
Induced Innovation, Inventors, and the Energy Transition

Eugenie Dugoua Todd Gerarden

London School of Economics Cornell University

August 29, 2023



Motivation

• Clean energy innovation is critical to reducing the costs of climate mitigation

• Innovation is not exogeneous! Robust empirical evidence for an induced

innovation effect.

• The literature on directed tech change has also shown that the optimal climate

policy is a combination of carbon pricing and R&D subsidies.

• Here is an illustration from Acemoglu et al. (2012): the pool of scientists rapidly

switches from dirty to clean
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We Zoom in on These Scientists and Consider the Role of Human Capital

• It takes years to train in a particular field, to develop particular skills. And so

scientists may face adjustment costs. This raises a series of questions:

• To what extent can inventors be induced to work on different things?

• What is the role of new entrants vs incumbents?

• These questions matter for the speed at which directed technological change will

materialize in the short and medium term.
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This Paper

• We document the types of inventors behind clean innovation and the extent to

which they respond to economic incentives

• Measure innovation using global data on patent applications (PATSTAT)

• Electricity generation-related patents (classified based on patent technological codes)

• Inventors with at least one OECD patent post 1990

• Document stylized facts about energy inventors

• Estimate how individual inventors respond to changes in natural gas prices

Both intensive and extensive margin responses

Natural gas prices ↑ ⇒ expected demand for substitutes in the future ↑
Simulate how inventors would respond to carbon pricing

Using a SCC of 51 $/tCO2
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Prior Literature

• Models of directed technical change

• Acemoglu et al. (2012, 2016), Fried (2018), and Lemoine (Forthcoming)

• Nowzohour (2021): adjustment costs in switching to clean

• Empirical work on induced innovation: at the firm level

• Aghion et al. (2016), Johnstone et al. (2010), Newell et al. (1999), Noailly and

Smeets (2015), Popp (2002), and Popp and Newell (2012)

• But firms’ responses inherently dependent on available human capital

• Going to the inventor-level is necessary to better understand potential frictions

• Research on individual inventors

• Response to financial incentives (e.g., Akcigit et al. 2022)

• Influence of childhood on inventors’ career (e.g., Bell et al. 2019a,b)

• Implications for innovation policy (e.g., Romer 2000)
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Data



Patent Data Overview

• Patent data from PATSTAT (Autumn 2021 Edition)

• Extract energy-related patents using CPC/IPC codes from prior work Details

Dechezleprêtre et al. (2014), Johnstone et al. (2010), Lanzi et al. (2011), and Popp

et al. (2020)

• Extract all patents of inventors that have an energy-related patents

Analysis done at the level of docdb families

Restrict to families in OECD countries post 1990 (and post 2000 for regressions)
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Patent Codes for Clean, Dirty, Grey

• Clean technologies:

• Solar, wind, marine,

geothermal, hydro

• Nuclear

• Energy storage, smart

grids, hydrogen

(“enabling”)

• Dirty technologies: Combustion

of traditional fossil fuels

• Liquid carbonaceous,

gaseous and solid fuels

• Gas-turbine plants,

combustion

apparatus/processes

• Grey technologies:

• Efficiency

• Biomass and waste

NB: For regression purposes, CCS excluded from clean and Fracking from dirty. 7



Inventor Disambiguation in PATSTAT

• PATSTAT standardized name ID (PSN ID)
• Harmonized according to the Univ. Leuven procedure

• Incomplete: about 70% of energy inventors not harmonized

• Improving over PSN ID
• Removing special characters

• Changing all middle names to middle initials

• Keeping only first middle initial for people with multiple middle names

• Performance comparable to disambiguation effort by Li et al. (2014)
• Sample: USPTO grants 1975-2010

• Correct matches: 92.1% (Nbr unique inventors: 30,264)

• Potential for false positive (“John Smith” problem)
• We examine number of countries and number of PSN ids associated with inventors

• If too high (>99th percentile), revert back to using PSN ids

• If gap in patenting > 15 years, ignore observations before the gap

• Drop inventors that patent for more than 60 years. 8



Stylised Facts about Energy

Inventors



Fact 1: Energy Inventors Specialize in Clean or in Dirty

⇒ Clean Patents Come Primarily from Inventors Who Specialize in Clean

Clean only
30%

Clean and Grey/Dirty
10%

Grey/Dirty only60%
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Fact 2: About Half of Clean Patents Come from “New Entrants”

Clean
Incumbents 46%

Grey/Dirty
Switchers

4%
Non Energy
Switchers

19%

Inventors
New to Patenting

32%
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Non-Energy Patents of Clean Entrants: ICT and Semiconductors
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Empirical Strategy



Do Changes in Energy Prices Induce More Clean Patenting?

• When natural gas is more expensive, clean tech becomes more competitive

• Inspiration from Acemoglu et al. (2019): shale gas boom and clean innovation

• Prices yesterday as a proxy for expected demand today

• Should trickle down as higher incentives to innovate in clean

• Both for firms and inventors
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Identification Strategy

Exploit geographic variation in energy prices over time (after accounting for common shocks)

• Natural gas prices from IEA

• End-Use Energy Prices and

Taxes for OECD countries

• Use industrial prices due to

electricity sector data limitations
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Identifying Variation: Quasi-Random Changes in Natural Gas Prices

• Due to transportation constraints

• After accounting for country and time fixed effects
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Response at the Intensive Margin: Output Elasticity of Incumbents

PATC
it = exp(βP lnPit−1 + βXXit−1) + uit

• PATC
it is the count of clean patent families by inventor i in year t

- Estimation via Poisson pseudo maximum likelihood

• Pit is the price of natural gas that inventor i is exposed to at time t
- Garage inventors: price of home country

- Corporate inventors: price that the firm they are associated with are exposed to

- If associated to several firms: average weighted by the share of inventor i’s energy

patents that are associated with firm j

• Xit includes inventor and year fixed effects, GDP per capita, and RD&D budgets
- Inventor and Year f.e.

- “Tenure” f.e. (i.e., number of years since first patent)

- Energy and low-carbon RD&D budget (data from IEA)

- GDP and GDP per capita (from the World Bank)

NB: Adaptation of Aghion et al. (2016) and Noailly and Smeets (2015) to Inventor Level 15



Constructing Firm-Level Prices

• We construct firm-level prices as weighted average of country-level prices:

lnPjt = ∑
c

sjcGDPc

∑c sjcGDPc
lnPct

- Pct is the average tax-inclusive natural gas price in country c in year t

- GDPc weighting adjusts for differences in market size across countries

- sjc captures exposure of firm j to country c

• We calculate sjc as firm j ’s share of energy patents in country c

- Robustness checks with pre-period 1990-1999

- Firms with no pre-period: equally exposed to all countries (weighted by their GDP)

• We connect patents to Orbis firms (via Orbis IP)

16



Response at the Extensive Margin: Entry Elasticity of Inventors

• We estimate a firm-level model analogous to the inventor-level model:

E k
jt = exp(βk

P lnPjt−1 + βk
XXjt−1 + γk

t + ηk
j ) + ukjt ,

• E k
jt is the number of new entrant inventors of type k filing a clean family with firm j

in year t.

• We estimate these models separately by type k

• We classify entrants into three types:

- those who previously patented in grey/dirty but not in clean

- those who previously patented in non-energy

- those who were not previously observed in the patent data.

• Pjt−1 is the price of natural gas that firm j is exposed to in year t − 1.

• We include in Xjt−1 the GDP per capita as well as energy and low-carbon RD&D

spending by governments that firm j is exposed to in year t − 1.

• Year and firm fixed effects are denoted γk
t and ηk

j
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Results



Response at the Intensive Margin: Output Elasticity of Incumbents

(1) (2) (3) (4) (5) (6)

Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted

Prices (log, t-1) 0.282∗∗∗ 0.279∗∗∗ 0.304∗∗∗ 0.327∗∗∗ 0.297∗∗∗ 0.278∗∗∗

(0.044) (0.044) (0.061) (0.061) (0.054) (0.054)

Prices (log, t-2) 0.180∗∗∗ 0.107∗∗ 0.215∗∗∗ 0.132∗∗ 0.296∗∗∗ 0.221∗∗∗

(0.045) (0.045) (0.064) (0.064) (0.053) (0.053)

Prices (log, t-3) 0.180∗∗∗ 0.160∗∗∗ 0.134∗∗ 0.107∗∗ 0.029 0.011

(0.047) (0.046) (0.053) (0.054) (0.056) (0.055)

Cumulative Effect 0.642*** 0.546*** 0.652*** 0.565*** 0.622*** 0.511***

(0.050) (0.052) (0.069) (0.070) (0.057) (0.061)

Year FEs X X X X X X

Inventor FEs X X X X X X

Tenure FEs X X X

Country-Year Covariates X X X X X X

Inventor Clusters (SEs) 85,905 85,905 85,905 85,905 85,905 85,905

Observations 590,767 590,767 590,767 590,767 590,767 590,767

Pseudo-R2 0.289 0.290 0.366 0.367 0.264 0.265

Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Response at the Extensive Margin: Entry Elasticity of Incumbents

(1) (2) (3)

New to Patenting From Grey/Dirty From Non-Energy

Prices (log, t-1) -0.046 0.017 -0.119

(0.144) (0.131) (0.146)

Prices (log, t-2) 0.128 -0.240∗ -0.257∗

(0.171) (0.137) (0.148)

Prices (log, t-3) 0.536∗∗∗ 0.679∗∗∗ 0.314∗∗

(0.195) (0.134) (0.151)

Cumulative Effect 0.618*** 0.456*** -0.062

(0.166) (0.124) (0.181)

Year FEs X X X

Firm FEs X X X

Country-Year Covariates X X X

Firm Clusters (SEs) 3,779 4,703 4,642

Observations 43,733 53,109 52,559

Pseudo-R2 0.699 0.605 0.647

Dependent variables: number of renewable/nuclear inventors per group.

Sample: balanced panel from 2000 to 2014.

Poisson pseudo-maximum likelihood. Standard errors clustered by firm in parentheses.
19



Additional Checks

• Instrumental Variable approach using the shale gas boom in the U.S. and Canada

• Utilization of techniques to extract shale gas led to an increase in natural gas supply

• This generated a persistent reduction in the price of natural gas

• The price reduction was geographically isolated due to LNG transport constraints

• Shale gas boom explains 51% of the (residual) price variation

• Alternative price measures Here
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Lifecycle: Inventors’ Patenting Over Tenure (Co-inventor Weighted)
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Decomposing the Induced Innovation Effect by Inventor Type

$51/tCO2 (54% of

the GDP-weighted

global average

price of natural

gas in 2014)

Over the course of

10 years

Source Patents Share (%)

Intensive margin response

Incumbent inventors 48,234 71.2

(5,758) (5.7)

Extensive margin response

Entry from grey/dirty 4,410 6.5

(1,199) (1.8)

Entry from non-energy -760 -1.1

(2,218) (3.3)

Entry to patenting 15,839 23.4

(4,255) (5.3)

Total 67,724 100.0

(7,590) .
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Conclusions



Final Thoughts

• Entrants are less responsive on the margin compared to their contribution to

overall patenting.

• Over-reliance on incumbents. Sub-optimal if time is of the essence.

• Motivate future work to study the formation of human capital in clean energy.

• (How) can entry be stimulated? Stay tuned for the next paper!
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Thank you!

Eugenie Dugoua

e.dugoua@lse.ac.uk
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