A MEASURE OF BEHAVIORAL HETEROGENEITY
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ABSTRACT. In this paper we propose a novel way to measure behavioral heterogene-
ity in a population of stochastic individuals. Our measure is choice-based; it evaluates
the probability that, over a randomly selected menu, the sampled choices of two sam-
pled individuals differ. We provide axiomatic foundations for this measure and a
decomposition result that separates heterogeneity into its intra- and inter-personal

components.

Keywords: Heterogeneity; Intra-personal; Inter-personal; Axiomatic Foundations.

JEL classification numbers: DO1.

1. INTRODUCTION

In this paper, we provide a way to measure behavioral heterogeneity, which is, by
now, a well-established phenomenon in economics. Ultimately, measuring heterogeneity
will allow for a thorough understanding of its causes and implications. For example,
measuring heterogeneity is essential for comprehending its underlying determinants,
such as demographics, education, or rationality. It can also enhance prediction exer-
cises, as lower heterogeneity is expected to improve predictive accuracy. Additionally,
it is a crucial step in developing a representative stochastic-agent model that captures
population variability. Lastly, accounting for heterogeneity is vital in guiding welfare
analysis.

The behavioral heterogeneity of a population may be the result of two different
phenomena. First, the individuals in the population are heterogeneous; that is, they

Date: May, 2023.
*We thank Larbi Alaoui, David Jimenez-Gomez, Damien Mayaux, Andrea Salvanti, Jesse Shapiro

and Rafael Suchy for helpful comments. Financial support by FEDER/Ministerio de Ciencia e In-
novacién (Agencia Estatal de Investigacién) through Grant PID2021-125538NB-100 and through the
Severo Ochoa Programme for Centers of Excellence in R&D (Barcelona School of Economics CEX2019-
000915-S), and Balliol College is gratefully acknowledged.

"ICREA, Universitat Pompeu Fabra and BSE. E-mail: jose.apesteguia®upf . edu.

#University of Oxford. E-mail: miguel.ballester@economics.ox.ac.uk.
1



2

vary in their tastes and, therefore, in their economic choices. Second, the behavior of
any given individual is also subject to variation. Making a distinction between these
two sources of behavioral heterogeneity, which we refer to as inter-personal and intra-
personal, can play an instrumental role in applications. For instance, while classical
welfare tools seem appropriate for dealing with heterogeneity driven mainly by inter-
personal variability, in the presence of widespread intra-personal heterogeneity, the
welfare approach can borrow from the growing literature on behavioral welfare analysis.

Given its prevalence in theoretical and applied work, we adopt a random utility
framework.! To allow for the possibility of both inter- and intra-personal variability,
we formalize an individual as a random utility model and a population as a distribution
over such individuals. Then, we measure behavioral heterogeneity as the probability
that, over a sampled menu, the sampled choices of two sampled individuals differ.
We call this measure choice heterogeneity, that we refer to by CH. This measure of
heterogeneity aligns well with traditional diversity measurement in various fields, as
discussed in Section 2, and thus it is a natural starting point.

In Section 4 we discuss four convenient features of CH. First, we prove that CH
can be computed even when there is only population aggregate data, a limitation often
faced by the analyst. Second, we obtain a matrix representation of CH that emphasizes
that it is easily implementable in practice. Third, we establish that the measure can be
equivalently derived as a Euclidean distance in the space of choice functions. Finally, by
utilizing this Euclidean representation, we demonstrate that CH enables a convenient
differentiation between inter- and intra-personal components, which can be valuable in
panel data analysis.

In Section 5 we consider properties of a heterogeneity measure with the ultimate goal
of providing axiomatic foundations for CH. The first property is a reduction principle,
establishing that heterogeneity can be computed using aggregate choice data. The
second property is a decomposition principle, stating that heterogeneity is computed
as a weighted sum of the heterogeneity of populations consisting of two deterministic
individuals. Finally, the third property is a monotonicity principle by which an increase
in choice divergence augments heterogeneity. Theorem 1 provides a characterization of

CH based on these three properties.

n Section 7 we argue that our measure of behavioral heterogeneity readily extends to other

formalizations of individual behavior.
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Having proposed and studied our choice-based measure of behavioral heterogeneity,
in Section 6 we further elaborate on the comparative statics of the two components of
heterogeneity. We start with intra-personal heterogeneity to show that when consider-
ing individuals with a central preference relation, moving mass away from preferences
that are closer to the central preference relation increases intra-personal heterogeneity.
In terms of inter-personal heterogeneity, we show that mixing a given population with
another population with larger heterogeneity increases overall heterogeneity due to the

added inter-personal variability.

2. RELATED LITERATURE

This paper belongs to a long tradition of research in a variety of disciplines such as
statistics, linguistics, sociology, quantum mechanics, information theory and econom-
ics, where diversity has been measured on the basis of the probability that two random
extractions produce different outcomes (see, for example, the measure of diversity of
Simpson (1949), the measure of linguistic diversity of Greenberg (1956), the measure
of population diversity of Lieberson (1969), the purity parameter in Leonhardt (1997),
the residual variance in Ely, Frankel and Kamenica (2015) or its logarithmic version
known as the Rényi or collision entropy, and the Herfindahl-Hirschman index of market
concentration). Our paper contributes by proposing an overall measure of heterogene-
ity that applies to settings where there are two layers, inter- and intra-personal, of
heterogeneity. In addition, we are concerned with choice behavior, which involves a
number of overlapping situations (i.e., choices from not just one, but different menus),
and we provide axiomatic foundations.

Economics uses a number of alternative approaches for measuring inter-personal
preference variability, as it relates to phenomena such as polarization and segregation.
Esteban and Ray (1994) measures polarization based on income and wealth distri-
butions, Frankel and Volij (2011) studies school segregation based on between-school
distributions, Baldiga and Green (2013) provides a choice-based analysis of consensus,
and Gentzkow, Shapiro and Taddy (2019) studies partisanship based on the predictabil-
ity of party speeches. We contribute to this literature by providing a measure of both
intra- and inter-personal behavioral heterogeneity within a unique choice framework.

There is a large body of applied literature using specific collections of random utility
models to describe the behavior of a population. A prominent example is mixed-logit,

also known as random-coefficients or random-parameters logit, in which a distribution
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of individual Luce behaviors is entertained (see Train, 2009).> We contribute to this

literature by offering a measure of heterogeneity based on first principles.

3. PRELIMINARIES

Consider a finite set of alternatives X. Denote by A the collection of all subsets of
X with at least two alternatives, which we call menus, and by P the collection of all
linear orders over X, which we call preferences. An individual 1 is formalized as a
random utility model; that is, ¥ is a probability distribution on P, such that, when
choosing from menu A € A, each preference P € P is realized with probability ¢ (P)
and maximized. As a result, individual choices are stochastic. Denoting by m(A, P)
the maximal alternative in menu A according to preference P, and by ljj the indicator
function which takes the value 1 when the statement in brackets is true and 0 otherwise,

the probability that individual v selects alternative a in menu A is equal to:®
pu(a, A) = W(P) Njgm(a,p-
P

We denote by W the set of all possible individuals and by ¥¥ the set of all individuals
that are deterministic, i.e., that assign mass 1 to a single preference. For the latter
class, we denote by p the deterministic individual associated to preference P. In
addition, we denote by vy, the (uniform) individual that assigns equal mass to all
preferences.

A population is a probability distribution over the space of individuals that assigns

strictly positive mass to only a finite number of them, i.e., an object with the form

0 = [917927"‘79m;w17¢27”‘7wm]7

with 6; describing the mass of individual ¢; in the population, and ) .6, = 1. We
denote by © the set of all possible populations and by ©F the set of all deterministic
populations, i.e., those with the form [01,0s,...,0;¢p, ¥p,,...,¥p, ], which assign
mass only to deterministic individuals. In words, a deterministic population repre-
sents the case of a population in which all individuals are deterministic but possibly
heterogeneous. Alternatively, denote by ©"°™ the set of all populations that are ho-

mogeneous, i.e., taking the form [1;¢]. That is, a homogeneous population represents

2Given the relevance of the Luce and mixed-logit models in applications, we use them to illustrate

some of our results.

3For ease of exposition, we avoid the specification of any unconstrained domains in the summands.
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the case of a population in which all individuals are identical to each other, although

their behavior possibly admits randomness.

Example 1. Consider the binary set X = {x,y}. P contains only two preferences, x Py
and yQz and, consequently, any individual ¢ can be identified by the value ¢ (P) € [0, 1]
(since ¥(Q) = 1 — ¢ (P) is uniquely determined). Let us consider three populations of

differing nature, represented graphically in Figure 1.

FiGURE 1. Populations in Example 1.

0, 0o 03
1/3/ Y/?) . 5/&7 Y/B
1 () (0 Yp Vg
3/8/ \5/8 3/4/ \1/4 5/8/ \3/8 1 .
P Q@ P Q P Q P Q
Population 0' =[5, 2; 2, 3] involves two individuals, given by the values ¢ (P) = 2

and 1y (P) = %, with masses % and % respectively. That is, population 6! is neither
deterministic nor homogeneous. Population 6% = [1; %] is a homogeneous population
where all individuals are non-deterministic, placing probability % on P. Finally, popu-
lation 62 = [%, g; Yp,1g| is a deterministic population involving the two deterministic

individuals, ¥ p and v¢g, with masses g and % respectively. U

4. BEHAVIORAL HETEROGENEITY

We measure heterogeneity as the probability that, over a sampled menu, the sam-
pled choices of two sampled individuals differ. To formalize this notion, consider a
distribution A over A, with A(A) > 0 describing the probability with which menu A is
sampled. Distribution A may reflect the relative frequency of menus in the dataset, or
some judgement by the analyst as to the relative importance of the menus.? Formally,

the choice heterogeneity of population 6 is:

CHA(0) = D A(A) Zei Zej > rula, A1 = py,(a, A)).

4We allow for the possibility that A assigns zero value to some menus to cover those cases in which

the analyst makes no observation on such menus or is not interested in them.
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Example 1 (continued). Since there are only two alternatives, it must be that
A({z,y}) = 1. Considering population 6, we have CH,(0') = :[3(22 + 23) + 2(21 +

sl H3EGER 1) H3GI+ iD= 5 -

Notice that CH, establishes a complete and transitive ranking of behavioral hetero-
geneity on the space of all populations.> We now discuss four results on the structure
of CH,, that may be attractive in certain settings. The first emphasizes the fact that
CH) can be computed even when there is only population aggregate data. The second
uses a matrix representation that shows the computational convenience of the measure.
The third relates CH) to a Euclidean distance, connecting the measure with standard
practices in econometric estimations. Finally, we show that CH, allows for a convenient
distinction between inter- and intra-personal components, that may be of use in the

presence of panel data.

4.1. Aggregate data. CH,(0) is formally defined using panel data, with information
on the choices py, of every individual in population . However, it is often the case that
choice data is only available in aggregate terms, i.e., in the weighted average form given
by >, 0ipy,. The question arises on whether computing the behavioral heterogeneity
using aggregate data gives the same overall choice heterogeneity than if one would had
panel data. Below we show that the answer to this question is positive. To formalize
this result, notice that ¥ is convex and thus, aggregate data can be seen as produced
by a homogeneous population where every individual behaves like, what we call, the

representative agent 1y = . 6;1);. We then have the following result.

Proposition 1. CH,(0) = CH,([1;vy)).

Example 1 (continued). The representative agent of population ' is ¢ (P) = 52+

— 3
23 — 2. Hence, the homogeneous population associated to 6" is [1; ] = 6°. Notice

that a direct computation of heterogeneity gives CHx(6?) = 33 + 22 = 22 = CH,(0").

8 32
O

4.2. A matrix representation of CH. We now show that we can use the represen-

tative agent of the population, together with an account of the heterogeneity of simple

STherefore, the analysis of choice-based heterogeneity could be equivalently described in terms of

a complete and transitive binary relation over the space of populations.
6All the proofs are contained in the Appendix.
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populations, in order to provide a convenient matrix representation of our measure of
heterogeneity.

We refer to a population composed exclusively of two equally-weighted deterministic
11
202
each possible couple in a |P| x |P|-matrix that we denote by C,. Note that this is a

individuals, [3, 5;%p, ¢g], as a couple. Now, compile twice the heterogeneity value of
symmetric matrix with zeros in the diagonal and the entry for a given couple equal to
the sum of the A\-weights of the menus where its two individuals differ in their choices.
It is important to stress that this matrix is independent of the specific distribution over
the individuals, and hence independent of the population, since it is characterized by
the choice disagreements between preferences, weighted by measure A. Therefore, given
P, the matrix does not need to be recalculated for the analysis of different populations,
or for behavioral variations within a population, which is a computationally convenient

property in practice.

Example 2.7 Let X = {x,y, z} and the distribution over menus ) placing equal weight
on the four possible menus. Listing the preferences by xyz, xzy, yxz,yzx, zzy, zyz, the
matrix reporting the heterogeneity of couples is
0 1/4 1/2 3/4 3/4 1
1/4 0 3/4 1 1/2 3/4
1/2 3/4 0 1/4 1 3/4
3/4 1 1/4 0 3/4 1/2
3/4 1/2 1 3/4 0 1/4
1 3/4 3/4 1/2 1/4 0

O

Proposition 2 shows that the choice heterogeneity of any population can be seen as

an inner product involving its representative agent and matrix Cy.%
Proposition 2. CH,(0) = ¥sCrt), .

Example 2 (continued). We consider here the case of mixed-logit populations

0 =1[01,0o,...,0m;u1,us,...,Upy|, where each individual corresponds to a Luce model.”

"We write preferences in the order induced over the alternatives, reading from left to right.

8This is due to the fact that Cy is a symmetric positive semi-definite matrix, admitting a Cholesky
factorization.

9A Luce model is usually described by means of a strictly positive real value function u, such that

the choice probability of z in menu A is = u(z) Without loss of generality, we can normalize u to

yeEA u(y)”
satisfy ) x u(x) =1 and hence, u(z) can be understood as the probability of choosing x in X and,

for every menu A, individual choice probabilities are simply conditional probabilities. Luce models
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Given preference P, described by 1 PxoP ... xNn_1 Pxy, the probability assigned by the
representative agent of the mixed-logit population is 1p(P) = >, 6 H =1 5 b zl L
Following Example 2, consider, e.g., 0§ =[5, ;3 ¢1, ¢s], with uy = (1/2,1/3, 1/6) and
us = (4/9,3/9,2/9). The representative agent is 1)y = 495(144 86, 115, 50, 58, 42) and

hence, CHy (6) = 14Cxt)y = .5. 0

4.3. A Euclidean representation of CH. We now show that the choice heterogeneity
of any population can be seen as a (A-weighted) Euclidean proximity between the
stochastic choice function of the representative agent and the stochastic choice function
providing maximal heterogeneity, that is the one given by uniformly random behavior.°
Formally, given any two individuals ¢ and ¢/, define the A\-Euclidean distance be-

tween their associated stochastic choice functions by

APy pyr) ZA ) lpwla, A) = py(a, A)P.

Consider the constant 3 = ) , /\(A)"fL;, where n4 is the number of alternatives in

menu A.

Proposition 3. CHA(0) = Bx — dx(pyy, pu,) = maxyew dr(py, py,) = da(Pyo: Pouy)
= dA(pd}Pv Pwu) - d/\<p1/197 pl/’u) Jor every P € P.

Proposition 3 first shows that the choice heterogeneity of a population is inversely
related to the distance between the stochastic choice function of its representative
agent and uniform choices. Moreover, the second equality in Proposition 3 shows that
the constant 3, is in fact the maximum possible distance between an individual and
uniform choices, and the third equality establishes that this corresponds to the distance

between any deterministic individual and uniform choices.

Example 1 (continued). Since in Example 1 there is only one binary menu, 3, = %
Now, using our convention to represent individuals in this simple setting by describing
the probability associated with preference P, vy, = % Recall that g = g and hence,
: 15 _ 1 5 1 3_1

it must be that CHy(0") = 2 =5 —[(2 —3)*+ (3 —3)*]. O
admit different RUM representations but, since all of them generate the same stochastic choices, this

is inconsequential for our analysis and we will simply write u; instead of v; whenever needed.
10A1l our analysis uses the square of Euclidean distances. To simplify the presentation, we just

write Euclidean all along.
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4.4. A decomposition of CH into intra- and inter-personal heterogeneity. We
now show that the Euclidean representation of CH, in the previous section enables us

to decompose choice heterogeneity into its intra- and inter-personal components.

Proposition 4. CHy(0) = 3_, 0:[Bx — dx(py,, oy )] + 2230 32505 da(pyss py;)-

Proposition 4 shows that choice heterogeneity can be decomposed as the aggregation
of two different terms. The first of these terms, >, 6;[8x — da(py,, Py, )], evaluates
how close each of the individuals in the population is in relation to uniform choices,
weighted by their prevalence in the population. This term, then, aggregates only
intra-personal variability across the individuals in the population. The second term,
>2i0i D250 da(py,, py;), evaluates the distance between every pair of individuals in
the population, again weighted by their prevalence in the population. Accordingly,
this second term measures only inter-personal variability between the members of the

population.

Example 1 (continued). Direct computation gives d,\(p% )

3 hpsp) = G =3P+ (G- =4 and da(ps,ps) = G-+ (3 -3 =5
leading to CHx(01) = 3(3 —35) + 3(5 — 5) T 5335 = 52 O

In Section 6 we return to this decomposition and study formally each of the two

components of CH,.

5. A CHARACTERIZATION OF CH

We now discuss three plausible properties for a measure of behavioral heterogeneity
and show they are necessary and sufficient for CHy. We introduce each property in
relation to a generic heterogeneity function H : © — R, which assigns a level of het-
erogeneity to any possible population, such that H(6) = 0 if and only if § € ©P ne"™,
Notice that any population in ©F N ©"™ takes the form [1;¢p], with all individuals
being described by the same, deterministic, behavior. It is apparent that these pop-
ulations are the only ones in which there is no behavioral variation whatsoever, and
hence our basic assumption.

The first axiom, Reduction, is the formalization of the ideas discussed in Section 4.1

regarding aggregate data.

Reduction. H(#) = H([1; v]).
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For our next axiom, consider a deterministic population # € ©. We study the
possibility of decomposing its heterogeneity as an aggregation of sub-populations. In
particular, consider hypothetical sub-populations each formed exclusively by two differ-
ent deterministic individuals, with weights in proportion to their masses in the original
gieTin, &QT"%; Yp,,1p,]. Now, in order to un-
derstand the heterogeneity of 6 based on that of the binary sub-populations, we should

population, i.e., sub-populations of the form |

correct back their heterogeneity by the inverse of the normalizing factors, (6; + 6,)2.

This leads us to the following property:

Decomposition. For every § € ©F, H(0) = Z (0; + 6;)* H([eii"@j ; (%GTj(,j; Vp,, Vp,]).

1<J

Example 3. Let X = {x,y,z} and the distribution over menus A. Consider the

population 6 = | ;, ;, é, Yayzs Yuzy, Yaya), and the subpopulations §' = [2, 55 Vayz, Yazyl,
0" =[5, % Vayz, Voyal), and 0”7 = (2, 254052y, 1h2ya], represented graphically in Figure 2.

FIGURE 2. Populations in Example 2

0 0/ 0// 0///

1/3 1/3 1/2 1/2 1/2 1/2 1/2 1/2
an AN AN
¢:cyz wxzy wzya: wxyz przy wxyz wzya: w:r;zy wzyx

1 1 1 1 1 1 1 1 1
TYZ T2y ZYyx TYz T2Y TYz ZYx T2Y ZYT

The heterogeneity of 6 is then equal to CHA(0) = A({z,y})s - 4+ AM({z, 2}); - 4 +

A{y, 2} 54+ ({z,y, 2})5-4 = 5. Decomposition states that we can also see this as (34
%) CH)\([Q; 2 wa:yzawmzy]) ( ) CH)\([Z, 2 wzyza wzy:v]) ( ) CHA([Q? 29 w:rzw wzyx]) =
Iy 2DE + 2+ ) + A, 2) + AM{m,y, 2D)E = 4 7

Finally, we discuss a monotonicity property involving only couples. Let us start by

N

n—1- Now, consider two equally-

defining collections of couples C' = {[2, 55 Vpn, Yon]
sized collections of couples C' and C’, that is N = N’, and suppose that whatever the
menu at hand, we unequivocally observe a larger number of choice-disagreements in
C than in C”. In such a case, it is natural to conclude that the average heterogeneity
of C' must be larger. Formally, for any C, denote by A4(C') the number of couples

in C for which the two preferences involved disagree over menu A, and by H(C) =
> H(5,3:%pn ¥gn])
N

the average heterogeneity of all couples in collection C'. Then:
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Monotonicity. Let C' and C” be two equally-sized collections of couples. If Ay(C) >
A4 (C") for every A € A, then H(C) > H(C").

Example 3 (continued). Let € = {[3, 1 sy, (1, 5 vy, oyl (2, 43 thanys oyl
be the collection of couples related to population 6. If we consider the vector of disagree-
ments A(-) = (A (), A () Agy 1 (4)s Agay,21 (), it is immediate that A(C) =
(2,2,2,2). Now, let us consider two other, equally-sized, collections of couples. Col-
lection C" is equal to {[5, 35 Vuye, Yaayls (55 33 Vayzs Vayal, (55 35 Vaayy Yayal ), while collec-
tion C" is equal to {[27 2 Yy wyzz] [27 2 s Voyz, wzyx] [27 2 s Vyaz, wzyw]} Since A(C") =
(2,2,2,2) and A(C") = (2,2,2,3), Monotonicity implies that the average heterogene-
ity of collections C' and C" must be equal, and lower than the average heterogeneity
of collection C”. Indeed, our computation above showed that the average hetero-
geneity of C' is 1. Direct computation shows that this is equal to that of C’ and

3
ENCERTES))

below that of C” which is ——%—. Notice that, using Decomposition, this ef-

feCtively implies that CHA([%’ %’ %; ¢xyz’ ¢$Zy7 wzyr]) = CH)\([%? %7 %; wryza wzxya wzyr]) S
CH)\([%?%?%;wxyz>wyxz>wzyx]>~ ]

We can now establish the following characterization result.

Theorem 1. H satisfies Reduction, Decomposition and Monotonicity if and only if
there exists a probability distribution A on A and k > 0 such that H =k - CH,.

Reduction renders the heterogeneity of a population 6 equal to that of the homoge-
nous population formed by its representative agent [1,1)y|. Thus, we consider the
deterministic population §¢ that assigns the same probability to every preference as
the representative agent of .1 Hence, since 6 and #¢ have the same representative
agent, Reduction implies that they must have the same heterogeneity. Next, by De-
composition, the heterogeneity of 8 can be directly broken down into the aggregation
of the heterogeneities across sub-populations with the form [1 — v, v;¢p, ¥g], as long
as the ratio between (1 — ) and 7 is equal to the ratio between the masses of pref-
erences P and Q in 6. Moreover, we show in the proof that the heterogeneity of
population [1 — 7, v;9p, 1] can indeed be re-expressed as a product of two terms:
(i) a function depending on ~, and (ii) the heterogeneity of the couple involving the

same preferences, [%, %; ¥p,1g|. The function is actually the logistic map which yields

HNote that in Example 1, this deterministic population corresponds to population 63.
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H([1—~,v;vp, g]) = 47(1 —W)H([%, %; Yp,1g]). Thus, we can express the heterogene-
ity of any population as a weighted additive sum of the heterogeneity of all possible
couples, with weights derived from the masses of each preference in the population.'?

The remaining step in the proof is to obtain the contribution to heterogeneity of each
menu A and find the means to link it to the above representation. The difficulty stems
from the fact that, generally speaking, it is impossible to find a couple that differs over
a single menu A only. Hence, the proof requires the identification of two collections
of couples for which the A-vectors differ only over menu A, and the application of
Monotonicity to these collections. Thus, the difference in heterogeneity between these
two collections must correspond to menu A. The proof shows that these added values
can be normalized into a probability distribution A over A and hence, the heterogeneity

of any given population can be expressed as (a scalar transformation of) CH,.

6. COMPARATIVE STATICS: INTRA- AND INTER-PERSONAL HETEROGENEITY

We now build on the decomposition obtained in Section 4.4 to establish further

results with respect to intra- and inter-personal heterogeneity.

6.1. Intra-personal heterogeneity. Given an individual v, it is natural to assess its
intra-personal heterogeneity.'® Proposition 4 shows that we can do so by way of the
A-Euclidean distance between individual behavior and uniform choices, dy(py, py,)-

We now investigate further the structure of intra-personal heterogeneity. For this,
we use a particular class of individual behaviors, namely, those for which there is
a central preference and, in every menu, better alternatives are chosen with larger
probability. Formally, for a given P € P, we say that ¢ is P-central if xPy and
{z,y} € A implies py(x, A) > py(y, A). The notion of P-centrality is related to the
well-known notion of weak stochastic transitivity. Any P-central individual satisfies
weak stochastic transitivity when binary menus are at stake, but it also requires this
choice consistency in the remaining menus. A prominent example of such individuals
is the Luce model, as well as many of its generalizations.

Given two P-central individuals, ¢; and v, we say that the latter is a decen-

tralization of the former if there exist ¢ > 0 and preferences Q1,2 such that: (i)

12This provides the type of decomposition described in Proposition 4.
13We are agnostic as for the interpretation of intra-personal variability. For discussions on the

possible connection between rationality and intra-personal heterogeneity see Apesteguia and Ballester
(2015, 2021) and Ok and Tserenjigmid (2023).
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Wy = 1 — g, + g, and (ii) Q2 is farther away from P than @) is, i.e., 2Py and
xQoy imply x(Q)1y. That is, the second individual is obtained from the first by shifting
mass from preference ()1 to preference ()5, which happens to be farther away from
the central preference P. Proposition 5 shows that, in accordance with intuition, this
type of shift increases intra-personal heterogeneity. Indeed, the result is also true when
sequential changes are considered. Formally, we say that 1y is a sequential decen-

tralization of 1, whenever there is a sequence of decentralizations connecting 1, and

1
Proposition 5. If 1 is a sequential decentralization of 11, dx(pyy s Puy) = Ar(Pwas Py, )-

Proposition 5 establishes some intuitive comparative statics on intra-personal het-
erogeneity for P-central individuals. We now look further into the special case of the
Luce model, in which we can conveniently study intra-personal heterogeneity using the

monotone likelihood ratio principle.!®

Proposition 6. Suppose that ui(x1) > -+ > ui(z,) and ug(zy) > -+ > ug(xy,). If

uz(z;) w1 (z;)

uz(2s) > w1 (@1) Jor every i < j, dA(PwulaP¢u> > d)\(pd)uypl/)u)'

Proposition 6 considers two Luce individuals with the same central preference. By
the monotone likelihood ratio, us places more mass on worse alternatives, and hence
Proposition 6 establishes that it must have a larger amount of intra-personal hetero-

geneity.

Example 2 (continued). Since the monotone likelihood ratio holds for w; and wus,
Proposition 6 implies that dx(py,  ; pu,) > APy, > Py, )- Since iy, = 55(20,10,15,5,6,4)
and 1, = 51=(84,56, 70,35, 40, 30), it follows immediately that dx(Py, » Pa,) = -1 and
dX(Ppys Pyy,) = -07. Consider now the representative agent 1. Since this is not a
Luce individual, Proposition 6 cannot be applied. However, 1y happens to be a P-
central individual, and it can be seen that 1),, is a decentralization of 1y, which in
turn is a decentralization of t,,. Hence, Proposition 5 implies that dx(py,, py,) €
[Ax(Pguy > Pune)s Ar(Py, s P, )] Notice that dx(py,, py,) = 08, consistent with the claim.

O

14The result could be formulated alternatively in terms of first-order stochastic dominance over the

space of preferences, partially ordered by their distance to the central preference P.
15The required notation is given in Example 2.
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6.2. Inter-personal heterogeneity. Proposition 4 provides a decomposition of total
heterogeneity into intra-personal and inter-personal components. The inter-personal
part, >, 0; >, 0; dx(py,; py,), is a weighted aggregate of the A\-Euclidean distances
among individual behaviors in the population. We now show that this value proves
useful when studying changes in heterogeneity by mixing two populations. This is the
case because the reasoning in Proposition 4 can be extended to combinations of any

two populations # and ¢'.16

Corollary 1. For every o € [0,1],
CH)\(OéQ -+ (1 — 04)6/) = CYCH)\(Q) -+ (1 — OZ)CH,\(QI) + Oé(l — Oé)d)\(pd,e,pwg,).

Corollary 1 shows that the behavioral heterogeneity of a mixture of sub-populations
is the result of: (i) the weighted average of the original choice-based heterogeneities and
(ii) the inter-personal heterogeneity arising from the, possibly different, representative
agents of the sup-populations. The result describes the practical nature of the choice
heterogeneity measure when considering existing information on sub-populations. The
aggregate heterogeneity can be computed merely from the heterogeneity of the sub-
populations and the added inter-population heterogeneity, via the representative agents
of these populations. It is thus apparent how heterogeneity responds to some specific
aggregations. For example, consider the case in which the two sub-populations have
the same heterogeneity. If the sub-populations are not identical, one would expect the
level of heterogeneity to increase when the two are combined. Corollary 1 confirms this
by showing that the additional heterogeneity can be obtained simply by inspecting the
distance between the representative agents.

Another particular case of interest is that of the tremble model, where a population
0 is mixed with a uniform distribution over preferences. Here, since the heterogeneity
of uniform choices is higher than that of any other population, the mixing with the
uniform distribution produces an increase (through both channels (i) and (ii)) of hetero-
geneity; the mixture is unequivocally more heterogeneous than the original population

0. In particular,

Proposition 7. For every a € [0,1], CHy(af + (1 — a)[1;9¢y]) = Br — &?dx (¥, ) -

16We write o +(1—a)#’ to represent the population induced by the combination of sub-populations
6 and 6’ with weights a and 1 — a.
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Example 1 (continued). Let ' be the population obtained by mixing « of the

original population 6! and 1 — a of uniform behavior, i.e., ¢ = af' + (1 — a)[1; ] =

(5 %a, 1 —a g, %, %] Corollary 1 allows the computation of the heterogeneity of the
tremble mixture as a% +(1-a);+a(l- a)gi2 which, as claimed by Proposition 7, is
% — a23—12, a value that increases with the trembling weight 1 — a. ([l

7. DISCUSSION

Based on the prevalence of RUMs in the modeling of heterogeneity, we have offered
a choice-based measure of heterogeneity for populations composed of individuals be-
having 4 la RUM. Notice that our measure of heterogeneity is directly applicable in
settings where behavioral structures other than RUMs are in place. In particular, if
the individuals in a population can be described by any sort of stochastic choice func-
tion, the measure CH, is well-defined, and the decomposition into intra-personal and
inter-personal heterogeneity described in Proposition 4 holds. Moreover, our character-
ization result goes through as long as the setting satisfies the following two properties:
(i) the domain of individual behaviors must be convex, allowing for the existence of
a representative behavior in any population, and (ii) it should be possible to link any
menu to a pair of deterministic behaviors, or, possibly, to a collection of pairs of deter-
ministic behaviors, as explained in the discussion after Theorem 1. A simple, general
example that meets these two properties is the space of all stochastic choice functions,
where no rationality requirement whatsoever is imposed on individuals. This domain is
convex and, for any given menu, it is possible to construct a pair of deterministic choice
functions that differ only over the given menu. Hence, our characterization result can
be adapted to this setting.

Our modeling of individual behavior implicitly assumes that individual choices are
independent. One may be interested in introducing the possibility of correlated choices.
This can be incorporated into our framework by considering state-dependent prefer-
ences. That is, there is a common set of states across individuals and a common
probability distribution over them, and each individual is described by a mapping
from states to preferences. In this setting, choice heterogeneity could be measured by
the probability that the choices of two sampled individuals differ over a sampled state

within a sampled menu.
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We close by commenting on the empirical implementation of our measure of choice
heterogeneity. The natural dataset would involve multiple choices by different individ-
uals, or different types of individuals, such as those given by age groups, gender, etc.
Practitioners would then proceed by estimating the individual RUMs, or, based on the
above discussion, by using a preferred stochastic behavioral model. There is a series of
papers proposing statistical tests and estimation techniques for a variety of stochastic
models that could be used to determine the appropriate class of individual stochastic
models and their specification (see, e.g., Agranov and Ortoleva (2017), Halevy, Persitz,
and Zrill (2018), Kitamura and Stoye (2018), Natenzon (2019), Cattaneo, Ma, Masatli-
oglu, and Suleymanov (2020), Fudenberg, Newey, Strack, and Strzalecki (2020), Aguiar
and Kashaev (2021), Alds-Ferrer, Fehr, and Netzer (2021), Apesteguia and Ballester
(2021), Barseghyan, Molinari, and Thirkettle (2021), Caplin and Martin (2021), Dard-
anoni, Manzini, Mariotti, Petri, and Tyson (2022), Dean, Ravindran, and Stoye (2022),
de Clippel and Rozen (2022), and Jagelka (2023)). Once the individual stochastic mod-
els are specified, the application of our measure is direct, as discussed in the main text

(see, in particular, Section 6).

APPENDIX A. PROOFS

Proof of Proposition 1: The choice-based heterogeneity of population € can be

rewritten as:

CHA(0) = ZA:)\(A) D03 03 pua A1 = py(a, 4))
_ XA: A(A) Z 0; EJ: 0, zp: Vi P Z i(Q)  Npm(a,P)#m(AQ)]
- EA:A(A)ZXP:@% ZZ@% m(A,P)#m(A,Q)
- EA: AA) ZP:ZZJQ Z% m(AP)£m(4,Q)
- ZA: MA) Y puy(a, A) (1 = py,(a, A)) = CHA([L; ).

a

Proof of Proposition 2: The proof follows from the proof of Theorem 1. [



17

Proof of Proposition 3: We start by proving a series of useful claims. The first
is that, conditional on having sampled the ordered pair of individuals (i,%’), the
probability that a random choice from v disagrees with a random choice from ', over

a random menu, can be written as:

%[cml; ¢]) + CHA(L W']) + da(py, pw)]-

We call this probability the conditional heterogeneity of (i, ).

To prove the claim, suppose that we have sampled the ordered pair of individuals
(¢,7¢"). Conditional heterogeneity is Y , A(A) >, py(a, A)(1 — py(a, A)), or equiva-
lently

Z)\ ) lpwla, A) (1 = py(a, A)) + py(a, A)(py(a, A) — py(a, A))].

a

By similar reasoning, conditional heterogeneity is also equal to

ZA )Y lpwr(a, A)(1 = pyrla, A)) + py(a, A)(py(a, A) = py(a, A))].

a

Thus, conditional heterogeneity must be equal to the average of the last two expres-

sions, which is simply

—ZA ) ol AN ol )+ poa, AL = pia, 4)

+(py(a, A) — py(a, A)*)] = %[CHA(U% Y]) 4+ CHA([1;9']) + dx(py, pyr)]-

Second, we claim that for every population 8 € ©, CH,(0) = > . 6;CH\([1;¢]) +
202205 da(py,, py,;). To see this, notice that CHy(¢) is simply the aggregation
of conditional heterogeneities across all possible ordered pairs of individuals weighted
by their corresponding sampling probabilities. Hence, we proceed by aggregating the
expression given above. Since every individual 1); appears as the first individual in
the sampling with probability #; and again, as the second individual in the sampling
with probability 6;, the aggregation of conditional heterogeneities creates the value
> 0:CHA([1;4]). Given v; and ¢;, with ¢ < j, these two individuals appear in the
sampling with probability 26,0, and given the symmetry of dy, the aggregation of all
expressions creates the value >, 0; > ;. 0; dx(py;, py;), thus proving the claim.

Third, we claim that for any individual v, CHy([1;%]) = Bx — da(py, py,) holds.
To see this, consider the couple 6§ = [%, %; ¥, 1y]. From the previous claim, CH,(6) =
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TCHA([1;9]) 4+ 3CHA([1; Yu]) + 3dx(py, puy,)- Now, notice that, since one of the in-
dividuals involved is uniform, direct computation of the heterogeneity of 6 yields

CHA(0) = 2CH,([1;¢]) + 38\. By putting these two expressions together, we obtain:

CHA([1;901) = 36x = 2CHA([L; Yul) — dx(py; pyy,)

=30\ — 28x — da(py, py) = Br — dx(py: puny)-

Now, to prove the statement, note that Proposition 1 guarantees that CH,(f) =
CHA([1;¢9]), and by the third claim CHx(0) = Bx — da(pyy, pu,,) holds. Finally, notice
that maxyey dx(py, py,) Will be achieved by any individual belonging to O, leading to
2aMAI =52+ (na—1)(55 —0)°] = 24 MA )[% + ] = MA) A =

By, which concludes the proof. [ |

Proof of Proposition 4: The proof follows directly from the second and third claims

in the proof of Proposition 3. [

Proof of Theorem 1: The necessity of Reduction is shown in Proposition 1. For
Decomposition, let 6 = [01,0s,...,0,;0p,,¥p,,...,¥p,] be a deterministic population.
The probability that a deterministic individual makes two different choices is zero, and

hence the heterogeneity of 6 can be written as

CHA(0) = Z /\(A>Z 0i Z 0 Z P, (a, A)(1 - Pp,; (a,A))
A i i a
=D MA 266 Y pup (a, A)(1 = py, (a, A)) Z MA) D 208 m(a.p) fmia, )
A

i<j a 1<J
20,0,
= _(6:+6)) ZA 0 5 0,7 MR AmAE)
1<J
= (6 +6;)” CH(] b)),
o 0, +0; 0, +0;” "

For Monotonlclty, note that the average heterogenelty of C'= {[2, 5; Vpn, Yon] PN is:

Z Z A(A m(APAm(AQM] = S0 Z A(A Z I A, Pr)£m(A,Qm)]

= ﬁ ZA: AA)AL(O).

Given that A is a positive-valued function, the necessity of Monotonicity follows.



19

Finally, it is also immediate that CHy(#) = 0 if and only if § € ©PNO"™  as required

by our basic assumption over the heterogeneity map.

We now prove the sufficiency part. Let us consider any menu A € A and proceed by
fixing one pair of different alternatives {a,b} C A. Then, for every menu B with the
property {a,b} C B C A, let us fix a preference Pg satisfying (X \ B) Pga Pgb Pp (B\
{a,b}). By considering the couple formed by preference P4 and the preference Q4 that
is obtained by swapping the position of alternatives a and b in the preference, we are

able to define the value

> (FD)MEBIH([S, 5idpas doal). (1)
B:{a,b}CBCA
Claim 1. Expression (1) is independent of the selected pair of alternatives and

collection of preferences. Accordingly, we denote the value defined by expression (1)
as 7(A).

To prove Claim 1, let us fix a menu A and consider any two pairs of alterna-
tives {a,b} and {a/,0'} in this menu and any two associated collections of prefer-
ences {Pf, Q5}p{apycnca and {Pp, Q% }prfwycpca. Let us then distinguish the
following collections of couples (i) C¢* is formed by all couples [%, %; @/JP]?, @/JQg] where
{a,b} € B C A is such that (—=1)4=1Bl = 1 (ii) C4 is formed by all couples
2,3 Ypa, Yoal where {a,b} € B C Ais such that (—=D)A=IBl = 1 (iii) C}* is the col-
lection of all couples [%, %; QZJP]/;},Z/}Q?I] where {a’,b'} C B’ C A satisfies (—1)4I-151 =1
and, finally (iv) C5* is formed by all couples [1, 1; wpg},wq;, | where {d’,b'} C B'C A
is such that (—1)MI-I15l = —1. It is immediate to see that, for every S # A,
Ag(CH) = Ag(C3Y) and Ag(Ci) = Ag(CHY), while A4(CH) = AA(C1) =1 >0 =
A4(C3) = A4(CHY). Hence, the A-values of the collections of couples Cf* U C5! and
C3'UCH must coincide and, since they are equally-sized, Monotonicity guarantees that
ZOGCIA H(0) + ZeeCéA H(#) is equal to 296054 H(O) + Zequ H(#). By rearranging,

we obtain

S DA Sy digs]) = S0 HE) — 3 HE) =

B:{a,b}CBCA 960{4 960{1
el 9eCiA B':{a’ b)'}CB'CA

Claim 2. For every pair of preferences P, () € P, it must be that
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([Qangpan :ZT I[mAP;ém(AQ)]
A

If P is equal to ), we know by assumption that H([27 5P, ¥g]) = 0, as desired.
Then, let us assume that {A : m(A, P) # m(A, Q)} is non-empty, and denote by n > 0
the number of menus with two alternatives over which P and @ differ. For every menu
A such that m(A, P) # m(A, Q), denote by C#* and C3' the corresponding collections
of couples defined in the proof of Claim 1.

Consider the two collections of symmetric binary populations: (i) |J Am(A,P)£m(AQ) ci
and (i) U amia pyzm(ao) C3'U{[3, 3:¥p, Yo} Notice that, for every binary menu such
that m(A, P) # m(A, @), (i) contains one couple while (ii) contains none. In addition,
(ii) has the extra population defined by [%, %;@Dp,@/)Q]. Hence, if n = 0, select any
preference R and add the population [1;1¢g] = [%, %; Yr,¥gr] to (i). f n > 1, addn—1
copies of the population [1;¢x] = [3, 3;¥r, ¥r] to (ii). In any case, we have defined
two equally-sized collections of couples which we call, respectively, C' and C".

From the analysis in Claim 1, we know that Ag(C{') = Ag(C3) for every S # A
and A4 (Cf) =1 > 0= A4(C3"). Since populations [3, 3; ¢, ¥g] are irrelevant in this
respect, and population [, %; Yp, g is such that AA({[Q, 5: 0P, Ygl}) = 1if and only
if m(A, P) # m(A, Q), it is indeed the case that C' and C” have the same vector A over
all menus. Given that H([3, 3;¥r, ¥r]) = 0, we can apply Monotonicity to obtain

> X HO = X D HO) FH([ e va))
Am(A,Pr)#m(A,Ps) 0eC A:m(A,Pr)#m(A,P) 9eCs
It then follows that

H([3, 3:¢p,Yql) = Y. (D_HO) - > HE)= >, T4

Am(A,P)#m(A,Q) oeCi gcCcy A:m(A,P)#£m(A,Q)

Claim 3. The map A given by \(A) = % is a probability distribution over A.

Given our choice of normalization method, we simply need to show that 7 is pos-
itive and non-null. To prove positivity, consider any menu A and the corresponding
collections C#* and C3!, as defined in the proof of Claim 1. We know that 7(A) =
Z H(0) — Z H(#). Hence, if |A| = 2, collection Cf' is formed by a unique popu-
pecit veCs
lation, while collection C3' is empty and the positivity of H guarantees the positivity

of 7(A). If |A| > 2, collections C{* and Cj' are equally-sized, Ag(C{') = Ag(C3') holds
for every S # A, and AA(C{Y) =1 > 0 = A4(C3)), and again positivity holds. To

prove that 7 is non-null, assume, by contradiction, that this is not the case. Then,
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Claim 2 implies that every couple has zero heterogeneity. Since there are couples not
belonging to ©"™_ this is a contradiction. Hence, 7 must be non-null and A must be

a probability distribution over menus.

Claim 4. For every pair of preferences P, € P and constant v € [0,1], it is the
case that H([l =77 wPa wQ]) = 47(1 - ) ([27 2 wp, wQ])

To see this, fix two preferences P, € P. Then consider any two values a, 8 € [0, 1]
and the mixing of populations [1 —a, a; ¥p, ¥g] and [1— B, 5; 9 p, 1g] with weights a‘%ﬁ
and 2. That is, let ¢ = [-2 +ﬁ(1 ), 7351 - B), %a, 22585 e, ¥p, g, o). Since
this populatlon is deterministic, the application of Decomposition, together with the
fact that homogeneous and deterministic populations have zero heterogeneity, leads to

15} «

H(@') =2 2H([1 — a, o ¢p, + 2H([1 — B, B: ¥p, .
() = 20(L5) H[1 = a5, vig)) + (5 HU[L = 8, B vi))
Since we have - (1 — a) + —2-(1 — ) = 22298 Reduction guarantees that the

atp atp at+p

heterogeneity of population [an +;°‘f3 , zi%,wp,z/@] must be equivalent to that of ¢,

leading to
a+ 0 —2af 2ap
a+p +B

PH([L =, asvp, o)) + (——— ) H([L = B, 8:¢¥p. o)l
) =

4y(1 = NH((3, 53¢, Y-
Claim 5. For every § € © H 240 0;H([5. 3;¥p, ¥p))).

2 27

H(]

SQ/JPﬂ/JQ]) =

s
2[(
a+
Direct manipulation shows that H([1 — v, ~; ¥p, ¢Q]

1<J
Consider § € ©F. The result follows from combining Decomposition and Claim 4.

H(O) = 3 (04 0, W[y g )

1<j

0; 0; 11 11
_ § : ) N2 2 J -, — E n. - .
— o (0z+0]> 491+03 9i+9jH([272a¢Piaij]) — 4€19]H([2a2a¢Pi7ij])‘

Claim 6. H = k- CH,, for some k > 0.

Consider any population 6. Construct the unique deterministic population §¢ € @
with the property that, for every P € P, 0%(1p) = bg(P) (Where recall that 1y is the
representative agent of ). From Claim 5, H(6¢) 24 0L07H([5, 3; ¢p,, ¥p,]). Using

1<J
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Claim 2, we have H(9) = 24 0404 Z 7(A). We can rewrite this expres-
1<j A: m(A P;)#m(A,Pj)
sion as H(07) = k35, A(A) 32,07 3" 0N im(a,py#m(a.py), which, given the fact that 6

is deterministic, coincides with CH ,\(Qd). Now, simply notice that the representative
agent of #? coincides with that of §, and Reduction (and the fact that CHy satisfies
this property) guarantees that H(6) = H(6¢) = CH,(#?) = CH,(6). This concludes the
proof. |

Proof of Proposition 5: Suppose that 1y is a sequential decentralization of .
By definition, there exists a sequence {W} _, of individuals such that ¢! = 1; and
Y’ = 1y, and v’ is a decentralization of 1=t for j = 2,...,J, with the central
preference denoted as P. At each stage j, mass €; > 0 shifts from preference Q{ to
another preference @7, i.e., /Tt = o7 — & bai + ¢ thgy- Since every decentralization
can indeed be obtained as a sequence of decentralizations in which the two preferences
differ in their ranking of two alternatives, we assume w.l.o.g. that Q{ and Q% differ in
their ranking of only two alternatives, with 7 Py/, 27Q7y/ and 37 Q}a’.

First, consider any menu A that does not contain either 27 or %’ or such that
m(A, Q) # xj. Preferences @] and @} have the same maximizer over such a menu
and hence, it is evident that pyi+1(-, A) = pyi(-, A), i.e., the transfer of mass is ir-
relevant for the intra-personal heterogeneity over such menus. Second, consider any
menu satisfying {27,147} C A and 2/ = m(A4,Q}). Within such menus, the transfer
of mass increases the choice probability of alternative ¢’ while reducing that of alter-
native 27, with no other changes for the remaining alternatives. Thus, we know that
ppi (27, A) > pyini(a?, A) > pyini(y?, A) > pyi(y?, A) holds. Given that the hetero-
geneity of population [1; 4] within menu A is equal to 1= _, pij (z, A), the transfer
must increase the heterogeneity of menu A. Additivity across menus guarantees that
CHA([1;471]) > CHA([1;47]). The recursive application of this argument over the se-

quence of individuals together with Proposition 3 concludes the proof. [

Proof of Proposition 6: Consider any menu A € A and denote its alternatives as

{yr}X_, with the property that wy(y;) > -+ > ui(yx) and ua(y1) > -+ > ua(yx).
First, notice that the assumption guarantees that ZEEZ;) > 21253) for every s > t and,
w2 (ys) uq (ys)
s, A K o K u s, A . .
hence, foizt’ A; — Zkzzl(yf;yk) > ijll(yi)(y’” = Zzul E‘Zt A;. That is, the choice proba-
2 S ualyg) K uilyy) !

bilities in menu A are also related by the monotone likelihood ratio property. As
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a result, we know that there exists T < K such that py, (yi, A) > py,, (1, A) if
and only if ¢ < T. Since Zszl P, (Yrs A) = Zszl Py (Yks A) = 1, the uniform
distribution over {py,, (yr, A)}7—, second-order stochastically dominates the uniform

distribution over {py, (yk, A)}i;. The strict convexity of the quadratic function guar-

K, ,A 2 K, ,A 2 .
antees that Zk‘l(%}‘{l LRV, Zk‘l(pw}?(yk ) , or equivalently S/ (py.., (Y, A))? >

Zle(pwu2 (yr, A))?. Conditional on menu A € A, we can write intra-personal hetero-
geneity as 1 minus the previous sums of squares and, hence, the heterogeneity within
menu A is larger for the Luce defined by v. Additivity of intra-personal heterogeneity

across menus concludes the proof. [ |

Proof of Proposition 7: From Corollary 1, CHy(af + (1 — a)[1;¢y]) = aCH,(0) +
(1 — a)CHA([1;Yy]) + a(1 — a)dx(ve, try). From Proposition 3, this is equivalent to
CHx(af + (1 — a)[1;¢u]) = a(Br — da(ve, Yu)) + (1 — a)Bx + (1l — a)da(ve, Yu) =
B — &?dx(Ye, ). L

REFERENCES

[1] Agranov, M. and P. Ortoleva (2017). “Stochastic choice and preferences for randomization.”
Journal of Political Economy, 125(1), 40-68.

[2] Aguiar, V. H. and N. Kashaev (2021). “Stochastic revealed preferences with measurement error.”
Review of Economic Studies, 88(4), 2042-2093.

[3] Alés-Ferrer, C., E. Fehr, and N. Netzer (2021). “Time will tell: Recovering preferences when
choices are noisy.” Journal of Political Economy, 129(6), 1828-1877.

[4] Apesteguia, J. and M. A. Ballester (2015). “A measure of rationality and welfare.” Journal of
Political Economy, 123(6), 1278-1310.

[5] Apesteguia, J. and M. A. Ballester (2021). “Separating Predicted Randomness from Residual
Behavior.” Journal of the European Economic Association, 19(2), 1041-1076.

[6] Baldiga, K. A. and J. R. Green. (2013) “Assent-maximizing social choice.” Social Choice and
Welfare, 40(2), 439-460.

[7] Barseghyan, L., F. Molinari, and M. Thirkettle (2021). “Discrete choice under risk with limited
consideration.” American Economic Review, 111(6), 1972-2006.

[8] Caplin, A. and D. Martin (2021). “Comparison of decisions under unknown experiments.” Journal
of Political Economy, 129(11), 3185-3205.

[9] Dardanoni, V., P. Manzini, M. Mariotti, H. Petri, and C.J. Tyson (2022). “Mixture Choice Data:
Revealing Preferences and Cognition.” Journal of Political Economy, forthcoming.

[10] Dean, M., D. Ravindran, and J. Stoye (2022). “A Better Test of Choice Overload.” Mimeo.



de Clippel, G. and K. Rozen (2022). “Which Performs Best? Comparing Discrete Choice Models.”
Mimeo.

Ely, J., A. Frankel and E. Kamenica (2015). “Suspense and surprise.” Journal of Political Econ-
omy, 123(1), 215-260.

Esteban, J. M. and D. Ray (1994). “On the measurement of polarization.” Econometrica, 62(4),
819-851.

Frankel, D. M. and O. Volij (2011). “Measuring school segregation.” Journal of Economic Theory,
146(1), 1-38.

Fudenberg, D., Newey, W., Strack, P., and T. Strzalecki (2020). “Testing the drift-diffusion
model.” Proceedings of the National Academy of Sciences, 117(52), 33141-33148.

Gentzkow, M., J. M. Shapiro and M. Taddy (2019). “Measuring group differences in high-
dimensional choices: method and application to congressional speech.” FEconometrica, 87(4),
1307-1340.

Greenberg, J.H. (1956). “The measurement of linguistic diversity.” Language, 32(1), 109-115.
Halevy, Y., D. Persitz, and L. Zrill (2018). “Parametric recoverability of preferences.” Journal of
Political Economy, 126(4), 1558-1593.

Jagelka, T. (2023). “Are economists’ preferences psychologists’ personality traits? A structural
approach.” Journal of Political Economy, forthcoming.

Kitamura, Y., and J. Stoye (2018). “Nonparametric analysis of random utility models.” FEcono-
metrica, 86(6), 1883-1909.

Leonhardt, U. (1997). Measuring the quantum state of light. Cambridge University Press.
Lieberson, S. (1969). “Measuring population diversity.” American Sociological Review, 34(6),
850-862.

Natenzon, P. (2019). “Random choice and learning.” Journal of Political Economy, 127(1), 419-
457.

Ok, E. A., and G. Tserenjigmid (2023). “Measuring Stochastic Rationality.” Mimeo.

Simpson, E.H. (1949). “Measurement of diversity.” Nature, 163(4148), 688-688.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge University Press.



