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Abstract

We examine high-stakes strategic choice using more than 40 years of data

from the American TV game show The Price Is Right. In every episode,

contestants play the Showcase Showdown, a sequential game of perfect in-

formation for which the optimal strategy can be found through backward

induction. We find that contestants systematically deviate from the subgame

perfect Nash equilibrium. These departures from optimality are well explained

by a modified agent quantal response model that allows for limited foresight.

The results suggest that many contestants simplify the decision problem by

adopting a myopic representation and optimize their chances of beating the

next contestant only. In line with learning, contestants’ choices improve over

the course of our sample period.

Keywords: backward induction; limited foresight; omission bias; quantal response equi-

librium; subgame perfect Nash equilibrium
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1 Introduction

Many economic interactions are sequential in nature. A negotiator who makes a

bargaining offer, an entrepreneur who considers whether to enter a market, and a

corporate manager who decides how many goods to produce, all need to consider

the subsequent actions of others. Such situations can be modeled as finite sequential

games of perfect information, for which the subgame perfect Nash equilibria can be

found through backward induction (von Stackelberg, 1934; Selten, 1978; Dixit, 1982;

Rubinstein, 1982).

Unfortunately, the descriptive accuracy of these equilibria is difficult to test in

the field, because agents’ choice options, payoffs, and the information they have are

normally not (or not straightforwardly) observable. Whenever choices deviate from

equilibrium play, it then remains unclear whether the behavior is truly suboptimal

or whether the deviations are the result of incorrect assumptions. To avoid this

joint-hypothesis problem, tests of equilibrium play typically rely on laboratory ex-

periments in which all factors are perfectly controlled. Experimental work generally

finds that people often deviate from the equilibrium strategies, casting doubt on the

descriptive validity of backward induction as a solution concept (Rosenthal, 1981;

McKelvey and Palfrey, 1992; Fey et al., 1996; Binmore et al., 2002; Johnson et al.,

2002; Levitt et al., 2011; Dufwenberg and Van Essen, 2018). The generalizability of

experimental findings to real world situations, however, is subject to debate (Bin-

more, 1999; Levitt and List, 2007a,b; Falk and Heckman, 2009; Camerer, 2015).

Critics argue that it is not very surprising that experimental subjects frequently fail

to adopt equilibrium strategies, most notably because they typically are not well

incentivized and have little experience with the task.

The present paper examines the optimality of strategic decisions in the Showcase

Showdown (SCSD), a finite sequential game of perfect information that is played

twice in every episode of the long-running American TV game show The Price

Is Right. In this game, described in more detail in Section 2, three contestants

take turns to spin a wheel that contains all multiples of 5 in the range 5–100.1

Immediately after spinning the wheel once, the contestant has to decide whether

to spin the wheel again. Their score is the outcome of the first spin if they spin

only once, and the sum of the two spin outcomes if they spin twice. The contestant

whose score is closest to 100 without going over wins the game and proceeds to the

so-called Showcase final, where they compete with the winner of another SCSD to

win a set of prizes worth tens of thousands of dollars in expectation. If their score

1Henceforth we refer to the contestant who spins first as Contestant 1, to the contestant who
spins second as Contestant 2, and to the contestant who spins last as Contestant 3.
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is exactly 100 they, in addition, win one or two monetary bonus prizes.

To make the optimal choice, the contestants thus need to weigh the possibility of

obtaining a more competitive score and having a shot at the bonus prizes against the

chance of self-elimination. Coe and Butterworth (1995), Grosjean (1998), and Teno-

rio and Cason (2002) derive the unique subgame perfect Nash equilibrium (SPNE)

for this game for various sets of combinations of bonus prizes and expected showcase

values. The three contestants’ equilibrium strategies, which can be found through

backward induction, take the form of decision rules that dictate whether a contestant

should stop or use their second spin.

The characteristics of the SCSD make it an appealing test bed for assessing the

descriptive validity of backward induction as a solution concept in the field. First, as

in carefully designed lab experiments, the task is well-defined and both the choice op-

tions and the choice-relevant information that is available to contestants are known.

Second, the prizes that can be won dwarf the payoffs that are typically employed

in experiments. Third, the SCSD has been repeated numerous times under simi-

lar conditions, creating the opportunity of a large-scale statistical analysis. Other

benefits of this long history are that contestants can be expected to be sufficiently

familiar with the game and that we can explore potential learning effects.2

At the same time, the game show setting may evoke external validity concerns

because of selection procedures and the unusual conditions under which choices are

made. Section 5 reflects on these concerns. Any possible downside, however, should

be evaluated in the light of the availability of better alternatives. Other opportunities

for a large-scale, high-stakes test of backward induction are incredibly scarce, if not

absent. Hence, following List (2023), the unique setting should be embraced and

not dismissed for its idiosyncrasies.

The present paper is not the first to use a TV game show as a real-world naturally-

occurring laboratory. Game shows have been used to study a wide range of other

topics in economics, such as decision making under risk (Gertner, 1993; Metrick,

1995; Post et al., 2008), discrimination (Levitt, 2004; Belot et al., 2010), bargaining

(van Dolder et al., 2015), willingness to compete (Hogarth et al., 2012; Buser et al.,

2022), and cooperation (List, 2006; Oberholzer-Gee et al., 2010; van den Assem

et al., 2012; Turmunkh et al., 2019).

We analyze a large sample of 10,071 renditions of the SCSD. In every rendition,

three contestants make a spin decision, but a substantial fraction of the 30,213

decisions are trivial and of little value to our study. For Contestant 2 and 3, decisions

2The SCSD has also been proposed as a useful classroom tool for teaching probability and
game theory (Burks and Jaye, 2012; Swenson, 2015).

3



are trivial when their first-spin outcome is lower than the best preceding score (in

which case they always spin again). For Contestant 3, who spins last, the decision is

also trivial when their first-spin outcome is higher than the best preceding score (in

which case they always stop).3 We omit such decisions from our empirical analysis,

and exclusively focus on the decisions of Contestant 1 and the remaining decisions

of Contestant 2.

We start our analysis by examining whether, when, and how contestants devi-

ate from the SPNE. We find that Contestant 1 and 2 frequently make suboptimal

decisions, and that the error rate of Contestant 1 is somewhat higher than that

of Contestant 2. Moreover, Contestant 1 almost exclusively errs by underspinning:

they stop when it is optimal to spin. Contestant 2’s mistakes, by contrast, are

considerably more symmetric and involve only slightly more underspinning than

overspinning.

We then consider several explanations for suboptimal play that are well-rooted

in the literature. First, we examine whether contestants depart from the equilib-

rium strategy because they make random errors in evaluating the expected utility

of their two choice options, and expect others to also make such mistakes. To test

this explanation, we estimate an agent quantal response equilibrium model (AQRE;

McKelvey and Palfrey, 1998). We find that a substantial proportion of the devia-

tions from the SPNE can be explained by random evaluation errors. The decisions

of Contestant 2 are largely consistent with the model’s probabilistic predictions.

However, the model fails to capture most of the underspinning of Contestant 1.

Next, we consider the possible role of omission bias, which is the tendency to

favor harmful inactions over harmful actions (Ritov and Baron, 1990, 1992; Spranca

et al., 1991; Feldman et al., 2020). Systematic underspinning in the SCSD can be

explained by a preference for elimination after not spinning (by an opponent who

obtains a higher score) over elimination after spinning (by exceeding 100 points).

We find that allowing for omission bias in the AQRE model improves the goodness-

of-fit for Contestant 1, but at the same time introduces systematic prediction errors

for Contestant 2. Hence, omission bias fails to adequately explain the behavior that

we observe.4

Another possible explanation is that some contestants do not properly backward

induct, and instead adopt a simplified representation of the game. Prior research

3Contestant 3 faces a nontrivial decision when they tie with the best preceding score, but such
situations are relatively rare.

4Walker et al. (2018) propose the related concept of sudden death aversion: the tendency to
avoid strategies that can lead to immediate defeat, even if these are optimal. In our setting, sudden
death aversion and omission bias are indistinguishable, because spinning (acting) entails the risk
of immediate defeat whereas not spinning (not acting) does not.
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suggests that people display limited foresight, and look only one or a few steps

ahead in multi-stage strategic situations (Jehiel, 1995, 1998, 2001; Johnson et al.,

2002; Gabaix and Laibson, 2005; Gabaix et al., 2006; Mantovani, 2015; Ke, 2019;

Rampal, 2022; Baranski and Reuben, 2023). We adjust our baseline AQRE model

to allow for the possibility that a contestant myopically behaves as if the next stage

of the game is also the last. Such a simplified frame lowers Contestant 1’s propensity

to spin, because beating only one subsequent contestant in expectation requires a

lower score than beating two. For Contestant 2, limited foresight coincides with full

backward induction because the next stage is also the last stage of the game. Our

limited foresight model accurately describes the observed behavior of contestants.

According to the estimation results, approximately 38 percent of the contestants

simplify the game by looking only one step ahead.

Limited foresight thus provides a better account of contestants’ spinning choices

than omission bias. To establish whether omission bias adds any explanatory power

on top of limited foresight, we also estimate a model that incorporates both these

elements. We find that this model does not significantly outperform the one that

only includes limited foresight. The overall conclusion therefore is that the deviations

from the SPNE in this high-stakes game are well explained by a combination of

random evaluation errors and limited foresight, and that the role of omission bias is

negligible. This conclusion is robust to various alternative modeling assumptions.

Our conclusion diverges from that of Tenorio and Cason (2002). Tenorio and

Cason compare the decisions of contestants in the SCSD with those dictated by the

SPNE, using a relatively small sample from 1994 and 1995. Based on the under-

spinning of Contestant 1 and a lack of informative observations for Contestant 2,

they conclude that omission bias is a plausible explanation for the deviations from

the SPNE in their data. The present paper uses a considerably larger sample, with

many informative observations for both Contestant 1 and Contestant 2. This allows

for the estimation of structural decision models and tests of competing hypothe-

ses, which reveal that random evaluation errors and limited foresight rather than

omission bias can adequately explain the deviations.

Our results are striking in the light of the long history of the show and its

popularity. A natural question is whether contestants’ behavior converges towards

the SPNE over time. When we subdivide our sample into four periods, we find

that the estimated probability of limited foresight monotonically decreases from 55

percent in the first period to 24 percent in the last. Despite this strong improvement,

the results show that many contestants remain unable to properly backward induct,

even after several decades of The Price Is Right.
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The remainder of the paper is structured as follows. Section 2 introduces the

game show and the SCSD in more detail and outlines the equilibrium strategies.

Section 3 discusses the data and provides a descriptive analysis of deviations from

equilibrium play. Section 4 presents the main analyses and results, various ro-

bustness checks, and the learning analysis. Section 5 concludes and discusses our

findings.

2 The Game and Its Equilibrium Strategies

The Price Is Right was first aired in the United States in 1956. Through the years,

the format was introduced in many other countries, but here we exclusively consider

the American version. Every episode consists of multiple games. The game that

is central in our paper—the Showcase Showdown (SCSD)—was introduced in 1975.

Apart from a change in 2008 (see below), the SCSD has remained the same since

1979. We exclusively consider episodes from that year onwards.

Every episode contains two renditions of the SCSD, with three contestants each.

Prior to the SCSD, every contestant plays two other games: the so-called One Bid

game, and a pricing game. In the One Bid game, four contestants guess the retail

price of a consumer product (such as a microwave or television).5 The contestant

whose guess is closest to the actual retail price without going over wins the product,

gets to play one of the many different pricing games, and will be one of the SCSD

contestants.6 In their pricing game, the contestant can win one or more prizes, often

by guessing the retail prices of consumer goods. After three contestants have won a

One Bid game and completed their pricing game, the first SCSD is played. In the

next part of every episode this combination of three One Bid games, three pricing

games, and one SCSD is repeated.

The winners of the two SCSDs proceed to the final of the episode. In this so-

called Showcase round, the two finalists have to guess the retail price of their own

respective showcase, which typically consists of multiple valuable prizes such as cars,

furniture, electronics, and trips. The contestant whose guess is closest to the retail

price without exceeding it wins the contents of their showcase. If the winner’s guess

is within a specified range below the retail price ($100 until 1997-98, $250 from 1998-

99 onwards) they win both showcases; if both finalists’ guesses exceed the retail price

5Contestants are selected by the producers through interviews with ticketed audience members
shortly before to the recording of an episode.

6Bennett and Hickman (1993), Berk et al. (1996), and Healy and Noussair (2004) use the One
Bid game to study strategic decision making. Atanasov et al. (2021) use it to study own-gender
favoritism.
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both showcases remain unclaimed.

In the SCSD, our game of interest, three contestants take turns to spin a big

wheel that contains all multiples of 5 up to 100. The contestant with the lowest

(highest) prior winnings spins first (last). Immediately after observing the outcome

of their first spin, a contestant has to decide whether to spin the wheel again.7

Their score is the outcome of the first spin if they spin once, and the sum of the

two spin outcomes if they spin twice. The contestant whose score is closest to 100

without exceeding is the winner and proceeds to the Showcase round.8 If two or

three contestants tie for the highest score, they enter a spin-off in which each of them

spins the wheel once more; the one who spins the highest number is the winner. This

procedure is repeated in the case of further ties.

On top of securing a place in the lucrative final, SCSD contestants can also win

one or two monetary bonus prizes. If a contestant scores exactly 100 points, they

receive $1,000 plus a bonus spin that yields an additional $10,000 ($5,000 before

2008-09) if the wheel lands on 5 or 15, or $25,000 ($10,000 before 2008-09) if it stops

at 100. If two or three contestants tie at a score of 100, the outcome of their bonus

spin counts as their spin-off score.

The optimal strategy for a contestant depends on the expected showcase value

and the bonus prizes. Coe and Butterworth (1995), Grosjean (1998), and Tenorio

and Cason (2002) derive the unique subgame perfect Nash equilibrium (SPNE) for

a limited set of combinations of these values. The three contestants’ equilibrium

strategies, which can be found through backward induction, take the form of optimal

stopping rules that dictate when a contestant should not use their second spin.

Our sample covers a large time span, over which the average stated retail price

of the showcases varied considerably, and during which there was a change in the

bonus prizes. We therefore derive the optimal stopping thresholds for a large set of

combinations of expected showcase values and the two bonus schemes.

In line with previous work, we assume (i) that contestants believe that spin

outcomes follow a discrete uniform distribution from 5 to 100 with steps of 5, (ii)

that contestants are risk neutral, and (iii) that contestants believe that the chance

of winning the Showcase round after winning the SCSD is 50 percent. We examine

the sensitivity of our results to the latter two assumptions in Section 4.4.

Table 1 shows each contestant’s optimal strategy for various ranges of expected

7The wheel must be spun for at least one full revolution.
8If the third contestant beats the best preceding score with their first spin, or if the first two

contestants went over 100, the third contestant automatically advances to the Showcase round.
In the latter case, Contestant 3 does spin the wheel once to try to win a bonus prize by spinning
exactly 100, but they are not given the choice to spin a second time.

7



Table 1: Optimal strategies

Contestant First spin E(S) Stopping threshold

Panel A: Bonus Scheme 1 (until 2008-09)

C1 $1, 532 ≤ E(S) < $4, 180 75
C1 E(S) ≥ $4, 180 70

C2 Better than C1 $2, 564 ≤ E(S) < $27, 826 60
C2 Better than C1 E(S) ≥ $27, 826 55
C2 Tied with C1 $2, 503 ≤ E(S) < $10, 702 75
C2 Tied with C1 E(S) ≥ $10, 702 70

C3 Tied with C1 or C2 $2, 000 ≤ E(S) < $4, 000 60
C3 Tied with C1 or C2 E(S) ≥ $4, 000 55
C3 Tied with C1 and C2 $2, 400 ≤ E(S) < $6, 000 75
C3 Tied with C1 and C2 E(S) ≥ $6, 000 70

Panel B: Bonus Scheme 2 (from 2008-09 onwards)

C1 $2, 489 ≤ E(S) < $6, 792 75
C1 E(S) ≥ $6, 792 70

C2 Better than C1 $4, 167 ≤ E(S) < $45, 217 60
C2 Better than C1 E(S) ≥ $45, 217 55
C2 Tied with C1 $4, 068 ≤ E(S) < $17, 391 75
C2 Tied with C1 E(S) ≥ $17, 391 70

C3 Tied with C1 or C2 $3, 250 ≤ E(S) < $6, 500 60
C3 Tied with C1 or C2 E(S) ≥ $6, 500 55
C3 Tied with C1 and C2 $3, 900 ≤ E(S) < $9, 750 75
C3 Tied with C1 and C2 E(S) ≥ $9, 750 70

Notes: The table shows the optimal strategies for various ranges of expected
showcase values and for the two different bonus schemes. Under Bonus Scheme
1 (Panel A), the bonus prizes are $1,000, $5,000, and $10,000; under Bonus
Scheme 2 (Panel B), the bonus prizes are $1,000, $10,000, and $25,000. The
first column indicates whether the contestant is the first (C1), second (C2),
or third (C3) to spin. The second column indicates whether the contestant’s
first spin beats or ties the best preceding score. The third column gives the
range for the expected showcase value. The last column gives the optimal
stopping threshold: the first-spin outcome at or above which the contestant
should stop, and below which they should spin again. The table omits the
trivial optimal decision of Contestant 2 and Contestant 3 in situations where
their first-spin outcome is lower than the best preceding score (always spin),
and that of Contestant 3 when their first-spin outcome beats the best preceding
score (always stop).

showcase values, denoted E(S), and for the two different bonus schemes. For brevity,

the table displays the optimal strategies for empirically relevant ranges of E(S) only.9

Furthermore, it omits the trivial optimal decision of Contestant 2 and Contestant 3

in situations where their first-spin outcome is lower than the best preceding score

(where they should always spin), and that of Contestant 3 when their first-spin

outcome beats the best preceding score (where they are automatically declared the

winner).

Consider, for example, a rendition of the SCSD with the most recent bonus

9When E(S) goes to zero, the optimal stopping threshold converges to 100 for all situations.
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scheme and where E(S) = $25, 000. Contestant 3 faces a nontrivial decision only

when they tie the best preceding score. If they tie with one previous contestant,

they should stop when the tie is at 55 or more (and spin otherwise). In the case of

a three-way tie, the stopping threshold is 70.

The optimal strategies of the other two contestants can be found through back-

ward induction. Assuming that Contestant 3 strictly adopts the optimal approach,

Contestant 2 is best off by stopping at 60 or more if they beat the score of Contestant

1, and by spinning otherwise. In the case of a tie with Contestant 1, Contestant 2’s

stopping threshold is 70. Contestant 1 has to anticipate the decisions of Contestant

2 and 3. Assuming that these two both follow the optimal strategy, Contestant 1’s

stopping threshold is 70.

3 Data and Preliminary Results

Our data are from the The Price Is Right Episode Guide.10 We accessed this fan-

edited website on 21 June 2021. At that time, it contained 5, 834 detailed recaps

of episodes of The Price Is Right from 1979 onwards. We successfully scraped the

data for one or both SCSDs for 5,307 episodes. After omitting special episodes with

a deviating prize structure, and the one available episode from the 1978-79 season,

our final sample contains 10,071 SCSDs from 5,235 different episodes that were aired

between 1979-80 and 2020-21.11 In most cases, we additionally obtained contestants’

names, the accumulated value of the prizes they earned prior to the SCSD, and the

stated retail prices of the showcases. Table A1 in the Appendix shows the numbers

of episodes, SCSDs, and showcase prices in our sample for every season.

As a first analysis, we explore the extent to which contestants’ spinning deci-

sions are consistent with the SPNE. Because almost all Contestant 3’s decisions are

trivial—they are automatically declared the winner if their first-spin outcome beats

the best preceding score, and by default spin again if it is lower—we focus exclusively

on Contestant 1 and 2. For the same reason, we omit decisions of Contestant 2 that

follow first-spin outcomes that are below the score of Contestant 1. This leaves us

with 10,071 spinning decisions for Contestant 1 and 4,488 for Contestant 2.

The previous section showed how the optimal stopping rules depend on a contes-

tant’s assessment of the expected showcase value. We make the simplifying assump-

10See https://tpirepguide.com.
11Some types of special episodes featured a deviating SCSD bonus scheme or extra-

valuable prizes in the Showcase round. We identified and omitted such episodes using
https://www.priceisright.fandom.com, a collaborative website dedicated to The Price Is Right. We
omit the one episode from the 1978-79 season because we cannot reliably estimate the expected
showcase value for that season.
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Figure 1: Average stated retail price of showcases across seasons
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Notes: The figure shows the average stated retail price of showcases for every season.
Error bars depict standard errors around the mean. Horizontal lines indicate the most
relevant expected showcase values at which the optimal stopping thresholds change. Ta-
ble A1 in the Appendix shows the number of included showcases per season.

tion that this subjective value equals the average stated retail price of the showcases

in the given season, and examine the sensitivity of our results to this assumption in

Section 4.4.

Figure 1 shows the average stated retail price per season. Throughout our sample

period, this average increased from $7,838 (1979-80) to $29,342 (2020-21), or by

approximately 3.3 percent per year. For comparison, the inflation in the US over

this period was 3.0 percent per year (US Consumer Price index; OECD, 2021). The

horizontal lines indicate the most relevant thresholds at which the optimal stopping

rules change. The jumps reflect the change of the bonus prizes. At any expectation

higher than these thresholds, the stopping rules remain the same.

For Contestant 1, the average retail price was always well above the thresh-

old values of $4, 180 (until 2008-09) and $6, 792 (from 2008-09 onwards). Hence,

throughout our entire sample period Contestant 1 optimizes their play by stopping

if and only if their first spin is 70 or higher. For Contestant 2 we need to distinguish

between situations where their first spin beats the score of Contestant 1, and sit-

uations where they tie.12 Contestant 2’s optimal stopping rule in situations where

their first spin beats Contestant 1’s score was also constant over time: the average

12Ties are relatively rare. Out of the 4,488 spinning situations that we have for Contestant 2,
only 384 (8.6%) are ties.
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Figure 2: Deviations from the SPNE
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Notes: The figure shows how often the decisions of Contestant 1 (Panel A, N=10,071) and
Contestant 2 (Panel B, N=4,104) deviate from the optimal strategy, for every possible first-spin
outcome. Panel B omits ties and thus exclusively considers choice situations where the first-
spin outcome of Contestant 2 beats the score of Contestant 1. Dark gray bars depict first-spin
outcomes at which it is optimal to spin, light gray bars depict first-spin outcomes at which it is
optimal to stop.

retail price never exceeded the critical values of $27, 826 (until 2008-09) and $45, 217

(from 2008-09 onwards), which means that they should stop if and only if their first

spin is 60 or higher. For ties the optimal stopping rule did change. Most of the

time—from the 1983-84 season onward—Contestant 2 was best off by stopping if

and only if the tie was at 70 or higher. Until the start of the 1983-84 season the

stopping threshold was 75.

When we compare contestants’ actual decisions with the optimal decisions, we

observe that only a small proportion deviate. For Contestant 1, 93.4 percent of the

10,071 decisions are in accordance with the equilibrium strategy. For Contestant

2, 95.9 percent of the 4,488 decisions are optimal. These low rates at which con-

testants depart from optimality are not very surprising, because most decisions are

easy. When we exclusively consider “difficult” choice situations—which we define as

situations where the first-spin outcome is no more than two steps below the stopping

threshold and no more than one step above it—we find that 72.9 percent of the 2,069

decisions of Contestant 1 and 79.5 percent of the 790 decisions of Contestant 2 are

in accordance with the equilibrium strategy. Hence, for these more difficult choice

situations, the rates of departure from optimality are considerable.
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The deviations tend to be in one direction. If Contestant 1 and 2 were to follow

the optimal strategy, they would spin in 65.9 and 32.4 percent, respectively, of all

situations in our sample. In reality, however, they spin only 59.6 and 30.9 percent of

the times. For the more difficult situations, the optimal spinning rates are 49.1 and

46.3 percent, whereas the actual rates are only 23.3 and 39.7 percent. Hence, these

global spinning statistics indicate that there is systematic underspinning, especially

for Contestant 1.

Figure 2 shows how often Contestant 1 (Panel A) and Contestant 2 (Panel B)

deviate from the optimal strategy, for every possible first-spin outcome.13 The dark

grey bars represent the deviations in situations where it is optimal to spin, the light

grey bars show the deviations in situations where it is optimal to stop. Clearly,

at first-spin outcomes of 60 and 65 Contestant 1 frequently departs from the equi-

librium strategy. In these situations, spinning is optimal but many instead choose

to stop. In contrast to these underspinning errors, Contestant 1 displays hardly

any overspinning errors. For Contestant 2, the pattern looks different. Contestant

2 departs less frequently from the optimal strategy than Contestant 1. Moreover,

in comparison with Contestant 1, their deviations from optimality are considerably

more symmetric.

4 Analyses and Results

In the current section we propose and test three possible explanations for contes-

tants’ deviations from the SPNE. Section 4.1 introduces our baseline structural

model, which allows for the possibility that contestants make random evaluation

errors. Section 4.2 then extends this model with the possibility of omission bias,

whereas Section 4.3 instead extends it to allow for the possibility of limited fore-

sight. Section 4.4 presents several robustness checks, which include tests of various

alternative explanations. Last, Section 4.5 exploits the longitudinal dimension of

the data to explore whether there is evidence of learning over the years.

4.1 Random Errors

The SPNE is based on the assumption that contestants perfectly maximize their

expected utility, and never make mistakes. In reality, people of course will make

mistakes. In the SCSD, the costs of mistakes vary between choice situations, and

strongly depend on a contestant’s first spin outcome. In situations where spinning is

13Figure 2 omits the (relatively rare) choice situations of Contestant 2 where they are tied with
Contestant 1, because the optimal stopping threshold is different for these situations.
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only slightly better than stopping, or vice versa, even a small evaluation error could

lead a contestant to deviate from the optimal choice. Depending on the relative

costs of over- or underspinning across all choice situations, random errors can lead

to a pattern of systematic deviation from the SPNE.

Moreover, a player who realizes that the choices of their opponents are not flaw-

less should take this into account in determining their optimal strategy. Factoring

in the mistakes of others may lead to optimal strategies that differ from the SPNE

(Goeree and Holt, 2001; Goeree et al., 2002, 2003). In the SCSD, mistakes of sub-

sequent opponents generally lower the incentive to spin again. Therefore, in theory,

the anticipation of mistakes could explain the underspinning as compared to the

SPNE.

To examine the role of random errors, we adopt the Quantal Response Equilib-

rium (QRE) concept (McKelvey and Palfrey, 1995; Chen et al., 1997). The QRE is

a stochastic generalization of the Nash equilibrium, and commonly used to account

for bounded rationality in strategic settings (see, for example, Capra et al., 1999;

Anderson et al., 2001; Goeree et al., 2002, 2003; Moinas and Pouget, 2013; Goeree

et al., 2016, 2017). The main underlying idea is that people make random mistakes

in evaluating the expected utilities of choice alternatives, and that they anticipate

that others do the same. Because the SCSD is a sequential game, we consider

the Agent Quantal Response Equilibrium (AQRE), a modification of the QRE for

extensive-form games (McKelvey and Palfrey, 1998). The AQRE concept has found

many applications (see, for example, Fey et al., 1996; McKelvey and Palfrey, 1998;

Deck, 2001; Cason and Reynolds, 2005; Cai and Wang, 2006; McKelvey and Patty,

2006; Fehr et al., 2021).

Almost all of Contestant 3’s decisions are trivial, and therefore we assume that

Contestant 1 and 2 expect Contestant 3 to play their SPNE strategy without error.

Similarly, we assume that Contestant 1 does not expect Contestant 2 to err after a

first-spin outcome that is worse than Contestant 1’s score, because Contestant 2 by

default always spins again in such situations.

For all nontrivial choice situations, let EU s
ij(·) denote the expected utility of

action s ∈ {Spin, Stop} for Contestant i ∈ {1, 2} in SCSD j ∈ {1, 2, . . . , J}.
Contestants make random evaluation errors εsij and mistakenly consider ÊU

s

ij(·) =
EU s

ij(·) + εsij. Following convention, we assume that εsij is independently and iden-

tically distributed according to an extreme value distribution, which leads to the

following predicted spin probabilities (Goeree et al., 2005; Haile et al., 2008; Goeree

et al., 2020):
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P Spin
ij =

eλEUSpin
ij

eλEUSpin
ij + eλEUStop

ij

(1)

λ can be interpreted as contestants’ rationality parameter or payoff sensitivity.

If λ → 0, contestants make completely random choices and spin with a 50 percent

likelihood; if λ → ∞, they follow the payoff-maximizing strategy with certainty. In

Section 4.4, we consider a more flexible specification that allows λ to differ between

Contestant 1 and 2.

The expected utilities of spinning and stopping depend on the resulting proba-

bility of winning the SCSD, the shape of the utility function, the chance of winning

the showcase after winning the SCSD, and the showcase value; for spinning, the

expected utility in addition depends on the bonus prizes. In our main analyses we

assume risk neutrality. We also assume that contestants believe that they have a

50 percent chance of winning the showcase after winning the SCSD, and that the

expected showcase value equals the average stated retail price of all showcases in the

entire running season. We examine the sensitivity of the results to these assumptions

in Section 4.4.

We convert all nominal monetary values to 2015 dollars using the US Consumer

Price Index (OECD, 2021).14 To obtain more readable coefficients, we divide the

monetary values by 1,000. The next subsections expand this baseline model with

additional parameters that capture omission bias and limited foresight. We use

maximum likelihood techniques to estimate the parameters.

Table 2 presents the results. To compare how well the baseline AQRE model

explains contestants’ behavior relative to the SPNE, we consider three goodness-of-

fit statistics: the hit rate, the Brier score, and the spinning bias.

The hit rate of the model is the fraction of correctly predicted decisions. A pre-

diction is defined as correct if the model assigns a 50 percent or greater probability

to the contestant’s actual decision. The baseline model correctly predicts 93.4 per-

cent of Contestant 1’s decisions and 95.9 percent of Contestant 2’s decisions. These

high hit rates are not surprising, because most decisions in our sample are easy. For

relatively difficult choice situations—where the first-spin outcome is no more than

two steps below the stopping threshold and no more than one step above it —the

hit rate of the baseline model is 72.9 percent for Contestant 1 and 79.5 percent for

Contestant 2. These hit rates are identical to those for the SPNE, suggesting that

allowing for evaluation errors does not add any descriptive power. Due to the binary

nature of “hits”, however, the measure is rather crude. In contrast to the SPNE,

14For completeness, Section 4.4 also gives the results without correcting for inflation.
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Table 2: Estimation results

SPNE Baseline Omission bias Limited foresight OB & LF

λ - - 1.423 (0.027) 1.677 (0.035) 1.627 (0.037) 1.616 (0.038)
γ - - - - 1.052 (0.046) - - -0.112 (0.090)
β - - - - - - 0.379 (0.014) 0.408 (0.028)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -2,049 -1,814 -1,701 -1,701
AIC - 4,101 3,633 3,407 3,407

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.953 0.943 0.953 0.959 0.953 0.959
Hit rate (difficult) 0.729 0.795 0.729 0.795 0.817 0.705 0.817 0.795 0.817 0.795
Brier score 0.066 0.041 0.046 0.035 0.035 0.039 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.205 0.177 0.173 0.125 0.197 0.120 0.174 0.120 0.174
Spinning bias -0.063 -0.014 -0.041 0.001 -0.008 0.027 0.003 0.001 0.003 -0.002
Spinning bias (difficult) -0.258 -0.066 -0.217 0.010 -0.066 0.147 -0.010 0.014 -0.010 -0.001

Notes: The table shows the estimated parameters and goodness-of-fit of various structural models
of strategic decision making. SPNE is the model that adopts the binary predictions from the
subgame perfect Nash equilibrium, Baseline is the baseline AQRE model, Omission bias is the
AQRE model that incorporates omission bias, Limited foresight is the AQRE model that allows
for limited foresight, and OB & LF is the AQRE model with both omission bias and limited
foresight. λ is the estimated rationality parameter, γ is the estimated disutility of self-elimination,
and β is the estimated probability of limited foresight. Standard errors are in parentheses. N
is the number of spinning decisions, Log likelihood is the log likelihood value of the estimation,
and AIC is the Akaike Information Criterion value. Other goodness-of-fit measures are given
separately for Contestant 1 (C1 ) and Contestant 2 (C2 ), both for all choice situations combined
and for relatively difficult choice situations only. Difficult choice situations are choices where the
first-spin outcome is no more than two steps below the stopping threshold and no more than one
step above it. Hit rate is the fraction of correctly predicted decisions, Brier score is the mean
squared prediction error, and Spinning bias is the average difference between contestants’ actual
spinning decisions and the model’s spinning predictions.

the predictions of the AQRE are probabilistic, and much of the variation in these

probabilities is not reflected in the hit rate.

To assess the difference between the observed choices and the probabilistic pre-

dictions, we calculate the Brier score (Brier, 1950). The Brier score is the mean

squared prediction error. For the binary predictions of the SPNE, the Brier score is

the complement of the hit rate. Compared to the Brier scores for the SPNE, those

for the baseline model are substantially lower. The improvement is especially strong

for Contestant 1; for difficult decisions, for example, the statistic declines from 0.271

to 0.177.

The Brier score is a good measure to assess overall predictive accuracy, but it

is uninformative of the degree to which the model systematically over- or under-

predicts contestants’ propensity to spin. To visually explore whether there is any

systematic deviation, Figure 3 plots the actual spinning rates against the probabilis-

tic predictions of the baseline AQRE model for every possible first-spin outcome.

The figure clearly shows that Contestant 1 underspins relative to the predictions.

At first-spin outcomes of 60, 65 and 70, the fraction of contestants who actually use

their second spin is 25-30 percentage points lower than predicted. For Contestant

2 the differences are much smaller, with the actual spinning rate on average being
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Figure 3: Empirical spinning rates and baseline model predictions
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(B) Contestant 2
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Notes: The figure shows the observed spinning rate and the probabilistic prediction of the baseline
model for Contestant 1 (Panel A, N=10,071) and for Contestant 2 (Panel B, N=4,488) for all
possible first-spin outcomes. The lower parts of the panels show the differences between the
observed and predicted spinning rates.

slightly higher than predicted.

The spinning bias quantifies the degree of systematic deviation, and is calculated

as the average difference between contestants’ actual spinning decisions, which take a

value of either 0 (stop) or 1 (spin), and the model’s probabilistic spinning predictions,

which can take any value between 0 and 1. A positive value of this goodness-of-fit

statistic indicates overspinning, a negative value underspinning. Confirming the

pattern in Figure 3, the spinning bias is negative for Contestant 1: -4.1 percentage

points at the aggregate level, and -21.7 percentage points for the relatively difficult

first-spin outcomes. This degree of contestants’ systematic underspinning according

to the baseline model is high, but lower than the negative spinning bias of Contes-

tant 1 relative to the SPNE (-6.3 and -25.8 percentage points, respectively). For

Contestant 2, the spinning bias is positive and close to zero: 0.1 percentage points

across all choices, and 1.0 for the more difficult ones.

Taken together, these findings suggest that random evaluation errors can explain

some of the deviations from the SPNE. The systematic underspinning of Contestant

1, however, remains largely unexplained.
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4.2 Omission Bias

Tenorio and Cason (2002) analyze a sample of 282 renditions of the SCSD from

1994 and 1995, and similarly report that contestants tend to stop when it is actu-

ally optimal to spin. Their evidence derives primarily from Contestant 1, as their

sample of informative decisions of Contestant 2 is too small to draw reliable con-

clusions. Tenorio and Cason propose that the underspinning can be explained by

omission bias—the tendency to favor harmful inactions over harmful actions (Ritov

and Baron, 1990, 1992; Spranca et al., 1991; Feldman et al., 2020). Other research

shows that omission bias can play an important role in settings where decision

makers face a choice between action and inaction. Examples include vaccination

decisions, debt repayment, blackjack, and sports refereeing (Ritov and Baron, 1990;

Asch et al., 1994; Carlin and Robinson, 2009; DiBonaventura and Chapman, 2008;

Moskowitz and Wertheim, 2011; Hallsworth et al., 2015).

In the SCSD, contestants will be less likely to spin if they prefer elimination

after not spinning (by an opponent who obtains a higher score) over elimination

after spinning (by exceeding 100 points). To examine whether omission bias can

explain the observed behavior, we extend the baseline structural model with γ, a

parameter that captures the disutility of self-elimination.

Table 2 shows the results for the AQRE model with omission bias. The estimated

value of γ is 1.052, implying that the disutility of losing through self-elimination is

equivalent to the disutility of a monetary loss of $1,052 (in 2015 dollars). This model

explains contestants’ choices better than the baseline model, also when we account

for its additional parameter: both the log-likelihood and the AIC show a substantial

improvement. A likelihood-ratio test confirms that the model with omission bias

significantly outperforms the baseline model (χ2(1) = 469.77, p < 0.001).

The separate goodness-of-fit measures for the two contestants show that the

omission bias model provides a better account of Contestant 1’s decisions but a

worse account of Contestant 2’s decisions, as compared to the baseline model. For

Contestant 1, the overall hit rate improves from 93.4 to 95.3 percent, and the hit

rate for difficult decisions improves from 72.9 to 81.7 percent. The improved fit

for Contestant 1 is also reflected in lower Brier scores. The opposite holds for

Contestant 2: the overall hit rate deteriorates from 95.9 to 94.3 percent, the hit

rate for more difficult decisions deteriorates from 79.5 to 70.5 percent, and the Brier

scores increase.

Figure 4 compares the actual spinning rates and the probabilistic predictions of

the omission-bias model for all first-spin outcomes. For Contestant 1, the actual

spinning rates are relatively close to the predictions. As shown in Table 2 the
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Figure 4: Empirical spinning rates and omission bias model predictions
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(B) Contestant 2
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Notes: The figure shows the observed spinning rate and the probabilistic prediction of the omis-
sion bias model for Contestant 1 (Panel A, N=10,071) and for Contestant 2 (Panel B, N=4,488)
for all possible first-spin outcomes. The lower parts of the panels show the differences between
the observed and predicted spinning rates.

remaining spinning bias of Contestant 1 is a mere -0.8 percentage points, which

compares favorably to the -4.1 percentage points of the baseline model. For relatively

difficult first-spin outcomes the degree of underspinning decreases from 21.7 to 6.6

percentage points.

The reduction of the systematic prediction error for Contestant 1, however, is

largely offset by an increase for Contestant 2. Contestant 2 clearly overspins relative

to the predictions of the omission bias model. Their spinning bias increases from 0.1

to 2.7 percentage points across all choices, and from 1.0 to 14.7 percentage points

for the more difficult ones.

Altogether, omission bias thus fails to adequately explain contestants’ behavior.

The additional parameter captures the underspinning of Contestant 1 and improves

the overall fit of the model, but at the same time introduces large systematic pre-

diction errors for Contestant 2.

4.3 Limited Foresight

A possible alternative explanation for the suboptimal behavior of contestants is lim-

ited foresight. To simplify the decision problem, contestants may adopt a myopic

representation and optimize their chances of beating the next contestant only. The

18



notion that people reason only one or a few steps ahead has been proposed in a

large body of theoretical research (Jehiel, 1995, 1998, 2001; Jackson and Wolinsky,

1996; Gabaix and Laibson, 2005; Ke, 2019; Bossaerts et al., 2022; Rampal, 2022),

and is supported by experimental studies (Johnson et al., 2002; Gabaix et al., 2006;

Mantovani, 2015; Rampal, 2022; Baranski and Reuben, 2023). If Contestant 1 only

considers Contestant 2 in their spinning choice and ignores the presence of Con-

testant 3, then Contestant 1 will be less inclined to spin because beating only one

subsequent contestant in expectation requires a lower score than beating two. For

Contestant 2, limited foresight coincides with full backward induction because the

next stage is also the last stage of the game.

Our limited foresight model expands the baseline model with the possibility that

contestants reduce complexity by considering the next contestant only. A contestant

adopts this simplified frame with probability β, and correctly considers all future

contestants with probability 1−β. We assume that myopic contestants believe that

the next contestant behaves as if they are the last.

The penultimate column of Table 2 shows the results for the limited foresight

model. The estimated β coefficient is 0.379, suggesting that 37.9 percent of the

spinning decisions are made in accordance with limited foresight, while the remaining

62.1 percent are consistent with full backward induction. The empirical fit is much

better than the fit of the baseline and omission bias models: both the log-likelihood

and the AIC show considerable improvements. A likelihood-ratio test confirms that

the current model outperforms the baseline model (χ2(1) = 696.13, p < 0.001), and

a Vuong test for non-nested models confirms that it also outperforms the omission

bias model (Z = 5.56, p < 0.001).

As compared to the omission bias model, the limited foresight model provides a

slightly better account of Contestant 1’s decisions, and a substantially better account

of Contestant 2’s decisions. For Contestant 1, the hit rates are identical to those of

the omission bias model, and the Brier scores are marginally better. For Contestant

2, the overall hit rate increases from 94.3 to 95.9 percent, the hit rate for difficult

first-spin outcomes increases from 70.5 to 79.5 percent, and the Brier scores improve

considerably.

Figure 5 plots the actual spinning rates against probabilistic predictions of the

limited foresight model, and shows that the model accurately captures the observed

behavior. For both Contestant 1 and 2, the actual and predicted spinning rates

approximately coincide. As also shown in Table 2, barely any spinning bias remains.

Across all choices, Contestant 1 spins a negligible 0.3 percentage points more often

than predicted by the model and Contestant 2 spins only 0.1 percentage points
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Figure 5: Empirical spinning rates and limited foresight model predictions
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(B) Contestant 2
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Notes: The figure shows the observed spinning rate and the probabilistic prediction of the limited
foresight model for Contestant 1 (Panel A, N=10,071) and for Contestant 2 (Panel B, N=4,488)
for all possible first-spin outcomes. The lower parts of the panels show the differences between
the observed and predicted spinning rates.

more often. For the more difficult choices, the spinning biases are a mere -1.0 and

1.4 percentage points, respectively.

The limited foresight model thus provides an accurate account of contestants’

spinning decisions. To examine whether contestants’ choices are in addition partly

driven by omission bias, we estimate a model that allows for both omission bias and

limited foresight. The final column of Table 2 shows the estimation results. The

results clearly speak against omission bias as a possible driver. First, the omission

bias parameter is negative, relatively small, and statistically insignificant. A negative

value implies a preference for harmful actions over harmful inactions, which goes

against the hypothesis. Second, the goodness-of-fit of the model is similar to that of

the limited foresight model. Neither the log-likelihood nor the AIC value improves.

Not surprisingly, a likelihood-ratio test does not reject the hypothesis that the two

models explain spinning choices equally well (χ2(1) = 1.55, p = 0.213). The values

for the hit rate, Brier score, and spinning bias are also very similar to those of the

limited foresight model.

All in all, the conclusion from these analyses is that the behavior of contestants is

well described by an AQRE model with limited foresight, where all contestants make

random evaluation errors and many simplify the decision problem by myopically

considering the next stage of the game only.
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4.4 Robustness Checks

The structural models required a variety of assumptions. In the present subsection,

we explore the sensitivity of our results to risk aversion (Section 4.4.1), to beliefs

about the expected value of winning the SCSD (Section 4.4.2), to the weight attached

to the opportunity of winning bonus prizes (Section 4.4.3), and to various other, more

minor aspects (Section 4.4.4).15

4.4.1 Risk Aversion

The choice between spinning and stopping is essentially a choice between two risky

prospects. In the analyses thus far we assumed that contestants are risk neutral.

Here we explore the sensitivity of our results to the alternative assumption that

contestants are risk averse. We now assume that they have a constant absolute risk

aversion (CARA) utility function of the form U(x) = 1 − expθx, where x is the

monetary value of their prospective winnings and θ is the risk-aversion coefficient.

We set θ such that the certainty equivalent of a 50-50 lottery of winning $25,000
or $0 is $2,500.16 To obtain more readable coefficients, we scale the utility function

such that the utility of $1,000 equals unity.

Table 3, Panel A presents the results. Introducing a considerable degree of risk

aversion worsens the overall fit of the baseline model, and leaves the overall fit

of the models with omission bias, limited foresight, and the combination of these

largely unaffected. Contestant 1 still underspins compared to the predictions of the

baseline model, whereas Contestant 2 still overspins compared to the predictions of

the omission bias model. The limited foresight model again provides an accurate

account of contestants’ spinning decisions. Allowing for both omission bias and

limited foresight yields no statistically significant improvement in explanatory power

as compared to the limited foresight model (LR test: χ2(1) = 2.16, p = 0.142).

The main conclusions from the previous analyses thus do not seem to hinge on the

assumption of risk neutrality.

4.4.2 Discounting the Showcase Value

The optimal strategies and stochastic model predictions depend on the relatives sizes

of the monetary bonus prizes and the expected value of the showcase. For the main

15Under some of the alternative assumptions of the robustness checks in this section, the optimal
strategies are slightly different as compared to those in Table 1. For brevity, we do not discuss
whether and how the optimal strategies change.

16We find similar results for more moderate degrees of risk aversion, for example when we set θ
such that the certainty equivalent of the lottery is $5,000 or $10,000.
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Table 3: Estimation results under alternative modeling choices (1/2)

SPNE Baseline Omission bias Limited foresight OB & LF

Panel A: Risk aversion

λ - - 9.629 (0.181) 11.968 (0.252) 11.445 (0.260) 11.546 (0.268)
γ - - - - 0.181 (0.006) - - 0.019 (0.013)
β - - - - - - 0.447 (0.015) 0.411 (0.029)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -2,157 -1,812 -1,703 -1,702
AIC - 4,316 3,628 3,411 3,411

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.955 0.953 0.945 0.953 0.955 0.953 0.959
Hit rate (difficult) 0.729 0.795 0.729 0.789 0.817 0.736 0.817 0.789 0.817 0.813
Brier score 0.066 0.041 0.049 0.035 0.035 0.039 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.205 0.195 0.158 0.126 0.182 0.121 0.158 0.121 0.157
Spinning bias -0.063 -0.014 -0.048 -0.005 -0.008 0.027 0.002 -0.006 0.003 -0.002
Spinning bias (difficult) -0.258 -0.066 -0.252 -0.016 -0.065 0.152 -0.009 -0.010 -0.009 0.008

Panel B: Discounted showcase value

λ - - 2.649 (0.050) 3.298 (0.070) 3.148 (0.072) 3.183 (0.074)
γ - - - - 0.659 (0.023) - - 0.087 (0.046)
β - - - - - - 0.447 (0.015) 0.401 (0.028)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -2,152 -1,806 -1,701 -1,700
AIC - 4,306 3,616 3,407 3,405

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.956 0.934 0.956 0.952 0.945 0.953 0.956 0.953 0.959
Hit rate (difficult) 0.729 0.789 0.729 0.789 0.815 0.728 0.817 0.789 0.817 0.809
Brier score 0.066 0.044 0.049 0.035 0.035 0.039 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.211 0.194 0.162 0.125 0.184 0.120 0.162 0.120 0.161
Spinning bias -0.063 -0.018 -0.048 -0.006 -0.008 0.026 0.002 -0.006 0.002 -0.002
Spinning bias (difficult) -0.258 -0.076 -0.251 -0.020 -0.064 0.150 -0.010 -0.015 -0.010 0.009

Panel C: No bonus prizes

λ - - 1.525 (0.030) 1.706 (0.036) 1.677 (0.037) 1.640 (0.038)
γ - - - - 0.785 (0.045) - - -0.400 (0.089)
β - - - - - - 0.311 (0.014) 0.416 (0.028)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -1,965 -1,826 -1,713 -1,703
AIC - 3,932 3,655 3,430 3,412

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.943 0.934 0.943 0.953 0.943 0.953 0.943 0.953 0.957
Hit rate (difficult) 0.729 0.701 0.729 0.701 0.817 0.700 0.817 0.701 0.817 0.787
Brier score 0.066 0.057 0.042 0.036 0.035 0.040 0.034 0.036 0.034 0.035
Brier score (difficult) 0.271 0.299 0.161 0.171 0.125 0.195 0.120 0.172 0.120 0.171
Spinning bias -0.063 0.026 -0.034 0.009 -0.008 0.028 0.003 0.009 0.003 -0.002
Spinning bias (difficult) -0.258 0.141 -0.182 0.038 -0.068 0.145 -0.009 0.038 -0.009 -0.019

Notes: The table shows the estimated parameters and goodness-of-fit of the structural models
under three alternative modeling choices. Panel A shows the results under the assumption that
contestants have CARA utility, with a certainty equivalent of $2,500 for a 50-50 lottery of winning
$25,000 or $0. Panel B shows the results under the assumption that contestants value showcases
at 50 percent of the retail price. Panel C shows the results under the assumption that contestants
ignore the bonus prizes. Other definitions are as in Table 2.

analyses, we assumed that the value of a showcase equals its stated retail price. The

stated retail price is a natural and salient value, but in reality contestants will likely

discount it. The showcase prizes are selected by the game show producers, not by

the contestants themselves, and will therefore mostly not align well with contestants’

preferences.17 As a robustness check, we re-estimate the structural models under the

alternative assumption that contestants value showcases at 50 percent of the retail

17Contestants should further discount the showcase value because of taxes. Although taxes
are levied over both (monetary) bonus prizes and (generally non-monetary) showcase prizes, taxes
generally make the showcase prizes relatively less attractive. The reason is that the showcase prizes
are taxed on the basis of their (relatively high, non-discounted) retail prices.
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price.18

Table 3, Panel B presents the results. Discounting the showcase value leads

to a worse fit of the baseline model and stronger evidence of underspinning. This

is not surprising, because a lower expected showcase value increases the relative

attractiveness of the bonus prizes, and thus increases the incentive to spin a second

time. Nevertheless, limited foresight still provides a better account of contestants’

spinning decisions than omission bias, and extending the limited foresight model by

allowing for omission bias does not yield a significant increase in explanatory power

(LR test: χ2(1) = 3.54 and p = 0.060).

4.4.3 Ignoring Bonus Prizes

A possible explanation for underspinning is that contestants attach a relatively low

weight to the possibility of winning one or two bonus prizes by obtaining a score of

exactly 100. In this section, we re-estimate the structural models under the extreme

assumption that contestants completely ignore the existence of the bonus prizes.19

Table 3, Panel C presents the results. As expected, ignoring the bonus prizes

improves the overall fit of the baseline model. The fit of the models with omission

bias, limited foresight, and the combination of these, however, is somewhat worse.

More importantly, the limited foresight model still explains choices substantially

better than both the baseline and the omission bias model. Combining omission

bias and limited foresight yields significantly more explanatory power than limited

foresight alone (LR test: χ2(1) = 20.39 and p < 0.001). The estimated omission bias

parameter, however, is negative, which implies that people would have a preference

for harmful actions over harmful inactions. Again, the results thus speak against

omission bias as a possible driver.

4.4.4 Other Robustness Checks

We perform four additional analyses to examine the robustness of our results to

alternative modeling choices. First, we weigh the observations of Contestant 1 and

2. The number of decisions of Contestant 1 in our sample is more than twice the

number of decisions of Contestant 2, and consequently the choices of Contestant 1

18The effect of discounting the showcase value is equivalent to the effect of lowering contestants’
perceived chance of winning the showcase after winning the SCSD. The present robustness test
therefore also captures the possibility that this subjective probability is smaller than the 50 percent
that we assumed in the main analyses.

19This robustness test also captures the possibility that contestants expect to derive relatively
much utility from playing the Showcase final, for example because they are overconfident about
their chances of winning the showcase, or because of the joy of “winning the episode”.
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Table 4: Estimation results under alternative modeling choices (2/2)

SPNE Baseline Omission bias Limited foresight OB & LF

Panel A: Weighting

λ - - 1.384 (0.028) 1.508 (0.032) 1.518 (0.035) 1.513 (0.035)
γ - - - - 0.803 (0.050) - - -0.076 (0.074)
β - - - - - - 0.381 (0.018) 0.401 (0.026)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -1,964 -1,843 -1,722 -1,722
AIC - 3,930 3,689 3,448 3,449

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.952 0.943 0.953 0.959 0.953 0.959
Hit rate (difficult) 0.729 0.795 0.729 0.795 0.815 0.703 0.817 0.795 0.817 0.795
Brier score 0.066 0.041 0.046 0.035 0.037 0.037 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.205 0.176 0.173 0.132 0.185 0.120 0.173 0.120 0.173
Spinning bias -0.063 -0.014 -0.040 0.001 -0.013 0.021 0.005 0.001 0.005 -0.001
Spinning bias (difficult) -0.258 -0.066 -0.217 0.009 -0.104 0.112 -0.013 0.012 -0.013 0.002

Panel B: Separate rationality parameters

λ1 - - 1.481 (0.032) 2.043 (0.055) 1.815 (0.049) 1.826 (0.053)
λ2 - - 1.204 (0.054) 1.055 (0.044) 1.231 (0.053) 1.227 (0.054)
γ - - - - 1.254 (0.045) - - 0.063 (0.109)
β - - - - - - 0.376 (0.014) 0.359 (0.032)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -2,041 -1,732 -1,673 -1,673
AIC - 4,086 3,470 3,351 3,353

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.953 0.947 0.953 0.959 0.953 0.957
Hit rate (difficult) 0.729 0.795 0.729 0.795 0.817 0.725 0.817 0.795 0.817 0.784
Brier score 0.066 0.041 0.046 0.035 0.034 0.039 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.205 0.177 0.173 0.122 0.190 0.121 0.173 0.121 0.173
Spinning bias -0.063 -0.014 -0.043 0.001 -0.005 0.031 0.000 0.001 0.000 0.003
Spinning bias (difficult) -0.258 -0.066 -0.217 0.003 -0.029 0.127 -0.005 0.004 -0.005 0.012

Panel C: Nominal monetary values

λ - - 1.827 (0.036) 2.146 (0.047) 2.103 (0.048) 2.108 (0.049)
γ - - - - 0.807 (0.036) - - 0.034 (0.062)
β - - - - - - 0.364 (0.014) 0.353 (0.024)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -2,097 -1,866 -1,748 -1,748
AIC - 4,196 3,735 3,501 3,503

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.954 0.943 0.953 0.959 0.953 0.957
Hit rate (difficult) 0.729 0.795 0.729 0.795 0.823 0.701 0.817 0.795 0.817 0.784
Brier score 0.066 0.041 0.046 0.036 0.035 0.039 0.034 0.036 0.034 0.036
Brier score (difficult) 0.271 0.205 0.176 0.176 0.122 0.197 0.121 0.177 0.121 0.177
Spinning bias -0.063 -0.014 -0.039 0.002 -0.005 0.027 0.002 0.001 0.002 0.003
Spinning bias (difficult) -0.258 -0.066 -0.220 0.009 -0.075 0.142 -0.019 0.013 -0.018 0.019

Panel D: Last season’s showcase values

λ - - 1.407 (0.027) 1.657 (0.035) 1.609 (0.036) 1.597 (0.037)
γ - - - - 1.059 (0.046) - - -0.126 (0.091)
β - - - - - - 0.379 (0.015) 0.411 (0.028)

N - 14,475 14,475 14,475 14,475
Log-likelihood - -2,043 -1,812 -1,697 -1,696
AIC - 4,089 3,628 3,398 3,398

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.935 0.959 0.935 0.959 0.952 0.944 0.952 0.959 0.952 0.959
Hit rate (difficult) 0.731 0.794 0.731 0.794 0.817 0.706 0.817 0.794 0.817 0.794
Brier score 0.065 0.041 0.046 0.035 0.035 0.039 0.034 0.035 0.034 0.035
Brier score (difficult) 0.269 0.206 0.176 0.173 0.125 0.197 0.120 0.174 0.120 0.175
Spinning bias -0.063 -0.015 -0.041 0.001 -0.008 0.027 0.003 0.001 0.003 -0.002
Spinning bias (difficult) -0.258 -0.066 -0.217 0.011 -0.066 0.148 -0.009 0.015 -0.009 -0.002

Notes: The table shows the estimated parameters and goodness-of-fit under four alternative
modeling choices. Panel A shows the results when observations are weighted such that the overall
weights of Contestant 1 and 2 are equal and the average weight across individual contestants is
unity. Panel B shows the results when the rationality parameter, λ, is allowed to differ between
Contestant 1 and 2. Panel C shows the results when nominal instead of real monetary values are
used. Panel D shows the results under the assumption that the expected showcase value equals
the average stated retail price of all showcases in the previous season instead of the running
season. Other definitions are as in Table 2.
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may have determined the results of the main analyses more than those of Contestant

2. To correct for this imbalance, we now weigh the observations of Contestant 1 by

(N1 +N2)/2N1 and those of Contestant 2 by (N1 +N2)/2N2, such that the overall

weights for the two types of contestants become equal while the average weight

across all individual contestants remains unity. Second, we increase the flexibility of

the structural models by allowing Contestant 1 and 2 to have different rationality

parameters. As a third robustness check, we use the original, nominal monetary

values instead of the inflation-corrected, real monetary values. Last, we assume that

the expected showcase value equals the average stated retail price of all showcases

in the previous season instead of the running season.

The four sets of results are in Table 4. In all cases, the limited foresight model

provides a much better account of contestants’ choices than the baseline and omis-

sion bias models. Allowing for both omission bias and limited foresight never results

in significantly more explanatory power than limited foresight alone (LR tests: all

χ2(1) < 1.89 and all p > 0.169). The likelihood that a contestant myopically consid-

ers the next stage of the game only is barely affected by the alternative approaches:

the limited foresight parameter is always close to the 37.9 percent that we found

previously.

Finally, a possible concern may be that the order in which contestants take turns

spinning the wheel is not random, but determined by the sum of the prizes they won

in the previous games. This can be problematic if there is a relationship between

prior winnings and their rationality. Such a relationship, however, is not very likely

because the nature of the prior games is such that winnings are to a large extent

driven by luck. Moreover, empirically there is no evidence of such a relationship.

When we regress the likelihood of departures from the optimal strategy on prior

winnings, the regression coefficient is economically and statistically insignificant,

regardless of whether we consider a linear or a log-linear relationship, and regardless

of whether we consider all choices or difficult choices only. The exact results are in

Table A2 in the Appendix.

4.5 Learning

The SCSD has been running uninterruptedly for more than 40 years. This long his-

tory opens up the possibility to investigate whether behavior converges towards the

rational equilibrium strategies over time, as contestants can learn about the game

and the behavior of their opponents. In laboratory experiments, game theory often

describes the behavior of experienced subjects better than that of inexperienced sub-

jects (Fudenberg and Levine, 1998, 2009, 2016). Although SCSD contestants cannot
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Figure 6: Deviations from the SPNE per period
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Notes: The figure shows the fraction of spinning decisions by Contestant 1 (Panel A) and Con-
testant 2 (Panel B) that deviate from the SPNE, for four different time periods. The first period
covers seasons 1979-80 to 1992-93, the second 1993-94 to 2007-08, the third 2008-09 to 2014-15,
and the fourth 2015-16 to 2020-21.

gain experience themselves, they can potentially learn by observing the choices and

outcomes of others (Duffy and Feltovich, 1999; Armantier, 2004; Simonsohn et al.,

2008). Over time, the number of existing episodes has grown, and episodes have

become more readily available online. In addition, with the advent of the internet

and modern communication technologies, people have become better able to share

and discuss the optimal strategies.

To explore whether there is any evidence of learning, we divide our data into

four different time periods: (i) seasons 1979-80 to 1992-93, (ii) 1993-94 to 2007-08,

(iii) 2008-09 to 2014-15, and (iv) 2015-16 to 2020-21.20

For each of the four time periods, Figure 6 shows how often Contestant 1 and 2

deviate from the SPNE. For Contestant 1, there is a clear downward trend in the

frequency of mistakes: the rate decreases monotonically from 8.2 percent in Period

1 to 5.1 percent in Period 4. For Contestant 2, by contrast, there is no clear trend

in the quality of spinning choices over time.

Of course comparing behavior in different time periods in this way is rather crude,

because due to the changing expected showcase value and the two different bonus

schemes the costs of mistakes can be very different at different points in time. The

20We first separate the data for the two different bonus schemes, and then split the data for
each bonus scheme into two periods of roughly equal length.
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Table 5: Estimation results per period

Period 1 Period 2 Period 3 Period 4

λ 1.469 (0.086) 1.564 (0.057) 1.711 (0.077) 1.857 (0.095)
β 0.554 (0.048) 0.435 (0.023) 0.335 (0.027) 0.238 (0.029)

N 2,012 5,876 3,770 2,901
Log-likelihood -255 -683 -410 -326
AIC 515 1,369 823 656

C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.942 0.953 0.950 0.959 0.955 0.963 0.960 0.959
Hit rate (difficult) 0.792 0.781 0.807 0.786 0.831 0.798 0.826 0.815
Brier score 0.038 0.036 0.034 0.035 0.032 0.031 0.029 0.042
Brier score (difficult) 0.114 0.158 0.117 0.175 0.112 0.167 0.119 0.192
Spinning bias 0.002 -0.006 0.003 -0.003 0.002 -0.001 0.003 0.019
Spinning bias (difficult) -0.016 -0.021 -0.014 -0.013 -0.005 -0.006 -0.007 0.106

Notes: The table shows the estimated parameters and the goodness-of-fit of the structural
model with limited foresight for four different time periods. The first period covers seasons
1979-80 to 1992-93, the second period 1993-94 to 2007-08, the third period 2008-09 to 2014-
15, and the fourth period 2015-16 to 2020-21. Other definitions are as in Table 2.

structural models account for such changes and show a similar pattern across the four

time periods. Table 5 gives the period-by-period estimation results for the limited

foresight model. The fraction of spinning decisions that are made in accordance with

limited foresight more than halves over time: β decreases monotonically from 55.4

to 23.8 percent. In addition, the rationality parameter λ increases monotonically

from 1.469 to 1.857.

The improved decision making over time is in line with learning. The results for

the last period, however, show that even after more than forty years of The Price

Is Right, a sizable proportion of contestants remain unable to follow the optimal

strategies deriving from backward induction.

5 Conclusion and Discussion

The present paper examines high-stakes strategic decision making in the Showcase

Showdown (SCSD), a sequential game of perfect information that is part of the long-

running American TV game show The Price Is Right. The optimal strategies for

this game can be found through backward induction. Most tests of the descriptive

validity of backward induction as a solution concept rely on controlled laboratory

experiments.21 The SCSD provides an appealing alternative test bed, allowing for

assessing the descriptive validity under conditions that are markedly different. The

high stakes and ample learning opportunities provide a particularly benign setting

for game-theoretic predictions to hold.

In spite of this, we find that contestants systematically deviate from the unique

21One exception is Spenkuch et al. (2018), who find that voting behavior of US Senators during
roll-call votes is largely consistent with the equilibrium predictions of a model in which the senators
rely on backward induction.
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subgame perfect Nash equilibrium. Their behavior is well explained by an agent

quantal response equilibrium model that not only allows for random evaluation

errors but also for limited foresight.22 The results suggest that contestants are likely

to simplify the decision problem by adopting a myopic representation and optimize

their chances of beating the next contestant only. Omission bias, risk aversion, and

overconfidence cannot explain the deviations from the equilibrium strategies. In line

with learning, we find that the degree of limited foresight decreases over the course

of our sample period, but both systematic and non-systematic deviations remain

commonplace, even after several decades.

Various published papers have derived the equilibrium strategies for the SCSD.

Apparently, many contestants do not take heed of this information before coming on

the show. This is consistent with research that demonstrates that people frequently

do not use important and readily available information when they make important

decisions (for an overview, see Handel and Schwartzstein, 2018). Such ignorance

is rational if the search costs outweigh the expected benefits (Stigler, 1961). For

the SCSD, the expected benefits of thorough preparation are low: only six out of

the several hundred audience members who travel to the recording studio actually

play the SCSD, and only a fraction of those six end up in a relatively difficult

choice situation where knowing the optimal strategy may truly be helpful. For

many laypeople, the low expected benefits probably do not outweigh the costs of

looking up and reading a rather complicated academic paper.

The Price Is Right can be seen as an atypical setting to test the descriptive

validity of backward induction, and critics may therefore view it as a negative dis-

traction. However, novel settings should not be too easily dismissed as they can

provide rare opportunities for relevant tests of economic theory (List, 2023). The

SCSD uniquely allows for a large-scale analysis of strategic decision making at stakes

that are impossible to replicate in the lab.

Nevertheless, following List (2023), it is important to explicitly consider how se-

lection procedures and the naturalness of our setting may affect the generalizability

of our results. Before contestants play the SCSD, they self-selected into the audience,

were selected from the audience by the producers, and won a One Bid game. Un-

fortunately, it is unclear whether these elements of selection have led to any under-

or overrepresentation of strategically sophisticated contestants. Selection effects,

however, are inevitable in any lab or field setting. Moreover, SCSD contestants are

quite diverse in terms of demographic characteristics, such as age, gender, ethnicity,

22Chakraborty and Kendall (2023) analyze a single-player decision problem that requires sub-
jects to reason contingently about their own decisions at hypothetical future events, and similarly
find that behavior is best described by a model that combines QRE-like noise and limited foresight.
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and education, and as a group they seem to resemble a cross-section of the general

population more closely than the subject pools of most laboratory experiments.

The setting in which contestants make their decisions is rather unusual. The pres-

ence of a studio audience and camera’s likely induces stress. Psychological research

indicates that the mere presence of others can facilitate performance in simple tasks

but impair it in more complex ones (Zajonc, 1965; Bond and Titus, 1983). We cannot

fully dismiss the impact the setting may have had on contestants, but prior research

suggests that our findings are unlikely to be an artifact of the setting. Tenorio and

Cason (2002) compare the behavior of laboratory subjects who play the SCSD to

that of real contestants, and Antonovics et al. (2009), Healy and Noussair (2004),

and Baltussen et al. (2016) make such a comparison for other games or game shows.

None of these studies find that the patterns of behavior are different between the

two settings. Moreover, every setting—including the experimental laboratory—is in

some way special. It is impossible to study behavior under each and every possible

set of conditions, and hence the optimal approach is to investigate if similar patterns

are found in settings that are markedly different.

The finding that contestants in the SCSD often deviate from the optimal strategy

and instead behave as if they adopt a simplified representation of the game adds to

an ongoing debate about whether cognitive biases disappear in high-stake situations

(Levitt and List, 2007a,b). Experimental research by Smith and Walker (1993),

Cooper et al. (1999), Rapoport et al. (2003), and Parravano and Poulsen (2015)

finds that the decisions of subjects tend to be closer to equilibrium play when the

monetary incentives are higher. At the same time, Camerer and Hogarth (1999) and

Enke et al. (2021) find that cognitive errors in experiments are largely impervious to

the size of the stakes. Our results align with the findings of the latter two studies, and

show that random and systematic violations of game-theoretic predictions abound

in a high-stakes game that subjects can be expected to be highly familiar with.
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Appendix

Table A1: Data coverage per season

Season Episodes SCSDs Showcases

1979-1980 32 61 60
1980-1981 30 54 58
1981-1982 31 59 60
1982-1983 192 368 378
1983-1984 93 174 179
1984-1985 16 28 31
1985-1986 15 27 29
1986-1987 65 122 118
1987-1988 22 41 39
1988-1989 25 49 49
1989-1990 25 49 49
1990-1991 15 27 28
1991-1992 83 163 163
1992-1993 80 151 160
1993-1994 75 134 92
1994-1995 111 207 175
1995-1996 112 201 223
1996-1997 140 227 268
1997-1998 116 189 219
1998-1999 130 240 256
1999-2000 134 264 265
2000-2001 171 309 341
2001-2002 182 363 364
2002-2003 173 345 346
2003-2004 170 340 294
2004-2005 159 316 255
2005-2006 168 336 267
2006-2007 150 249 125
2007-2008 179 354 353
2008-2009 190 372 375
2009-2010 188 375 374
2010-2011 189 370 372
2011-2012 192 376 382
2012-2013 186 361 370
2013-2014 193 378 386
2014-2015 187 369 373
2015-2016 193 383 385
2016-2017 178 355 356
2017-2018 175 350 350
2018-2019 176 350 351
2019-2020 158 313 316
2020-2021 136 272 272

Notes: The table displays the coverage of our
sample per season. Episodes is the number of
episodes for which we have the data for at least
one of the two SCSDs. SCSDs is the number of
SCSDs for which we have all spinning decisions
and outcomes. Showcases is the number of show-
cases for which we know the stated retail price.
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Table A2: Optimal choices and prior winnings

All choices Difficult choices

Model 1 Model 2 Model 3 Model 4

Prior winnings 0.00003 0.0003
(0.00005) (0.0002)

ln(Prior winnings) 0.001 0.001
(0.002) (0.007)

Fixed effects Yes Yes Yes Yes
Observations 12,665 12,665 2,491 2,491

Notes: The table shows regression results for the relationship be-
tween departures from optimality and prior winnings. The depen-
dent variable is a dummy variable that takes the value of 1 if the
contestant follows the optimal strategy according to the SPNE, and 0
otherwise. Prior winnings is the inflation-corrected monetary value
of the prizes won by the contestant prior to the SCSD, in thousands
of dollars. ln(Prior winnings) is the natural logarithm of Prior win-
nings. Fixed effects allow for differences in the average likelihood of
a departure from optimality across first-spin outcomes, separately
for both Contestant 1 and 2, and, in the case of Contestant 2, for
whether their first spin beats or ties the previous contestant’s score.
Models 1 and 2 are estimated on all observations for which prior
winnings are available in our data; Models 3 and 4 are estimated on
relatively difficult choice situations only. Difficult choices are choices
where the first-spin outcome is no more than two steps below the
stopping threshold and no more than one step above it. Standard
errors are in parentheses.
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