Green Investing, Information Asymmetry, and Capital Structure

Shasha Li¹ and Biao Yang²

1: IWH and Magdeburg University 2: Shanghai Jiao Tong University

EEA-ESEM Barcelona 2023 August 2023

Climate change awareness is increasing

- Sustainable investing has attracted attention over the last decades
- More and more investors are becoming "green"

Figure: Google search volume and sustainable investment in the U.S.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Question 1: What is the outcome of a growing interest in green investment on firms' information asymmetry?

э.

Question 1: What is the outcome of a growing interest in green investment on firms' information asymmetry?

• Why information asymmetry?

э.

Question 1: What is the outcome of a growing interest in green investment on firms' information asymmetry?

- Why information asymmetry?
 - Taste for green investing will shift investors' learning behavior different implications for green and brown firms

ъ.

A D > A B > A B > A B >

Question 1: What is the outcome of a growing interest in green investment on firms' information asymmetry?

- Why information asymmetry?
 - Taste for green investing will shift investors' learning behavior different implications for green and brown firms
 - "Lemons problem" matters for the financial market

ъ.

Question 1: What is the outcome of a growing interest in green investment on firms' information asymmetry?

- Why information asymmetry?
 - Taste for green investing will shift investors' learning behavior different implications for green and brown firms
 - "Lemons problem" matters for the financial market

Question 2: How does a growing interest in green investing affect firms' capital structure decisions

-

イロト 不得下 イヨト イヨト

Question 1: What is the outcome of a growing interest in green investment on firms' information asymmetry?

- Why information asymmetry?
 - Taste for green investing will shift investors' learning behavior different implications for green and brown firms
 - "Lemons problem" matters for the financial market

Question 2: How does a growing interest in green investing affect firms' capital structure decisions

• The Pecking Order Theory implies that information asymmetry determines capital structure decisions (Bharath et al., 2009; Myers and Majluf, 1984)

-

イロト 不得下 イヨト イヨト

Question 1: What is the outcome of a growing interest in green investment on firms' information asymmetry?

- Why information asymmetry?
 - Taste for green investing will shift investors' learning behavior different implications for green and brown firms
 - "Lemons problem" matters for the financial market

Question 2: How does a growing interest in green investing affect firms' capital structure decisions

- The Pecking Order Theory implies that information asymmetry determines capital structure decisions (Bharath et al., 2009; Myers and Majluf, 1984)
- Green investing can influence firms' capital structure through changing their information environment

-

• A static three-period model based on Kacperczyk et al. (2016)

ж.

イロト イロト イヨト イヨト

- A static three-period model based on Kacperczyk et al. (2016)
 - learning (with limited attention) and portfolio optimizations

э.

- A static three-period model based on Kacperczyk et al. (2016)
 - learning (with limited attention) and portfolio optimizations
 - both green and traditional investors (Pastor et al., 2021)

э

イロト イポト イヨト イヨト

- A static three-period model based on Kacperczyk et al. (2016)
 - learning (with limited attention) and portfolio optimizations
 - both green and traditional investors (Pastor et al., 2021)
 - assets with different (exogenous) greenness

-

- A static three-period model based on Kacperczyk et al. (2016)
 - learning (with limited attention) and portfolio optimizations
 - both green and traditional investors (Pastor et al., 2021)
 - assets with different (exogenous) greenness
- The model yields a closed-form solution and testable predictions:

-

- A static three-period model based on Kacperczyk et al. (2016)
 - learning (with limited attention) and portfolio optimizations
 - both green and traditional investors (Pastor et al., 2021)
 - assets with different (exogenous) greenness
- The model yields a closed-form solution and testable predictions:
 - $\textbf{0} \text{ higher share of green investment} \Rightarrow \text{more learning on green firms} \Rightarrow \text{lower information asymmetry}$

-

- A static three-period model based on Kacperczyk et al. (2016)
 - learning (with limited attention) and portfolio optimizations
 - both green and traditional investors (Pastor et al., 2021)
 - assets with different (exogenous) greenness
- The model yields a closed-form solution and testable predictions:
 - **()** higher share of green investment \Rightarrow more learning on green firms \Rightarrow lower information asymmetry
- Empirical findings support our model predictions using firm-level information asymmetry

- A static three-period model based on Kacperczyk et al. (2016)
 - learning (with limited attention) and portfolio optimizations
 - both green and traditional investors (Pastor et al., 2021)
 - assets with different (exogenous) greenness
- The model yields a closed-form solution and testable predictions:
 - **()** higher share of green investment \Rightarrow more learning on green firms \Rightarrow lower information asymmetry
- Empirical findings support our model predictions using firm-level information asymmetry
 - higher share of green investment also leads to lower leverage (debt-to-asset ratio) for green firms

イロト 不得下 イヨト イヨト

Literature

- The impact of investors' ESG preferences on the cross-sectional financial market
 - Bolton and Kacperczyk (2021), Pastor et al. (2021), Pedersen et al. (2021), etc.
- Endogenous information acquisition and ESG preferences
 - Kacperczyk et al . (2016), Van Nieuwerburgh and Veldkamp (2010), Peng and Xiong (2006), Sims (2003), etc.
 - Avramov et al. (2022), Zhou and Kang (2023), Goldstein et al. (2021), etc.
- The relationship between information asymmetry and capital structure
 - Bharath et al. (2009), Easley and O'hara (2004), Amihud (2002), etc.

This paper: a first attempt to study impact of green investing on firm's information asymmetry and capital structure decision

-

イロト 不得下 イヨト イヨト

Setup

• Three periods, t = 0, 1, 2

э.

イロト イロト イヨト イヨト

Setup

• Three periods, t = 0, 1, 2

• Assets: one riskless (bond) and three risky assets (green, brown, and the market)

э.

イロト イポト イヨト イヨト

Setup

• Three periods, t = 0, 1, 2

- Assets: one riskless (bond) and three risky assets (green, brown, and the market)
- Investors: a continuum of investors with
 - fraction λ being green investor: non-pecuniary utility from holding green assets
 - fraction 1λ being traditional investor: mean-variance utility on final payoff

-

Setup

• Three periods, t = 0, 1, 2

- Assets: one riskless (bond) and three risky assets (green, brown, and the market)
- Investors: a continuum of investors with
 - fraction λ being green investor: non-pecuniary utility from holding green assets
 - $\bullet\,$ fraction $1-\lambda$ being traditional investor: mean-variance utility on final payoff
- Payoffs are uncertain, but investors can attentively learn to reduce uncertainty at t = 0, subject to limited attention

-

イロト 不得下 イヨト イヨト

Payoff structure and greenness

- Riskless asset is normalized with both price and payoff equal to 1
- For the risky assets:

Risky assets	Financial payoffs	Greenness	
Green	$f_1=\mu_1+b_1 ilde{z}_3+ ilde{z}_1$	$g_1 = s$	
Brown	$f_2=\mu_2+b_2 ilde{z}_3+ ilde{z}_2$	$g_2 = -s$	
Market	$f_3=\mu_3+ ilde{z}_3$	$g_{3} = 0$	

• $\tilde{z} = [\tilde{z}_1, \tilde{z}_2, \tilde{z}_3]' \sim \mathcal{N}(0, \Sigma)$ are the fundamental shock with a diagonal prior variance Σ

< ロ > < 同 > < 回 > < 回 >

Payoff structure and greenness

- Riskless asset is normalized with both price and payoff equal to 1
- For the risky assets:

Risky assets	Financial payoffs	Greenness
Green	$f_1=\mu_1+b_1 ilde{z}_3+ ilde{z}_1$	$g_1=s$
Brown	$f_2=\mu_2+b_2 ilde{z}_3+ ilde{z}_2$	$g_2 = -s$
Market	$f_3=\mu_3+ ilde{z}_3$	$g_3 = 0$

- $\tilde{z} = [\tilde{z}_1, \tilde{z}_2, \tilde{z}_3]' \sim \mathcal{N}(0, \Sigma)$ are the fundamental shock with a diagonal prior variance Σ
- Following Kacperczyk et al. (2016), we can write the asset payoff into $f = \mu + \Gamma \tilde{z}$ and work on the risk factors:

$$ilde{m{f}} = {\sf \Gamma}^{-1} m{\mu} + ilde{m{z}}$$

Information acquisition and attention allocation

• At *t* = 0, an investor *j* allocate attention across risk factors to receive **signals** on the fundamental shocks

$$egin{aligned} \eta_{ij} &= ilde{z}_i + \epsilon_{ij}, & ext{for} \; i = 1, 2, 3 \ \epsilon_{ij} &\sim \mathcal{N}(0, \sigma_{\eta, ij}) \end{aligned}$$

- We follow the literature (Van Nieuwerburgh and Veldkamp, 2010; Kacperczyk et al., 2016) and make the following assumptions:
 - posterior variance of the signal $\sigma_{\eta,ij} = K_{ij}^{-1}$, where K_{ij} is the attention allocated to shock *i* by investor *j*
 - total amount of attention is limited: $\sum_{i=1}^{3} K_{ij} \leq \bar{K}$
 - investor cannot "unlearn" what they already know: $K_{ij} \geq 0$

1

• t = 1: asset allocation

$$\begin{array}{ll} \max_{\tilde{\boldsymbol{q}}_{j}} & U_{1j} = E_{j}[W_{j}] - \frac{\gamma}{2} Var_{j}[W_{j}] + d_{j} \cdot \tilde{\boldsymbol{q}}_{j}' \boldsymbol{g} \\ s.t. & W_{j} = W_{0} + \tilde{\boldsymbol{q}}_{j}' (\tilde{\boldsymbol{f}} - \tilde{\boldsymbol{\rho}}) \end{array}$$

3

イロト 不同 トイヨト イヨト

• t = 1: asset allocation

$$\begin{array}{ll} \max_{\tilde{\boldsymbol{q}}_{j}} & U_{1j} = E_{j}[W_{j}] - \frac{\gamma}{2} Var_{j}[W_{j}] + d_{j} \cdot \tilde{\boldsymbol{q}}_{j}' \boldsymbol{g} \\ s.t. & W_{j} = W_{0} + \tilde{\boldsymbol{q}}_{j}' (\tilde{\boldsymbol{f}} - \tilde{\boldsymbol{p}}) \end{array}$$

• \tilde{q}_j is investor j's demand on the risk factors

э.

• t = 1: asset allocation

$$\begin{array}{ll} \max_{\tilde{\boldsymbol{q}}_{j}} & U_{1j} = E_{j}[W_{j}] - \frac{\gamma}{2} Var_{j}[W_{j}] + d_{j} \cdot \tilde{\boldsymbol{q}}_{j}' \boldsymbol{g} \\ s.t. & W_{j} = W_{0} + \tilde{\boldsymbol{q}}_{j}' (\tilde{\boldsymbol{f}} - \tilde{\boldsymbol{\rho}}) \end{array}$$

- \tilde{q}_i is investor j's demand on the risk factors
- \vec{d}_j is the green preference of investor *j*:
 - d_j = d > 0 for green investors
 d_i = 0 for traditional investors

э.

• t = 1: asset allocation

$$\begin{array}{ll} \max_{\tilde{\boldsymbol{q}}_{j}} & U_{1j} = E_{j}[W_{j}] - \frac{\gamma}{2} Var_{j}[W_{j}] + d_{j} \cdot \tilde{\boldsymbol{q}}_{j}' \boldsymbol{g} \\ s.t. & W_{j} = W_{0} + \tilde{\boldsymbol{q}}_{j}' (\tilde{\boldsymbol{f}} - \tilde{\boldsymbol{\rho}}) \end{array}$$

- \tilde{q}_j is investor j's demand on the risk factors
- d_j is the green preference of investor *j*:
 - $d_j = d > 0$ for green investors
 - $d_j = 0$ for traditional investors
- \tilde{p} is the price of risk factors, which is determined in equilibrium: $\int_{j} \tilde{q}_{j} dj = \bar{x} + x$, where $x \sim \mathcal{N}(0, \Sigma_{x})$ is the noisy supply

- 31

イロト 不得下 イヨト イヨト

• t = 1: asset allocation

$$\begin{array}{ll} \max_{\tilde{\boldsymbol{q}}_{j}} & U_{1j} = E_{j}[W_{j}] - \frac{\gamma}{2} Var_{j}[W_{j}] + d_{j} \cdot \tilde{\boldsymbol{q}}_{j}' \boldsymbol{g} \\ s.t. & W_{j} = W_{0} + \tilde{\boldsymbol{q}}_{j}' (\tilde{\boldsymbol{f}} - \tilde{\boldsymbol{\rho}}) \end{array}$$

- \tilde{q}_j is investor j's demand on the risk factors
- d_j is the green preference of investor *j*:
 - $d_j = d > 0$ for green investors
 - $d_j = 0$ for traditional investors
- \tilde{p} is the price of risk factors, which is determined in equilibrium: $\int_{j} \tilde{q}_{j} dj = \bar{x} + x$, where $x \sim \mathcal{N}(0, \Sigma_{x})$ is the noisy supply
- $E_j(\cdot)$ and $Var_j(\cdot)$ is taken based on (1) investor j's signals and (2) the price signal through Bayesian updating

イロン 不通 とうほう イロン しゅう

• t = 0: attention allocation

$$\begin{array}{ll} \max_{\boldsymbol{\mathcal{K}}_{j}} & U_{0j} = E_{0} \left[E_{j}[W_{j}] - \frac{\gamma}{2} V_{j}[W_{j}] + d_{j} \cdot \tilde{\boldsymbol{q}}_{j}^{*'} \boldsymbol{g} \right] \\ s.t. & \sum_{i=1}^{3} K_{ij} \leq \bar{K} \quad K_{ij} \geq 0 \text{ for } i = 1, 2, 3 \end{array}$$

• $E_0(\cdot)$ is the unconditional expectation

3

Model solution on the equilibrium price

• We follow literature to guess and verify a linear equilibrium price

Lemma 1

The prices of risk factors are given by

$$\tilde{\boldsymbol{p}} = \boldsymbol{A} + \boldsymbol{B}\tilde{\boldsymbol{z}} + \boldsymbol{C}\boldsymbol{x}$$

where

$$A = \Gamma^{-1} \boldsymbol{\mu} - \gamma \bar{\boldsymbol{\Sigma}} \bar{\boldsymbol{x}} + \bar{\boldsymbol{d}} \boldsymbol{g}$$
$$B = I - \bar{\boldsymbol{\Sigma}} \bar{\boldsymbol{\Sigma}}^{-1}$$
$$C = -\gamma \bar{\boldsymbol{\Sigma}} \left(I + \frac{1}{\gamma^2 \sigma_x} \bar{\boldsymbol{\Sigma}}_{\eta}^{-1'} \right)$$

< □ > < □ > < □ > < □ > < □ > < □ </p>

Model solution on the equilibrium price

• We follow literature to guess and verify a linear equilibrium price

Lemma 1

The prices of risk factors are given by

$$\tilde{\boldsymbol{p}} = \boldsymbol{A} + \boldsymbol{B}\tilde{\boldsymbol{z}} + \boldsymbol{C}\boldsymbol{x}$$

where

$$A = \Gamma^{-1} \boldsymbol{\mu} - \gamma \bar{\boldsymbol{\Sigma}} \bar{\boldsymbol{x}} + \bar{\boldsymbol{d}} \boldsymbol{g}$$
$$B = \boldsymbol{I} - \bar{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}$$
$$C = -\gamma \bar{\boldsymbol{\Sigma}} \left(\boldsymbol{I} + \frac{1}{\gamma^2 \sigma_{\boldsymbol{x}}} \bar{\boldsymbol{\Sigma}}_{\eta}^{-1'} \right)$$

• Here $\bar{d} = \left(\int_j \hat{\Sigma}_j^{-1} dj\right)^{-1} \left(\int_j \hat{\Sigma}_j^{-1} d_j dj\right)$ reflects the **aggregate green preference** in the market

Model solution on the attention allocation

• The attention allocation problem at t = 0 can be simplify as follows

$$\begin{array}{ll} \max_{\mathcal{K}_{j}} & U_{0j} = \sum_{i=1}^{3} \kappa_{ij} \mathcal{K}_{ij} + \text{constant} \\ s.t. & \sum_{i=1}^{3} \mathcal{K}_{ij} \leq \bar{\mathcal{K}}, \quad \mathcal{K}_{ij} \geq 0 \text{ for } i = 1, 2, 3 \end{array}$$
where $\kappa_{ij} = \bar{\sigma}_{i}^{2} + (\gamma \sigma_{x} + \bar{\mathcal{K}}_{i}) \bar{\sigma}_{i} + (\gamma \bar{x}_{i} \bar{\sigma}_{i} + (d_{j} - \bar{d}_{i}) g_{i})^{2}$

э

イロト イポト イヨト イヨト

Model solution on the attention allocation

• The attention allocation problem at t = 0 can be simplify as follows

$$egin{array}{ll} \max & U_{0j} = \sum_{i=1}^3 \kappa_{ij} K_{ij} + ext{constant} \ s.t. & \sum_{i=1}^3 K_{ij} \leq ar{K}, \quad K_{ij} \geq 0 ext{ for } i=1,2,3 \end{array}$$

where $\kappa_{ij} = \bar{\sigma}_i^2 + (\gamma \sigma_x + \bar{K}_i)\bar{\sigma}_i + (\gamma \bar{x}_i \bar{\sigma}_i + (d_j - \bar{d}_i)g_i)^2$

- Clearly, an investor j will allocate full attention to the risk factor(s) with the highest κ_{ij}
 - A green investor $(d_j = d > \overline{d}_i)$ has higher incentive to learn the green risk factor
 - A traditional investor $(d_i = 0 < \overline{d_i})$ has higher incentive to learn the brown risk factor

イロト イヨト イモト イモト

Model solution on the attention allocation

Comparative statics w.r.t. green investment shares $\boldsymbol{\lambda}$

Figure: Optimal attention allocation as a function of λ

э

Attention and information asymmetry

• Define firm-level information asymmetry as prior precision - aggregate posterior precision

InfoAsy
$$\equiv \Sigma_i^{-1} - \bar{\Sigma}_i^{-1} = \bar{\Sigma}_{s,i}^{-1} + \Sigma_{i,p}^{-1}$$

• If no learning at all: InfoAsy = 0

• More learning \Rightarrow higher posterior precision \Rightarrow lower information asymmetry

-

A D > A B > A B > A B >

Attention and information asymmetry

• Define firm-level information asymmetry as prior precision - aggregate posterior precision

InfoAsy
$$\equiv \Sigma_i^{-1} - \bar{\Sigma}_i^{-1} = \bar{\Sigma}_{s,i}^{-1} + \Sigma_{i,p}^{-1}$$

• If no learning at all: InfoAsy = 0

• More learning \Rightarrow higher posterior precision \Rightarrow lower information asymmetry

Proposition 1

When share of green investment $\lambda < \lambda_1^*$, an increase in λ decreases the information asymmetry of green firms.

- The threshold λ_1^* is increasing in the green preference d and greenness score s
- The threshold λ_1^* is decreasing in the market volatility

ヘロト ヘ回ト ヘヨト ヘヨト

Data and Measures

• Sample coverage: U.S. firms from 2004q1 to 2020q4, quarterly

Data and Measures

- Sample coverage: U.S. firms from 2004q1 to 2020q4, quarterly
- Firm level greenness indicator: Refinitiv Environmental Pillar Score (ENSCORE)
 - The ENSCORE covers firms': emission, innovation, and resource use.
- Green investment share: Google Search Volume on the keyword Climate Change

-

Data and Measures

- Sample coverage: U.S. firms from 2004q1 to 2020q4, quarterly
- Firm level greenness indicator: Refinitiv Environmental Pillar Score (ENSCORE)
 - The ENSCORE covers firms': emission, innovation, and resource use.
- Green investment share: Google Search Volume on the keyword Climate Change
- Information Asymmetry: first principal component of seven information asymmetry and liquidity measures (Bharath et al., 2009)
 - (1,2) the adverse selection component of the quoted and effective bid-ask spread, AD and RAD (George et al., 1991; Roll, 1984); (3) stock's volume return dynamics, C2 (Llorenteet al., 2002); (4) probability of informed trading, PIN (Easley et al., 1996); (5,6) price impact, ILL and LR (Amihud, 2002; Amihud et al., 1997); and (7) interaction between stock return and orderflow, GAM (Pastor and Stambaugh, 2003)

イロト 不得 とくほ とくほ とうほう

Test the impact of green taste on information asymmetry

• OLS Specification

$$InfoAsy_{i,q} = \alpha_i + \gamma_q + (\beta_0 + \beta_1 \cdot ENSCORE_{i,q-4}) \Delta GSV_q + \gamma X_{i,q} + \epsilon_{i,q}$$

- InfoAsy_{i,q}: information asymmetry measure of firm i at quarter q
- $ENSCORE_{i,q-4}$: ENSCORE of firm *i* in the previous year, normalized between 0 and 1
- $\Delta GSV_{i,q}$: growth rate of GSV of keywrod *Climate Change* in U.S.
- $X_{i,q}$: control variables, which include market value, stock return volatility, analyst coverage, etc.

-

イロト 不得下 イヨト イヨト

Test the impact of green taste on information asymmetry

• OLS Specification

$$InfoAsy_{i,q} = \alpha_i + \gamma_q + (\beta_0 + \beta_1 \cdot ENSCORE_{i,q-4}) \Delta GSV_q + \gamma X_{i,q} + \epsilon_{i,q}$$

- InfoAsy_{i,q}: information asymmetry measure of firm i at quarter q
- $ENSCORE_{i,q-4}$: ENSCORE of firm *i* in the previous year, normalized between 0 and 1
- $\Delta GSV_{i,q}$: growth rate of GSV of keywrod *Climate Change* in U.S.
- $X_{i,q}$: control variables, which include market value, stock return volatility, analyst coverage, etc.
- IV Specification
 - temperature anormaly (Choi et al., 2021) as instrumental variable for green taste (strong first stage result)

-

Greater green GSV reduces information asymmetry of green firms

	0	OLS		IV	
	(1) ASY	(2) ASY	(3) ASY	(4) ASY	
$ENSCORE \times growthcc$	-0.174*** (-6.27)	-0.164*** (-6.03)	-0.677*** (-8.15)	-0.697*** (-8.12)	
ENSCORE	-0.467*** (-5.39)	0.00355 (0.04)	-0.474*** (-5.49)	0.00422 (0.04)	
growthcc	0.101*** (8.48)	0.133*** (11.14)	0.180*** (4.61)	0.391*** (9.64)	
Control	Yes	Yes	Yes	Yes	
Firm FE	Yes	Yes	Yes	Yes	
Year FE	No	Yes	No	Yes	
Adjusted R ²	0.321	0.408	0.231	0.149	
Observations	48478	48478	48478	48478	

イロン 不得 とくほど 不良 とうほう

Lower information asymmetry, lower leverage

Higher green taste \Rightarrow lower information asymmetry of green firms

 \Rightarrow lower leverage of green firms (finance through stock \uparrow)

	(1) mktlev	(3) mktlev
ASY	0.0194***	0.0198***
	(0.00222)	(0.00230)
tangibility	0.191**	0.189**
	(0.0767)	(0.0765)
qratio	-0.0168***	-0.0166***
	(0.00304)	(0.00304)
firmsize	1.365**	1.448**
	(0.551)	(0.560)
profit	-0.364***	-0.377***
	(0.0848)	(0.0906)
cat_firm		-0.0202*
		(0.0105)
Firm FE	Yes	Yes
Year FE	Yes	Yes
N	11525	11503
R ²	0.821	0.819

Higher Green Preference, lower leverage for green firms

Figure: 2015 December Paris Agreement and Capital Structure

Conclusion

- We study how an increasing green investment affects firms' information asymmetry and capital structure
- We provide a three-period model with endogenous learning and heterogeneous preference for green investing
- Our model shows that a higher green investment share
 - reduces the information asymmetry of green firms
 - implies green firms finance more through equity and a lower leverage ratio
- We provide empirical evidence that supports our findings

Thanks!

Any comments are welcome: biao.yang@sjtu.edu.cn shasha.li@iwh-halle.de