback loop thus causes higher capital costs than without ambiguity, raising

the opportunity costs of waiting for the rating agency to learn higher in this case.

6 Conclusion

In this paper, we consider the impact of ambiguity, or Knightian uncertainty, on credit rating in

presence of a feedback loop. The feedback loop connects a rating agency, aiming for an accurate

and unbiased estimate of a firm’s distance-to-default, and a firm that maximizes its equity value
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over its default strategy, via performance-sensitive debt.

We show that the rating agency, learning the firm’s true quality from observing survival of

periods of apparent distress, deviates from a classical min-max response to ambiguity. Instead, to

satisfy its aim of accurate ratings, it balances different priors to a moderate, that is, uninformative,

aggregate distribution.

When rating analysts show a common direction of disagreement, the impact of ambiguity on the

equilibrium of the credit rating game has important implications for the rated firm’s default policy.

For jointly pessimistic priors, the firm strategically delays default compared to the results under

classical asymmetric information without ambiguity to profit from the feedback loop in form of

lower capital costs, as the rating agency rapidly shifts its priors. In contrast, for jointly optimistic

priors, the firm strategically accelerates default to cut costs from rising capital costs, as the rating

agency sluggishly updates its prior.
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Appendix I Main Results, Proofs and Auxiliary Results

I.1 Proofs of Main Results

In this section we prove the main results and corresponding auxiliary results. We start with the

proof of the fixed point theorem:

Proof of Theorem 3

Proof. The proof is conducted with Schauder’s fixed point theorem. For the existence of a fixed

point, we identify a sufficiently rich subset K of the space of economically reasonable strategies

Ag×A f . Now, Lemma 2 states that for all g ∈Ag, the best response firm strategy f (·;g) is in K f

with

K f =
{

f ∈C(Θ,R+) : l f (θ −θ
′)≤ f (θ ′)− f (θ)≤ L f (θ −θ

′), (I.1)

θ f ≤ f (θ)≤ θ f , for θ ,θ ′ ∈Θ with θ
′ ≤ θ

}
,

where 0 < l f < L f and 0 < f < f . On the other side, for f ∈K f , the best response rating strategy

2



then satisfies g(·; f ) = id on (0,θ f ] and g(e; f ) = g(θ f ; f ) for e≥ θ f . This property is preserved

when considering the transform R ◦g(·; f ) and the set [e,e] := [θ f ,θ
2

f 2
/(θ f )] due to Lemma 5,

that is,

R ◦g(e; f ) = R ◦g(e; f ) for e≥ e and R ◦g(·; f ) = id on (0,e].

Therefore, it is sufficient to constrain the domain of the rating strategy from originally R+ to [e,e].

We define

Kg =
{

g ∈C([e,e],R+) : e≤ g≤ id, (I.2)

g is non-decreasing and g/id is non-increasing
}

(I.3)

We K = Kg×K f . We have argued that T (K ) ⊂K . In "The Information Value of Distress"

it was proven that K is a non-empty, convex and compact subset of a Banach space, here V =

C(Θ,R)×C([e,e],R), endowed with the sup-norm. For the fixed point theorem to hold it is

sufficient to show that g 7→ f (·;g) and f 7→R(g(·; f )) are both continuous. Continuity of the first

mapping was shown in "The Information Value of Distress". It thereby remains to show that the

mapping

K f →Kg with f 7→R(g(·; f ))|[e,e]

is continuous under the sup-norm. We begin by showing that the mapping f 7→ g(·; f ) is continuous

with respect to the sup-norm: Note, that from that from the proof in "The Information Value of
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Distress" it directly follows that

f 7→ ai(·; f ) (I.4)

is continuous with the respect to the sup-norm. We have that ai(·; f ) is continuous, non-decreasing,

bounded by id and with f (Θ)⊂ [θ f ,θ f ] for all f ∈K f , it holds that

ai(e; f ) = e for 0≤ e≤ θ f and ai(e; f ) = ai(θ f ; f ) for e≥ θ f . (I.5)

We denote the set of continuous, non-decreasing functions that are bounded by id and satisfy (I.5)

by A . By Lemma 4 it follows that

f 7→ bi(·; f ) (I.6)

is continuous with respect to the sup-norm, too. For all f ∈K f it holds that bi(·; f ) is continuous,

non-decreasing, bounded by id2 with

bi(e; f ) = e2 for 0≤ e≤ θ f and bi(e; f ) = bi(θ f ; f ) for e≥ θ f . (I.7)

Now, we denote the set of continuous, non-decreasing functions that are bounded by id2 and

satisfy (I.7) by B. We define

G := {
(
vi,wi

)
i=1,...,n | vi ∈A and wi ∈B}. (I.8)
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Now, the mapping

Q : K f → G with f 7→
(
ai(·; f ),bi(·; f )

)
i=1,...,n (I.9)

is continuous with respect to the sup-norm. Therefore, it is sufficient to show that the mapping

Z : G →C(R+,R+) with

(
vi(·),wi(·)

)
i=1,...,n 7→ argmin

D>0

{
max

i=1,...,n

(
D2−2Dvi(·)+wi(·)

)}
(I.10)

is continuous regarding the respective sup-norms. This then implies continuity of Z ◦Q and noting

that Z ◦Q( f ) = g(·; f ) will then finish the proof. Let us show continuity of the function Z in (I.10).

Since all
(
vi(·),wi(·)

)
i ∈ G have values in the set

(
[0,θ f ]× [0,(θ f )2]

)n, uniform continuity of the

mapping
(
[0,θ f ]× [0,(θ f )2]

)n→ R+

(xi,yi)i=1,...,n 7→ argmin
D>0

{
max

i=1,...,n

(
D2−2Dxi + yi

)}
(I.11)

will suffice. However, the domain of that function is a compact subset of R2n and uniform continuity

and continuity are equivalent. The mapping is continuous by Lemma 3.

So far, we have shown that the mapping f 7→ g(·; f ) is continuous with respect to the sup-norm.

The continuity of the mapping f 7→R(g(·; f )) then follows from Lemma 6. Including the restriction

to [e,e] does no harm and therefore f 7→R(g(·; f ))|[e,e] is continuous.
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Proposition 5. Given a continuous and strictly increasing default strategy f , the ambiguity averse

best response rating strategy satisfies11

ĝ′(θ) = H
(
(φi(θ))i,(Φi(θ))i,(âi(θ))i,(b̂i(θ))i,θ , f (θ)

)
(I.12)

on (θ ,θ) with initial conditions

ĝ′(θ) =
1
2

f ′(θ) and ĝ(θ) = f (θ) (I.13)

and some specific function H : R+4n+2 → R. Additionally, it holds that

â′i(θ) =
φi(θ)

Φi(θ)

(
f (θ)− âi(θ)

)
and b̂′i(θ) =

φi(θ)

Φi(θ)

(
f (θ)2− b̂i(θ)

)
(I.14)

for i = 1, ...,n on (θ ,θ) with initial conditions

âi(θ) = f (θ), â′i(θ) =
1
2

f ′(θ), b̂i(θ) = f (θ)2 and b̂′i(θ) = f (θ) f ′(θ). (I.15)

Proof. Recall that ĝ(θ) is the argument that minimizes the upper envelope of quadratic functions of

the form

D2−2Dâi(θ)+ b̂i(θ) with i = 1, ...,n.

11The derivative of ĝ exists by assumption everywhere except on a set of finite cardinality.
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Consider the function

âi, j(θ) =


1
2

b̂i(θ)−b̂ j(θ)
âi(θ)−â j(θ)

if i 6= j and âi(θ) 6= â j(θ)

âi(θ) else.

(I.16)

Note that for i 6= j, âi, j(θ) is the argument of the intercept of the quadratic functions i and j, if such

exists. If i = j, âi, j(θ) is just given by the argument of the minimum of the respective quadratic

function, which is âi(θ). It can easily be shown that for each θ

ĝ(θ) ∈
{

âi, j(θ) | i≤ j and i, j ∈ {1, ...,n}
}
. (I.17)

That is because the minimum of the upper envelope is either the minimum of a single quadratic

function or an intercept of two quadratic functions. We assume that up to set of finite cardinality,

when

ĝ(θ) = âi, j(θ), for some i≤ j, then ĝ′(θ) = â′i, j(θ).

By the Laws of l’Hopital it follows that on (θ ,θ)

â′i(θ) =
φi(θ)

Φi(θ)

(
f (θ)− âi(θ)

)
and b̂′i(θ) =

φi(θ)

Φi(θ)

(
f (θ)2− b̂i(θ)

)
(I.18)

for i = 1, ...,n (proof as in the "Information Value of Distress"). For i 6= j with âi(θ) 6= â j(θ),
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â′i, j(θ) can be calculated from the Quotient rule and is given by

â′i, j(θ) =
1
2

(
b̂′i(θ)− b̂′j(θ)

)(
âi(θ)− â j(θ)

)
−
(
b̂i(θ)− b̂ j(θ)

)(
â′i(θ)− â′j(θ)

)(
âi(θ)− â j(θ)

)2 .

Putting things together, it follows that the derivative of ĝ can be represented as

ĝ′(θ) = H
(
(φi(θ))i,(Φi(θ))i,(âi(θ))i,(b̂i(θ))i,θ , f (θ)

)
. (I.19)

It remains to show the initial conditions. The initial conditions for the ambiguity averse strategy

ĝ(θ) follow from the initial conditions in Equation (I.15), since for all θ ∈ (θ ,θ) :

ĝ(θ) ∈ [min
i
{âi(θ)},max

i
{âi(θ)}]. (I.20)

For demonstrating purposes we only show the last condition in (I.15):

b̂′i(θ) = lim
θ↘θ

b̂′i(θ) = lim
θ↘θ

φi(θ)

Φi(θ)

(
f (θ)2− b̂i(θ)

)
= φi(θ) lim

θ↘θ

f (θ)2− b̂i(θ)

Φi(θ)

= φi(θ) lim
θ↘θ

( f (θ)2)′− b̂′i(θ)
φi(θ)

= 2 f ′(θ) f (θ)− b̂′i(θ).

The proof for the remaining initial conditions is already given in the "Information Value of Distress".

Proposition 6. Let f ∈K f . For the ambiguity averse best response g = g(·; f ) and its transforma-
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tion R(g) = R(g(·; f )) denote

ĝ = g◦ f and g̃ = R(g)◦ f . (I.21)

Then, g̃ is Lebesgue almost everywhere differentiable and satisfies on (θ ,θ) :

g̃′ = f ′
g̃
f

1{g̃6=ĝ}+ ĝ′1{g̃=ĝ}. (I.22)

The initial conditions are given by

g̃(θ) = ĝ(θ) = f (θ) and g̃′(θ) = ĝ′(θ) = f ′(θ)/2. (I.23)

Proof. With ĝ∗(θ) := sup{ĝ(θ) : θ ≤ θ ′ ≤ θ} it holds

g̃(θ) = R(g)( f (θ) = e inf
0<z≤e

sup{g(s) | 0 < s≤ z}
z

∣∣∣
e= f (θ)

(I.24)

= f (θ) inf
f (θ)<z≤ f (θ)

sup{g(s) | 0 < s≤ z}
z

= f (θ) inf
θ<θ ′≤θ

ĝ∗(θ ′)
f (θ ′)

.

Therefore, the initial value is given by g̃(θ) = ĝ(θ) = f (θ), where the initial value for ĝ comes

from Proposition 5. By Lemma 1, g̃ is continuous, non-decreasing and bounded by f . It holds for

9



θ ≥ θ ′:

0≤ g̃(θ)− g̃(θ ′) = f (θ) inf
θ<z≤θ

ĝ∗(z)
f (z)
− f (θ ′) inf

θ<z≤θ ′

ĝ∗(z)
f (z)

≤ ( f (θ)− f (θ ′)) inf
θ<z≤θ

ĝ∗(z)
f (z)

≤ ( f (θ)− f (θ ′))≤ L f |θ −θ
′| (I.25)

Then, g̃ is Lipschitz continuous and has a derivative Lebegues almost everywhere on Θ. By the same

argument, f is differentiable almost everywhere. We denote E f ⊂ Θ the set where g̃ = ĝ, that is

E f = {θ ∈Θ | ĝ(θ) = g̃(θ)}. Since ĝ and g̃ are both continuous and Θ bounded, E f is compact. On

the interior of E f it holds almost everywhere that g̃′ = ĝ′. Since the boundary of E f hast Lebegues

measure 0, we have:

g̃′ = ĝ′, almost everywhere on E f . (I.26)

Next, consider (θ ,θ)\E f , which is open. Take θ ∈ (θ ,θ)\E f and by continuity of g̃, ĝ there exists

some ε > 0, such that either g̃ < ĝ or g̃ > ĝ everywhere on Bε(θ)⊂ (θ ,θ)\E f . In either case, there

exists some θ ? < θ with

g̃(θ) = f (θ) inf
θ<θ ′≤θ

ĝ∗(θ ′)
f (θ ′)

= f (θ)
ĝ∗(θ ?)

f (θ ?)
(I.27)

and with continuity of f , ĝ∗ some ε? < ε , such that

g̃(θ ′) = f (θ ′)
ĝ∗(θ ?)

f (θ ?)
for θ

′ ∈ Bε?(θ). (I.28)
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Therefore, if f is differentiable in θ , which holds almost surely on Θ, we have with (I.27):

g̃′(θ) = f ′(θ)
g̃(θ)
f (θ)

. (I.29)

Putting all together, it holds almost everywhere on (θ ,θ):

g̃′ = f ′
g̃
f

1{g̃6=ĝ}+ ĝ′1{g̃=ĝ}. (I.30)

It remains to show the initial condition for the derivative. Observe that g̃(θ) = ĝ(θ) = f (θ) and

ĝ′(θ) = f ′(θ)/2 > 0. We show that ĝ∗(θ)′ = f ′(θ)/2:

Let (εn)n be any sequence that converges to zero from above. Now, there exists some sequence

0 < ε ′n ≤ εn with

ĝ(θ + ε
′
n) = ĝ∗(θ + εn)≥ ĝ(θ + εn). (I.31)

We show that ε ′n/εn→ 1 must hold true: Assume that ε ′n/εn does not converge to 1. The sequence

is bounded and there mus an exist an 0≤ d < 1, such that a subsequence ε ′nk
/εnk converges to d.

Therefore,

ĝ′(θ) = lim
k→∞

ĝ(θ + εnk)− ĝ(θ)
εnk

≤ lim
k→∞

ĝ∗(θ + εnk)− ĝ∗(θ)
εnk

= lim
k→∞

ĝ(θ + ε ′nk
)− ĝ(θ)

ε ′nk

ε ′nk

εnk

= ĝ′(θ) lim
k→∞

ε ′nk

εnk

= ĝ′(θ)d (I.32)
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This is a contradiction and with ε ′n/εn → 1 the same argument gives ĝ∗(θ)′ = ĝ′(θ) = f ′(θ)/2.

From that, it follows that (ĝ∗/ f )′(θ)< 0. Now, let (εn)n be another sequence that converges to zero

from above and 0 < εn ≤ ε such that

g̃(θ + εn) = f (θ + εn)
ĝ∗(θ + ε ′n)

f (θ + ε ′n)
. (I.33)

Next,

ĝ∗(θ + εn)− ĝ∗(θ)
εn

≥ g̃(θ + εn)− ĝ∗(θ)
εn

=
g̃(θ + εn)− g̃(θ)

εn

=
f (θ + εn)/( f (θ + ε ′n))ĝ

∗(θ + εn)− ĝ∗(θ)
εn

=
ε ′n
εn

f (θ + εn)/( f (θ + ε ′n))ĝ
∗(θ + ε ′n)− ĝ∗(θ)

ε ′n
≥ ε ′n

εn

ĝ∗(θ + ε ′n)− ĝ∗(θ)
ε ′n

.

Showing that ε ′n/εn must converge to 1 is sufficient to finish the proof. Then (g̃(θ + εn)− g̃(θ))/εn

will converge to g∗(θ)′ = f ′(θ)/2, as required. Now, if ε ′n/εn does not converge to 1, there exists

a subsequence ε ′nk
/εnk that converges to some 0 ≤ p < 1. However, this is a contradiction to

(ĝ∗/ f )′(θ)< 0: By definition of the sequence (ε ′n)n it holds that

(ĝ∗/ f )(θ + εnk)≥ (ĝ∗/ f )(θ + ε
′
nk
). (I.34)
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It holds for p > 0:

(ĝ∗/ f )′(θ) = lim
k→∞

(ĝ∗/ f )(θ + ε ′nk
)− (ĝ∗/ f )(θ)

ε ′nk

≤ lim
k→∞

(ĝ∗/ f )(θ + εnk)− (ĝ∗/ f )(θ)
εnk

εnk

ε ′nk

= (ĝ∗/ f )′(θ) p−1

This is a contradiction, since (ĝ∗/ f )′(θ) is negative. Analogously, for p = 0, the contradictory

result is (ĝ∗/ f )′(θ)≤ ∞. Therefore g̃′(θ) = f ′(θ)/2.

Proposition 7. Let g ∈Ag be an economically reasonable rating strategy, which is almost every-

where continuously differentiable. The firms best response strategy f = f (·;g) satisfies

f ′(θ) =
(1+η)σ2

2(r−µ)

( f (θ)/θ)2

C( f (θ)/ĝ(θ))− f (θ)/θ
+

∂ b̃(θ ,θ ;g)
∂ θ̃

(I.35)

for θ ∈ (θ ,θ), where η is defined in Equation (??), ĝ = g ◦ f and the partial derivative of the

boundary describing function b̃ in (θ ,θ) is a function of f (θ), ĝ′(θ) and ĝ(θ), that is

∂ b̃(θ ,θ ;g)
∂ θ̃

= h(θ , f (θ), ĝ(θ), ĝ′(θ)) (I.36)

for some function h : Θ×R3
+→ R≥0. Moreover, the initial starting value for the derivative of f is

given by

f ′(θ) = k(θ , f (θ), ĝ(θ)) (I.37)
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for some specific real-valued function k. Especially it does not depend on ĝ′.

Proof. see "Information Value of Distress"

Proposition 8. Let ( f ?,g?) be a fixed point of T . Suppose f ?,g?, (φi)i and the collection of the

equity value function are sufficiently differentiable. Then, the fixed point is fully characterized, via

f ? = f and g? = g̃◦ f−1, by the solution ( f , g̃, ĝ) of the differential equation:


f ′(θ)

g̃′(θ)

ĝ′(θ)

=


(1+η)σ2

2(r−µ)
( f (θ)/θ)2

C( f (θ)/g̃(θ))− f (θ)/θ
+ ∂ b̃(θ ,θ ;g?)

∂ θ̃

f ′ (g̃/ f )1{g̃6=ĝ}+ ĝ′1{g̃=ĝ}

H
(
(φi(θ))i,(Φi(θ))i,(âi(θ))i,(b̂i(θ))i,θ , f (θ)

)

 (I.38)

on (θ ,θ) with ĝ(θ) = g◦ f , where

∂ b̃(θ ,θ ;g?)
∂ θ̃

= h(θ , f (θ), g̃(θ), g̃′(θ)) (I.39)

for specific real-valued functions H and h. In the differential Equation (22), it holds that

â′i(θ) =
φi(θ)

Φi(θ)

(
f (θ)− âi(θ)

)
and b̂′i(θ) =

φi(θ)

Φi(θ)

(
f (θ)2− b̂i(θ)

)
(I.40)
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for i = 1, ...,n on (θ ,θ). The initial condition is


f (θ)

g̃(θ)

ĝ(θ)

= θ


f ?1

f ?1

f ?1

 , (I.41)

where ( f ?1 ,g
?
1) denotes the equilibrium of the perfect information case, that is Θ = {1}; hence

D = X with f ?1 = g?1, which exists and is unique under the given assumptions. The remaining initial

conditions for the derivatives are given in Proposition 5, 6 and 7.

Proof. The differential equation is composed from Propositions 5, 6 and 7. By those Propositions

the best responses satisfy f (θ) = ĝ(θ) = g̃(θ) and ĝ′(θ) = g̃′(θ). Now, for θ ↘ θ the information

asymmetry vanishes and the limit must be the unique equilibrium of the perfect information case of

Manso (2013).

I.2 Auxiliary Results

Lemma 1. Let g : R+→ R+ be any function that is bounded by id. For the transformed strategy it

holds that R(g) ∈Ag, i.e.

R(g)(e)≤ e, R(g)(e) is non-decreasing and R(g)(e)/e is non-increasing.
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Proof. Since

R(g)(e) = e inf
0<z≤e

sup
{

g(s) | 0 < s≤ z
}

z

it follows from the boundedness by the identity that

R(g)(e)≤ e inf{e/z | 0 < z≤ e}= e. (I.42)

We define g∗(e) = sup{g(s) | 0 < s ≤ e} and observe that R(g) ≤ g∗ ≤ id. To show that R is

non-decreasing take e′ ≥ e > 0. Then

R(g)(e′) = e′ inf{g∗(z)/z | 0 < z≤ e′}

= e′
(

inf{g∗(z)/z | 0 < z≤ e}∧ inf{g∗(z)/z | e < z≤ e′}
)

≥
(e′

e
R(g)(e)

)
∧
(

e′ inf{g∗(e)/z | e < z≤ e′}
)

=
(e′

e
R(g)(e)

)
∧g∗(e)

= R(g)(e)+
(e′− e

e
R(g)(e)∧ (g∗(e)−R(g)(e))

)
≥R(g)(e).

The property that R(g)(e)/e is non-decreasing holds by definition.

The following Lemma characterizes the firm’s best response default strategy f (·;g) to an

economically reasonable rating strategy g ∈Ag:
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Lemma 2. There exist 0 < f < f < ∞ and 0 < l f < L f < ∞ such that for all θ ,θ ′ ∈Θ with θ ′ ≤ θ :

f (θ ′;g)≤ f (θ ;g) and f ≤ f (θ ;g)
θ

≤ f (θ ′;g)
θ ′

≤ f (I.43)

uniformly in g ∈Ag. In particular, f (·;g) is Lipschitz continuous:

| f (θ ;g)− f (θ ′;g)| ≤ L f |θ −θ
′| for θ ,θ ′ ∈Θ, (I.44)

where L f = f > 0 is the uniform Lipschitz constant for all g. Moreover, assume that Assumption 2

holds, then for θ ,θ ′ ∈Θ with θ ′ ≤ θ it holds that

f (θ ;g)− f (θ ′;g)≥ l f (θ −θ
′), (I.45)

where l f = (1−LC) f > 0 is the uniform constant for all g ∈Ag.

Proof. in "Information Value of Distress"

Note that f , f in the previous proof are the default thresholds of the perfect information boundary

cases of constant coupons C,C, respectively.

Lemma 3. The mapping Z∗ : R2n→ R

(xi,yi)i=1,...,n 7→ argmin
D>0

{
max

i=1,...,n

(
D2−2Dxi + yi

)}

17



is continuous.

Proof. For (x,y) = (xi,yi)i ∈ R2n consider

B1((x,y)) =
{
(x∗,y∗) | for all i : |x∗i − xi|< 1 and |y∗i − yi|< 1

}
.

We define a := mini{xi}−2 and b = maxi{xi}+2. The mapping

B1((x,y))→C([a,b]) with (x∗i ,y
∗
i )i 7→ c(x∗,y∗)(D)

where

c(x∗,y∗)(D) = max
i=1,...,n

(D2−2Dx∗i + y∗i ) (I.46)

is continuous under the respective sup-norms. The functions D 7→ c(x∗,y∗)(D) are strictly convex and

the argument of their global minimum is an element of (a,b) for all (x∗i ,y
∗
i ) ∈ B1((x,y)). Let z(x,y)

denote the argument of the minimum from the function D 7→ c(x,y)(D). For 0 < ε < 1, choose

δ
′ =

min{c(x,y)(z(x,y)− ε),c(x,y)(z(x,y)+ ε)}− c(x,y)(z(x,y))
3

> 0

However, there exists some 0 < δ < 1 with

||(x,y)− (x∗,y∗)||< δ ⇒ ||c(x,y)− c(x∗,y∗)||< δ
′.

18



By the choice of δ ′ and the strict convexity of c(x∗,y∗), it follows that the argument z(x∗,y∗), which

minimizes D 7→ c(x∗,y∗)(D), must fulfil |z(x∗,y∗)− z(x,y)|< ε .

Lemma 4. The mapping

K f →B with f 7→ bi(·; f )

is continuous with respect to the sup-norm.

Proof. Take f1, f2 ∈K f with || f1− f2||∞ ≤ ε for some ε > 0. Consider e ∈ [0, f1(θ)∧ f2(θ)).

Then bi(e; f1) = bi(e; f2) = e2 and

|bi(e; f1)−bi(e; f2)|= 0, for e ∈ [0, f1(θ)∧ f2(θ)). (I.47)

Now, let e ∈ [ f1(θ)∧ f2(θ), f1(θ)∨ f2(θ)). Without loss of generality, assume f1(θ) < f2(θ)

and thus f1(θ) ≤ e < f2(θ). From this, we see by Equation (??) that f1(θ)
2 ≤ bi(e; f1) ≤ e2.

Note that bi(e; f2) = e2 < f2(θ)
2. By the uniform boundedness of all f ∈K f it follows from

f 2
1 − f 2

2 = ( f1− f2)( f1 + f2) holds that there exists some uniform constant 2 f = K > 0, such that

∀ε > 0 : || f1− f2||∞ ≤ ε ⇒ || f 2
1 − f 2

2 ||∞ ≤ Kε.
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Therefore, it follows that

|bi(e; f1)−bi(e; f2)| ≤ Kε, for e ∈ [ f1(θ)∧ f2(θ), f1(θ)∨ f2(θ)). (I.48)

Consider e ∈ [ f1(θ)∨ f2(θ), f1(θ)∨ f2(θ)+ ε
1
2 ). Then, we have

f1(θ)
2∧ f2(θ)

2 ≤ bi(e; f1),bi(e; f2)≤ e2 (I.49)

and

e2 ≤
(
( f1(θ)

2 +2 f1(θ)ε
1
2 )∨ ( f2(θ)

2 +2 f2(θ)ε
1
2 )
)
+ ε. (I.50)

Note that all f ∈K f are positive and bounded by θ f < ∞. Thereby it holds that for e ∈ [ f1(θ)∨

f2(θ), f1(θ)∨ f2(θ)+ ε
1
2 ):

|bi(e; f1)−bi(e; f2)| ≤ Kε +2θ f ε
1
2 + ε. (I.51)

Consider e ≥ ( f1(θ)∨ f2(θ))+ ε
1
2 . Note that by f1, f2 ∈K f both functions are continuous and

strictly increasing with minimum slope l f and thus their respective inverse functions exist and are

well-defined. Without loss of generality, assume f−1
1 (e)≤ f−1

2 (e). Using the definition of bi(e; f )
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in Equation (??), we can write

bi(e; f2) =

∫ f−1
2 (e)

θ
f2(θ)

2φi(θ)dθ∫ f−1
2 (e)

θ
φi(θ)dθ

.

This equation can be rearranged to

bi(e; f2) =

∫ f−1
1 (e)

θ
f2(θ)

2φi(θ)dθ∫ f−1
2 (e)

θ
φi(θ)dθ

+

∫ f−1
2 (e)

f−1
1 (e)

f2(θ)
2φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

=

∫ f−1
1 (e)

θ
f1(θ)

2φi(θ)dθ∫ f−1
2 (e)

θ
φi(θ)dθ

+

∫ f−1
1 (e)

θ
( f2(θ)

2− f1(θ)
2)φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

+

∫ f−1
2 (e)

f−1
1 (e)

f2(θ)
2φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

=

∫ f−1
1 (e)

θ
f1(θ)

2φi(θ)dθ∫ f−1
1 (e)

θ
φi(θ)dθ

∫ f−1
1 (e)

θ
φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

+

∫ f−1
1 (e)

θ
( f2(θ)

2− f1(θ)
2)φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

+

∫ f−1
2 (e)

f−1
1 (e)

f2(θ)
2φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

= bi(e; f1)−bi(e; f1)

∫ f−1
2 (e)

f−1
1 (e)

φi(θ)dθ∫ f−1
2 (e)

θ
φi(θ)dθ

+

∫ f−1
1 (e)

θ
( f2(θ)

2− f1(θ)
2)φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

+

∫ f−1
2 (e)

f−1
1 (e)

f2(θ)
2φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

.
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Hence,

|bi(e; f2)−bi(e; f1)| ≤bi(e; f1)

∫ f−1
2 (e)

f−1
1 (e)

φi(θ)dθ∫ f−1
2 (e)

θ
φi(θ)dθ

+

∫ f−1
2 (e)

f−1
1 (e)

f2(θ)
2φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

+

∫ f−1
1 (e)

θ
| f2(θ)

2− f1(θ)
2|φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

. (I.52)

We will show that all three equations on the right-hand side become small for ε ↘ 0. Observe that

0≤ f−1
2 (e)− f−1

1 (e)≤ l−1
f ε , where the first inequality follows by assumption and the second by

the fact that f1, f2 are strictly increasing with a minimum slope l f > 0 and || f1− f2|| < ∞. Also

f1, f2 are bounded by θ f and uniformly Lipschitz continuous with Lipschitz constant L f . Since φi

is bounded away from zero and bounded from above by assumption, we see that

∫ f−1
2 (e)

θ

φi(θ)dθ ≥
∫ f−1

2 (e)

θ

φdθ ≥
∫ f−1

2 ( f2(θ)+ε
1
2 )

θ

φdθ

= φ
(

f−1
2 ( f2(θ)+ ε

1
2 )−θ

)
≥ φ

1
L f

ε
1
2 . (I.53)

Using this, we can bound the first expression on the right-hand side of Equation (I.52):

bi(e; f1)

∫ f−1
2 (e)

f−1
1 (e)

φi(θ)dθ∫ f−1
2 (e)

θ
φi(θ)dθ

≤ θ
2

f 2L f
φ l−1

f ε

φε
1
2

=
θ

2
f 2L f φ

φ l f
ε

1
2 . (I.54)
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For the second expression in Equation (I.52) the same arguments apply and we receive

∫ f−1
2 (e)

f−1
1 (e)

f2(θ)
2φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

≤ θ
2

f 2

∫ f−1
2 (e)

f−1
1 (e)

φi(θ)dθ∫ f−1
2 (e)

θ
φi(θ)dθ

=
θ

2
f 2L f φ

φ l f
ε

1
2 . (I.55)

The third expression in Equation (I.52) can be estimated as follows:

∫ f−1
1 (e)

θ
| f2(θ)

2− f1(θ)
2|φi(θ)dθ∫ f−1

2 (e)
θ

φi(θ)dθ

≤ L f
K|| f1− f2||∞

φε
1
2

≤ L f K
ε

1
2

φ
. (I.56)

This implies that f 7→ bi(·; f ) is continuous with respect to the sup-norm.

Lemma 5. There exist 0 < e < e < ∞ such that for all f ∈K f the ambiguity averse best response

rating strategy g = g(·; f ) satisfies

∀e ∈ (0,e] : g(e) = e and ∀e > e : R∗(g)(e) = sup{g(s) | 0 < s≤ e}.

Proof. Since θ f > 0 is a uniform constant and lower boundary for f ∈K f , such that ai(e; f ) = e

and bi(e; f ) = e2 for e≤ θ f , we can conclude that g(e; f ) = e for 0 < e < θ f . Therefore, we can

set e = θ f .

Now, denote g∗(e) = sup{g(s) | 0 < s≤ e}. From Equations (I.5) and (I.7), we can conduct that

there exists some uniform constant θ f > 0, such that

∀e > θ f : g(e) = g(θ f ) (I.57)
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and then it directly follows

∀e > θ f : g∗(e) = g∗(θ f ). (I.58)

Moreover, since θ f is a uniform boundary for f , it follows that

∀e ∈ (0,∞) : g(e)≤ θ f . (I.59)

This last equation holds, since from the definition of the best response ambiguity averse rating

strategy it can be conducted that g(e)≤maxi(ai(e; f )) and ai(e; f ) is bounded by θ f . It follows

that

∀e ∈ (0,∞) : g∗(e)≤ θ f . (I.60)

Furthermore, it holds that with k := θ f (θ f )−1 that

∀e ∈ (0,θ f ] :
g∗(e)

e
≥ k > 0. (I.61)

The last three equations imply that for e > 0 with θ f/e < k, both g∗(e)/e < k and inf{g∗(z)/z |

0 < z≤ e}= g∗(e)/e must follow. Therefore it holds

∀e > θ f
k

: R(g∗)(e) = g∗(e) = g∗(θ f ). (I.62)

The claim holds with e = θ f/k.
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Lemma 6. There exist 0 < e < e < ∞ such that for all f1, f2 ∈K f it holds

∀ε > 0 : ||g1−g2||∞ < ε ⇒ ||R(g1)−R(g2)||∞ < (1+ ee−1)ε,

where the best response rating strategy is given by gi(e) = g(e, fi) for i ∈ {1,2}.

Proof. We denote g∗i (e) = sup{gi(s) | 0 < s≤ e} for i = 1,2. It holds that

||g1−g2||∞ < ε ⇒ ||g∗1−g∗2||∞ < ε. (I.63)

Choose 0 < e < e < ∞ from Lemma 5. Then it holds that g∗1(e) = g∗2(e) = e on (0,e]. With

R(g) := e inf{g(z)/z | 0 < z≤ e} (I.64)

we receive the equation R(g j) = R(g∗j) for j ∈ {1,2}. To finish the proof we will show

||R(g∗1)−R(g∗2)||∞ < (1+ ee−1)ε. (I.65)

It follows from ||g∗1− g∗2||∞ < ε that |g
∗
1(e)
e −

g∗2(e)
e | <

ε

e for all e > 0. With g∗1(e) = g∗2(e) = e on

(0,e] we have

|
g∗1(e)

e
−

g∗2(e)
e
|< e−1

ε for all e > 0. (I.66)

Let e∈ (0,e) be arbitrary. By the continuity of g∗1,g
∗
2 there exist some e1,e2 ∈ (0,e] with R(g∗1)(e) =
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eg∗1(e1)
e1

and R(g∗2)(e) = eg∗2(e2)
e2

Without loss of generality, we assume g∗1(e1)
e1
≤ g∗2(e2)

e2
. Since g∗2(e1)

e1
≥

g∗2(e2)
e2

per definition of R, it follows from (I.66) that |g
∗
1(e1)
e1
− g∗2(e2)

e2
|< e−1ε . Now, it so far follows

that |R(g∗1)(e)−R(g∗2)(e)|< ee−1ε on (0,e). On [e,∞) the claim holds by Lemma 5.

We here state the inequality, which implies that the solution to the ODE to be economically

reasonable:

Lemma 7. Let f be a strictly increasing, differentiable and non-negative firm‘s strategy and g a

rating strategy, which is almost everywhere differentiable. With ĝ = g◦ f it holds that

∀θ ∈ (θ ,θ) : 0≤ ĝ′(θ)≤ f ′(θ)
ĝ(θ)
f (θ)

=⇒ g = R(g).

Proof. The inequality ĝ′(θ)≥ 0 and strict monotony of f imply that g is non-decreasing as well.

Thereby, it holds that

R(g)(e) = e inf
0<z≤e

g(z)
z

.

We denote g̃(θ) = R(g)◦ f and then we have

g̃(θ) = f (θ) inf
f (θ)≤z≤ f (θ)

g(z)
z

= f (θ) inf
θ≤θ ′≤θ

g( f (θ ′))
f (θ ′)

= f (θ) inf
θ≤θ ′≤θ

ĝ(θ ′)
f (θ ′)

. (I.67)

Now,

ĝ′(θ)≤ f ′(θ)
ĝ(θ)
f (θ)

implies
ĝ′ f − ĝ f ′

f 2 =

(
ĝ
f

)′
≤ 0.

26



This, together with Equation (I.67), implies

g̃(θ) = f (θ) inf
θ≤θ ′≤θ

ĝ(θ ′)
f (θ ′)

= ĝ(θ). (I.68)

Since f is strictly increasing it furthermore follows that g = R(g).
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