#### **Energy Tax Exemptions and Industrial Production**

Andreas Gerster (U Mannheim) Stefan Lamp (Carlos III de Madrid)

EEA-ESEM Barcelona 2023

August 31, 2023

・ロト ・回ト ・ヨト ・ヨト ・ シュル

POLITICO

EXPLORE V NEWSLETTERS & PODCASTS V



#### Is this the end of Made in Europe?

From glass-makers to paper producers, European industries face a struggle to survive. What if they don't make it?

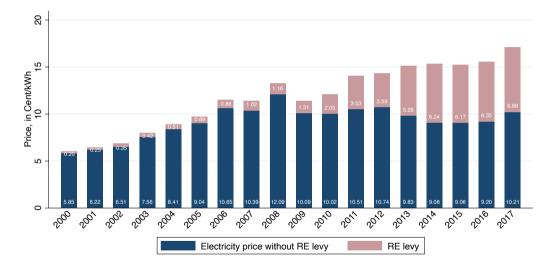
q



JANUARY 15, 2023 7:27 PM CET 3 MINUTES READ

Gerster and Lamp (2022)

## Motivation

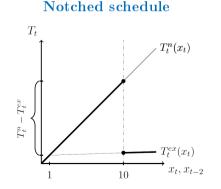

- Many environmental regulations only **apply to a subset of jurisdictions** (carbon taxes, EU ETS, etc.)
- Concern about 'leakage' of industrial activity and emissions
- Policy response: **exemption schemes** for energy-intensive and trade-exposed (EITE) firms

#### We evaluate EITE firm exemptions in Germany

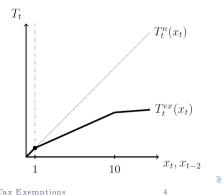
**1** How large are **competitiveness effects** vs. **adverse effects on energy use**?

**2** How does the **exemption design** influence production decisions?

## Renewable Energy Levy and Electricity Prices




Energy Tax Exemptions


ъ

# This Paper

- Empirically assess the impact of exemption schemes on **plant-level inputs** and outputs
- Contributes to policy design: 'notched' schedule vs. 'reformed' schedule, where inframarginal benefits have been largely removed



**Reformed schedule** 



Gerster and Lamp (2022)

# Main Findings

Qualitatively, both evaluations yield very similar results:

- **1** Exempted plants increase electricity use
- 2 No evidence for impact on exemptions on outputs (sales, export share, investment) and employment

# Main Findings

Qualitatively, both evaluations yield very similar results:

- **1** Exempted plants increase electricity use
- 2 No evidence for impact on exemptions on outputs (sales, export share, investment) and employment

Quantitatively, our results differ:

- Notched schedule:  $\sim 30\%$  increase in electricity use
- Reformed schedule:  $\sim 3\%$  increase in electricity use

# Main Findings

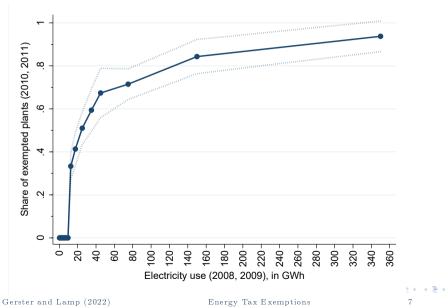
Qualitatively, both evaluations yield very similar results:

- 1 Exempted plants increase electricity use
- 2 No evidence for impact on exemptions on outputs (sales, export share, investment) and employment

Quantitatively, our results differ:

- Notched schedule:  $\sim 30\%$  increase in electricity use
- Reformed schedule:  $\sim 3\%$  increase in electricity use

Counterfactual simulations:


- Inframarginal **bunching responses** rationalize effect size differences
- Compliance cost crucial for market outcomes under notched schemes (if zero: no. of exemptions ≈ +100%, distortive effects: ≈ +60%)

#### Data

German Manufacturing census (AFiD): 2007-2017

- Scope: all German manufacturing *plants* with more than 20 employees
- Production survey: plant-level information on employment, gross output, exports
- Energy use survey: plant-level energy use
- Cost structure survey: firm-level information on total energy cost and gross value added
- Material and incoming goods statistics (2006, 2010, 2014): firm-level energy input cost

List of REL exempted plants for the years 2010-2013 (BAFA)



3

#### 1. Not all eligible plants claim an exemption

## 2. Selection above the 10 GWh threshold only in 2010

| Year                   | 2008               | 2009               | 2010               | 2011                |
|------------------------|--------------------|--------------------|--------------------|---------------------|
| McCrary test statistic | 0.04               | 0.05               | $0.37^{**}$        | -0.15               |
|                        | (0.15)             | (0.16)             | (0.16)             | (0.14)              |
| RE levy in $t+2$       | $2.05~{ m ct/kwh}$ | $3.53~{ m ct/kwh}$ | $3.59~{ m ct/kwh}$ | $5.28  { m ct/kwh}$ |
| Notch present in $t+2$ | yes                | yes                | yes                | no                  |

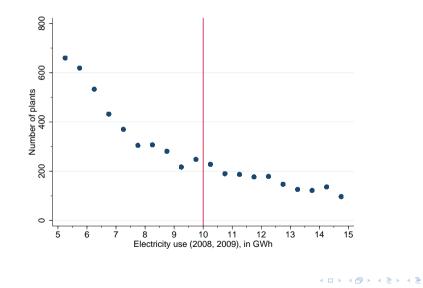
◆□▶ ◆□▶ ★∃▶ ★∃▶ = のへで

## **Reduced-Form Policy Evaluations**

Gerster and Lamp (2022)

Energy Tax Exemptions

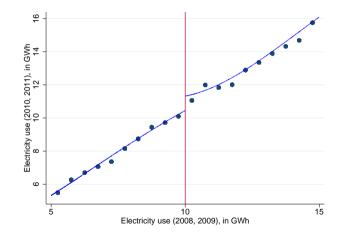
9


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

## Policy Evaluation I:

Financial Crisis in 2008/2009 (Notched Tax Exemption Schedule)

- We exploit absence of bunching in 2008/2009 to estimate exemption effects in 2010/2011
- Method: Fuzzy RD
- Identifies the ATT at the 10 GWh cutoff


## No evidence for selection above the threshold



Energy Tax Exemptions

ъ

## Discontinuity in outcome variable



Gerster and Lamp (2022)

Energy Tax Exemptions

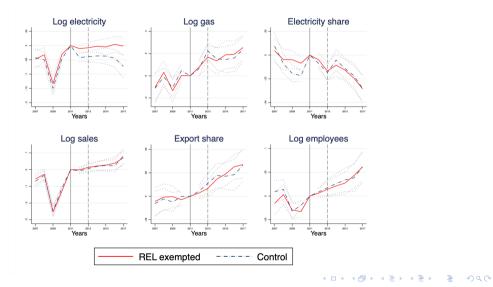
э

・ロト ・回 ト ・ヨト ・ヨト

|                                            | $ATT^{RD}$   | SE    |  |  |  |  |
|--------------------------------------------|--------------|-------|--|--|--|--|
| Panel A: Electricity & fuel use            | ıge          |       |  |  |  |  |
| Electricity consumption [GWh]              | $3.156^{**}$ | 1.402 |  |  |  |  |
| Log electricity consumption                | $0.578^{*}$  | 0.307 |  |  |  |  |
| Log fossil fuel consumption                | -0.119       | 0.507 |  |  |  |  |
| Share of total energy mix:                 |              |       |  |  |  |  |
| Electricity [%]                            | 0.123        | 0.12  |  |  |  |  |
| Fossil fuel [%]                            | $-0.186^{*}$ | 0.101 |  |  |  |  |
| Panel B: CO2 emissions                     |              |       |  |  |  |  |
| $Log CO_2$ , direct                        | -0.082       | 0.492 |  |  |  |  |
| $Log CO_2$ , total                         | $0.614^{*}$  | 0.355 |  |  |  |  |
| <b>Panel C:</b> Competitiveness indicators |              |       |  |  |  |  |
| Log employment                             | 0.152        | 0.173 |  |  |  |  |
| Log sales                                  | 0.374        | 0.288 |  |  |  |  |
| Export share                               | -0.118       | 0.074 |  |  |  |  |
| Log investment                             | 0.774        | 1.239 |  |  |  |  |
| Investment $> 0$ )                         | -0.166       | 0.186 |  |  |  |  |
| Investment machinery $> 0$                 | -0.113       | 0.164 |  |  |  |  |
| # of observations                          | 39,202       | 2     |  |  |  |  |
| # of exempted plants                       | 497          |       |  |  |  |  |
| First-stage                                | 0.176        |       |  |  |  |  |

Gerster and Lamp (2022)

Energy Tax Exemptions


・ロト・日本・モン・モン・モーションへの

## Policy Evaluation II:

# Extension of Eligibility Criteria in 2013 (Tax Exemption Schedule without Notch)

- We exploit that many firms became newly eligible in 2013
- Method: Matching DiD in subsample of newly eligible firms (1-10 GWh)
- Matching on 2011 electricity cost to gross value added (and lags thereof), log of sales and log of employment
- Identifies the ATT for plants with 1-10 GWh of electricity use

## Matching DiD: Pre-treatment trends



Gerster and Lamp (2022)

| Main sample                     | all plan     | ıts   | $5-10 \mathrm{GWh}$ |         |
|---------------------------------|--------------|-------|---------------------|---------|
|                                 | $ATT^{DiD}$  | SE    | $ATT^{DiD}$         | SE      |
| $\Delta$ 2013-2011              | (1)          | (2)   | (3)                 | (4)     |
| Panel A: Electricity & fuel usa | sge          |       |                     |         |
| Electricity consumption [GWh]   | $0.092^{*}$  | 0.055 | $0.334^{**}$        | 0.145   |
| Log electricity consumption     | $0.028^{**}$ | 0.012 | $0.062^{**}$        | 0.024   |
| Log fossil fuel consumption     | -0.055       | 0.04  | -0.041              | 0.044   |
| Share of total energy mix:      |              |       |                     |         |
| Electricity [%]                 | 0.004        | 0.005 | 0.007               | 0.007   |
| Fossil fuel [%]                 | -0.008       | 0.005 | $-0.016^{**}$       | 0.007   |
| Panel B: CO2 emissions          |              |       |                     |         |
| $Log CO_2$ , direct             | -0.036       | 0.039 | -0.016              | 0.043   |
| $\log CO_2$ , total             | 0.017        | 0.013 | $0.042^{*}$         | 0.022   |
| Panel C: Competitiveness indic  | cators       |       |                     |         |
| Log employment                  | 0.007        | 0.012 | 0.021               | 0.017   |
| Log sales                       | 0.008        | 0.015 | 0.016               | 0.025   |
| Export share                    | -0.002       | 0.005 | 0.015               | 0.011   |
| Log investment                  | 0.031        | 0.139 | -0.287              | 0.196   |
| Investment > 0                  | -0.031       | 0.022 | -0.022              | 0.032   |
| Investment machinery $> 0$      | 0.026        | 0.02  | 0.015               | 0.032   |
| # of observations               | 702          |       | 270                 |         |
| # of exempted plants            | 351          |       | 135                 |         |
|                                 |              |       | ۹ 🗆                 | ► < 🗗 ► |

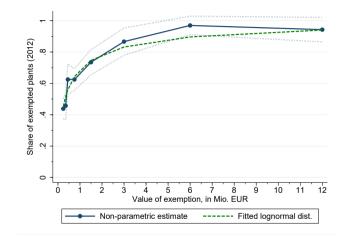
Gerster and Lamp (2022)

## Robustness

- Anticipation of policy change: base year 2010 Anticipation
- Intra-firm spillovers: single-plant firms Spillover
- Selection into Treatment (growth expectations) Group DiD
- Balanced sample in electricity and gas use Sample 2
- Matching: Propensity score based only on electricity intensity (no lags) and economic sub-sectors Matching

# Simulations of Efficiency and Distributional Implications of Policy Designs

Gerster and Lamp (2022)


## Identification of Structural Parameters

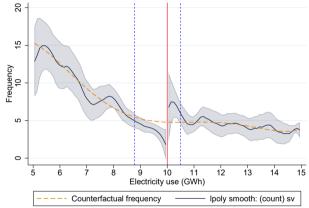
Structural assumptions:

- **()** Isoelastic production function (electricity use elasticity  $\alpha$ )
- **2** Application cost:  $C \sim \text{lognormal}(\mu, \sigma)$ , iid
- **3** Bunching cost:  $\kappa = \beta + |\text{DistanceToThreshold}| \times \gamma$
- **4** Value of an exemption in t + 2:  $A = V_t(x_t)$

| Parameter          | Identification                                                          |
|--------------------|-------------------------------------------------------------------------|
| $\alpha$           | Reduced-form electricity use elasticity (under the de-notched schedule) |
| $\mu$ and $\sigma$ | Exemption shares among the eligible                                     |
| $eta$ and $\gamma$ | Elec. use of marginal buncher and share of bunchers at threshold        |

## Identifying Compliance Cost from Exemptions in 2010




| Parameters      | Identification                                                           |
|-----------------|--------------------------------------------------------------------------|
| $(\mu, \sigma)$ | $\Pr(\text{exempt} \mid A(x)) = \Pr(\text{C}{<}\text{A}(x)) = F_C(A(x))$ |

Gerster and Lamp (2022)

Energy Tax Exemptions

э

## Identifying Cost Parameters from Bunching Behavior in 2010



Bandwidth (left): 2.37 GWh; bandwidth (right): 2.16 GWh.

| Parameter | Identification                             | Statistic                |      |
|-----------|--------------------------------------------|--------------------------|------|
| β         | $Pr(bunch x=10) = F_c(A(\hat{x}) - \beta)$ |                          |      |
| $\gamma$  | $A(x^m) = \beta + \gamma(\hat{x} - x^m)$   | $x_m = 8.79 \text{ GWh}$ | < 注→ |

Gerster and Lamp (2022)

## Simulations of Efficiency and Distributional Implications - 1

#### Bunching Behavior (in t)

|                             | $\stackrel{(1)}{\# \ \rm of \ bunchers}$ | (2)<br>Bunching,<br>in GWh | (3)<br>Max. bunching,<br>in % | (4)<br>Bunching cost,<br>in Mio. EUR | (5)<br>Externality cost,<br>in Mio. EUR |
|-----------------------------|------------------------------------------|----------------------------|-------------------------------|--------------------------------------|-----------------------------------------|
| Simulations for Bunching    | in 2008 to 2011                          | Under the R                | espective Exemptio            | n Designs                            |                                         |
| (1) 2011 (reformed)         | 0                                        | -                          | -                             | -                                    | -                                       |
| $Counterfactual\ Simulatio$ | ns for 2013 unde                         | r a Notched                | Exemption Design              |                                      |                                         |
| (3) 2011 (notched)          | 56                                       | 55.3                       | 26.8                          | 7.5                                  | 1.4                                     |
| (4) REL 2017                | 145                                      | 258.2                      | 60.3                          | 28.8                                 | 6.4                                     |
| (5) Costless compliance     | 181                                      | 220.9                      | 29.2                          | 27.8                                 | 5.5                                     |
| (6) No frictions, REL 2017  | 414                                      | 1,008.3                    | 74.2                          | 82.0                                 | 25.1                                    |

## Simulations of Efficiency and Distributional Implications - 2

#### Exemption Behavior (in t + 2)

|                            | (6)                 | (7)                 | (8)                  | (9)              | (10)              |
|----------------------------|---------------------|---------------------|----------------------|------------------|-------------------|
|                            | # of exemptions     | Electricity use     | Exemption value,     | Compliance cost, | Externality cost, |
|                            | (actual #)          | change, in GWh      | in Mio. EUR          | in Mio. EUR      | in Mio. EUR       |
|                            |                     |                     | (actual value)       |                  |                   |
| Simulations for Exemption  | ns in 2010 to 2013  | Under the Respecti  | ve Exemption Design  | ıs               |                   |
| (1) 2013 (reformed)        | $1,239\ (1,574)$    | $2,\!172.9$         | $3,\!874\ (3,\!804)$ | 335.7            | 73.0              |
| Counterfactual Simulation  | ns for 2013 under a | a Notched Exemption | on Design            |                  |                   |
| (3) 2013 (notched)         | 833                 | 2,081.3             | 3,681                | 303.2            | 69.9              |
| (4) REL 2017               | 1,020               | 2,887.9             | 5,108                | 486.2            | 97.0              |
| (5) Costless compliance    | 1,317               | 2,423.2             | 4,259                | 0.0              | 81.4              |
| (6) No frictions, REL 2017 | $1,\!550$           | $^{3,231.3}$        | 5,683                | 0.0              | 108.6             |

## Conclusion

- This paper analyzes the impact of a large energy tax exemption scheme on the German manufacturing industry
- Using two sources of exogenous variation, we show that:
  - Notched exemption:  $\sim 30\%$  increase in electricity use
  - Reformed exemption:  $\sim 3\%$  increase in electricity use
  - Exemptions have no impact on competitiveness indicators
- Exemptions are costly and might not be effective in their objective to retain domestic production
- Policy design and application frictions matter: caution against notched exemption schemes when compliance cost are low

## Thank you!

#### Any questions? gerster@uni-mannheim.de

Gerster and Lamp (2022)

Energy Tax Exemptions

< □ > < □ > < 直 > < 直 > < 直 > 見 の Q (~ 25