Evaluating affirmative action when college applications are endogenous

Ingrid Mikkelsen Semb EEA 2023

Setting and data

Application responses

Shifted in vs. out 0000000

Background

- Affirmative action (AA) policies by design change composition of student body
 - Contested
 - Potential for efficiency losses
- Application channel commonly assumed away in strategy-proof settings
 - However, AA might change preferences over programs, or there might be search frictions, or behavioural costs to applying,...
 - May matter for identification as well as policy

This paper

Setting and data

Application responses

Shifted in vs. out 0000000

Study effects of an AA policy that seeks to reduce gender imbalance within majors

- 1. Document application responses to AA
- 2. Estimate effects of the policy
 - Academic and labor market outcomes
 - Shifted-in vs shifted-out

Setting and data $\bullet \circ \circ$

Application responses

Shifted in vs. out

Norway's Centralized Admission System

- Centralized platform for all applications to higher public education
 - Submit rank-ordered list of up to 15 preferences
 - Specific program at specific institution, e.g. Physics at UiO
- Gale-Shapley Deferred Acceptance: Slots allocated based on application score
 - Largely comprised of high school GPA, with extra points in certain cases
 - Exact cutoff unpredictable
- Strategy proof: No incentive not to list true preferences

Setting and data

Application responses

Shifted in vs. out 0000000

The AA policy: Gender points

• Give targeted gender an advantage by boosting their application scores

$$AppScore_{ipy} = 10 GPA_i^{HS} + 2 Target_{ip}Active_{py}$$

- Regulated by the Ministry of Education
- Requirement: One gender clearly underrepresented
 - Women: Selected STEM programs
 - Men: Selected health programs

Setting and data 00● Application responses

Shifted in vs. out 0000000

Data

- Application data 1999-2018
 - Rank-ordered lists of preferences
 - Application scores and cutoffs
 - Offers and enrollment
 - Gender point policies over time
- \bullet Student trajectories + grades in higher education
- Background variables
- Labor market outcomes

1. Application responses

Setting and data

Application responses 0000

Shifted in vs. out 0000000

Do college applications respond to AA?

- Utilize within-program changes in use of gender points between 1999 and 2018
 - Flagship technical university abolishes gender points (women) for about half of civil engineering programs in 2016
 - Three nurse programs introduce gender points (men) in 2018
- Estimate effect on gender balance in pool of applicants using DiD
 - Control group: Applicants to comparable programs that do not change their policy

$$\textit{Target}_{i} = \delta_{y} + \theta_{p} + \sum_{t=-5}^{T} \beta_{y} \mathbf{1}_{\{t=y\}} \textit{Change}_{p} + \epsilon_{i}$$

Abolishment of AA for women (civil engineering)

2. What is the effect on candidates shifted in, vs. shifted out, by AA?

Setting and data

Application responses

Shifted in vs. out ○●○○○○○

Parameters of interest

The cost of AA measured in terms of an outcome Y can be written as

$$\sum_{i} Y_i(AA=1) - Y_i(AA=0)$$

Assuming that switching on AA without changing the treatment does not change the outcome, this can be written in terms of potential outcomes Y^1, Y^0

$$=\sum_{i}Y_{i}^{1}D_{i}(AA=1)+Y_{i}^{0}(1-D_{i}(AA=1))-Y_{i}^{1}D_{i}(AA=0)-Y_{i}^{0}(1-D_{i}(AA=0))$$

$$=\sum_{i}[Y_{i}^{1}-Y_{i}^{0}]\Big[D_{i}(AA=1)-D_{i}(AA=0)\Big]$$

Setting and data

Application responses

Shifted in vs. out 00●0000

Parameters of interest

Groups by treatment status:

Shifted-in $D_i(AA = 1) = 1, D_i(AA = 0) = 0$ Shifted-out $D_i(AA = 1) = 0, D_i(AA = 0) = 1$ Unaffected (admitted) $D_i(AA = 1) = 1, D_i(AA = 0) = 1$ Unaffected (rejected) $D_i(AA = 1) = 0, D_i(AA = 0) = 0$ $= \sum_i [Y_i^1 - Y_i^0] \left[D_i(AA = 1) - D_i(AA = 0) \right]$

$$= \sum_{i \in \text{In}} [Y_i^1 - Y_i^0] - \sum_{i \in \text{Out}} [Y_i^1 - Y_i^0]$$
$$= N_{\text{In}} E[Y_i^1 - Y_i^0|\text{Shifted-in}] - N_{\text{Out}} E[Y_i^1 - Y_i^0|\text{Shifted-out}]$$

Hence, the ATE for winners and losers is informative of the cost of the policy

Distance to existing cutoff, minus any gender points

Observed outcomes for targeted applicants

----- Observed outcomes for non-targeted applicants

Results

Setting and data

Application responses

Shifted in vs. out 00000€0

	Progress after 5 years
Effect of AA for winners	-0.155
Effect of AA for losers:	-0.106
Applicants shifted per cohort	77

Application responses

Shifted in vs. out 000000

Conclusion and Roadmap

- Gender points lead to higher share of targeted students
 - Some effect likely runs through application responses
- Little evidence of mismatch
 - More gender balance at little or no cost to the program
 - Yet some cost to the displaced students
- Next: Model application behaviour

Questions or comments: ingrid.semb@econ.uio.no

Example

	Applicant of targeted gender				
Program		Raw	Application Score	Cutoff	Offer
1	Civil and Environmental Engineering	54	56	54.8	Yes
2	Teaching	54	54	48	No

	Applicant of targeted gender				
Program		Raw	Application Score	Cutoff	Offer
1	Civil and Environmental Engineering	54	56	54.8	Yes
2	Teaching	54	54	48	No

Applicant of non-targeted gender

	Program	Raw	Application Score	Cutoff	Offer
1	Civil and Environmental Engineering	54	54	54.8	No
2	Teaching	54	54	48	Yes

Programs by use of gender points

	Number of programs	Percent of total
Never	1181	91.20
Time-varying	19	1.47
Always	95	7.34
Total	1295	100.00

First stage: Enrollment

STEM enrollment

Difference in LATEs: 0.045 (t-statistic: 1.25)