A Continuous Time Experiment on Linking Formation

Syngjoo Choi¹ Sanjeev Goyal² Fulin Guo³ Frédéric Moisan⁴

¹Seoul National University
²University of Cambridge & NYUAD
³University of Cambridge
⁴Emlyon Business School & GATE

EEA-ESEM 2023, Barcelona, Spain August 28, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Many important connections are chosen by purposeful agents.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Many important connections are chosen by purposeful agents.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Individual decisions on connections generate networks.

- Many important connections are chosen by purposeful agents.
- Individual decisions on connections generate networks.
- Theory
 - equilibrium based on subtle reasoning
 - strategies and computations are complex
 - multiple equilibria in many models
 - selection based on efficiency and dynamics: sharp predictions

- Many important connections are chosen by purposeful agents.
- Individual decisions on connections generate networks.
- Theory
 - equilibrium based on subtle reasoning
 - strategies and computations are complex
 - multiple equilibria in many models
 - selection based on efficiency and dynamics: sharp predictions

• Goal: test these predictions.

• Individuals choose to form links.

- Individuals choose to form links.
- Linking gives access to other individuals' values: the values of neighbours, and of neighbours' neighbours...

- Individuals choose to form links.
- Linking gives access to other individuals' values: the values of neighbours, and of neighbours' neighbours...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Maintaining connections is costly.

- Individuals choose to form links.
- Linking gives access to other individuals' values: the values of neighbours, and of neighbours' neighbours...
- Maintaining connections is costly.
- The value flow can be either one-way or two-way.
 - one-way: the link that agent *i* forms with agent *j* yields benefits solely to agent *i*.

• two-way: the benefits accrue to both agents.

- $N = \{1, 2, ..., n\}$ with $n \ge 3$
- Each player $i \in N$ chooses a set of links g_i with others, $g_i = (g_{i1}, \ldots, g_{ii-1}, g_{ii+1}, \ldots, g_{in})$, and $g_{ij} \in \{0, 1\}$ for any $j \in N \setminus \{i\}$.
- Thus links are unilateral in this game.
- A strategy profile $g = (g_1, g_2, .., g_n)$ specifies the links made by every player and induces a directed graph, g.

- one-way model: $\Pi_i(g) = V + \sum_{j \in C_i(g)} \delta^{d(i,j;g)} V \eta_i(g) k$
- two-way model: $\Pi_i(g) = V + \sum_{j \in C_i(ar{g})} \delta^{d(i,j;ar{g})} V \eta_i(g) k$
 - V represents the value of benefit from a connection.
 - $C_i(g)$ is the set of agents that *i* is path-connected to.
 - $\delta \in (0,1]$ is the decay factor of value
 - \bar{g} is the closure of g: $\bar{g}_{ij} = \max(g_{ij}, g_{ji})$ for every $i, j \in N$.
 - d(i, j; g) is the length of the shortest path between i and j.
 - $\eta_i(g) = |\{j \in N : g_{ij} = 1\}|$ is the number of links *i* formed.

• k is the cost of a link.

- value of an agent: V = 10
- four treatments:
 - two-way, n = 10 ($\delta = 0.9$, k = 20)
 - two-way, $n = 50~(\delta = 0.9,~k = 100)$
 - one-way, $n = 10 \ (\delta = 1, \ k = 20)$
 - one-way, $n = 50 \ (\delta = 1, \ k = 100)$
- δ : decay factor of value; k: cost per link

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\frac{k}{n}$ kept constant across treatments

Efficient and Nash networks

For both n = 10 and n = 50:

- one-way: cycle network
- two-way: star network

• Individuals face a complex decision.

- compare costs and benefits of linking
- challenging to compute the value of a link

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- when to make a change
- large evolving network

- Individuals face a complex decision.
 - compare costs and benefits of linking
 - challenging to compute the value of a link
 - when to make a change
 - large evolving network
- very unclear what sorts of networks will actually emerge

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Individuals face a complex decision.
 - compare costs and benefits of linking
 - challenging to compute the value of a link
 - when to make a change
 - large evolving network
- very unclear what sorts of networks will actually emerge
- How does bounded rational decision-making at an individual level generate aggregate outcomes?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- existing work: small groups (4-8)
- A: simultaneous choice
 - Goeree et al. (2009): reject the two-way prediction
 - Falk and Kosfeld (2012): match in one-way but reject two-way model
 - Caria and Fafchamps (2020); Callander and Plott (2005): reject the one-way prediction

- existing work: small groups (4-8)
- A: simultaneous choice
 - Goeree et al. (2009): reject the two-way prediction
 - Falk and Kosfeld (2012): match in one-way but reject two-way model
 - Caria and Fafchamps (2020); Callander and Plott (2005): reject the one-way prediction

- existing work: small groups (4-8)
- A: simultaneous choice
 - Goeree et al. (2009): reject the two-way prediction
 - Falk and Kosfeld (2012): match in one-way but reject two-way model
 - Caria and Fafchamps (2020); Callander and Plott (2005): reject the one-way prediction
- B: asynchronous choice:
 - Berninghaus et al. (2006): match prediction in two-way
 - Friedman and Oprea (2012): continuous time leads to high cooperation rate in repeated prisoner's dilemma game.

- unclear if these findings scale with size
- novelty of our work:
 - large and small groups
 - asynchronous decision in continuous time

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• one-way and two-way flow

- continuous time and asynchronuous decision
- 6 minutes a round
- At any instant in the 6-minute game, a subject can form/delete a link with any other subject.
- At any moment, each subject is informed about the network structure and about their own payoff.

- The first minute is a trial period and a time moment is randomly chosen from the last 5 minutes for payment.
- 4 groups per treatment and 6 rounds per group

Experimental results — snapshots

(c)
$$N = 50$$
 (one-way): minute 6

(d) N = 50 (two-way): minute 6

SQC.

æ

Social efficiency

Size of the largest component (normalised)

- two-way: fract. in largest component of undirected network
- one-way: fract. in largest (strongly connected) component of directed network

Summary: aggregate statistics

	one-way	one-way	two-way	two-way
	(n = 10)	(n = 50)	(n = 10)	(n = 50)
social officionay	77.2%	37.6%	82.8%	71.9%
social enciency	(100%)	(100%)	(100%)	(100%)
average distance	3.59	6.13	2.11	2.81
	(5)	(25)	(1.8)	(1.98)
med/max degree	0.578	0.145	0.086	0.031
	(1)	(1)	(0.11)	(0.02)
% largest comp.	80.2%	52.8%	93.2%	96.8%
	(100%)	(100%)	(100%)	(100%)
mean outdegree	1.10	1.28	0.93	1.31
	(1)	(1)	(0.9)	(0.98)

equilibrium prediction in parenthesis.

- How do subjects do so well in the two way model?
- Why is there a breakdown of connectedness and efficiency loss in the one-way model (especially for *n* = 50)?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

	one-way	one-way	two-way	two-way
	(n = 10)	(n = 50)	(n = 10)	(n = 50)
active rate (AR)	9.46%	8.61%	10.3%	9.90%
AR given max pay ≤ 0	3.57%	3.37%	4.91%	4.60%
AR given max pay > 0	27.4%	16.1%	20.9%	16.2%
best response rate (BRR)	76.0%	59.4%	66.2%	54.7%
BRR given active	36.6%	28.1%	31.6%	29.0%

Individual-level performance in one-way is no worse than that in two-way

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Noisy myopic best response simulations

- For $t \leq 60$, each player randomly makes action
- For t > 60, myopic best response with probability 1ϵ , random with probability ϵ

Figure: Efficiency for different error rate ϵ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: Efficiency for different error rate ϵ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

- one-way model is sensitive to decision noises
- two-way model is robust to decision noises
- more difficult to achieve high social efficiency and be close to theoretical prediction in the one-way model than in the two-way model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Theory predicts radically different structures in the two models.
- conducted continuous time network formation experiment
 - small groups close to predictions: different from existing research
 - large groups breakdown of connectedness and efficiency in the one way model, high efficiency and connectedness in the two way model

• Small noises in decision create great disruption in the one-way model.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Bala, V. and Goyal, S. (2000). A noncooperative model of network formation. *Econometrica*, 68(5):1181–1229.
- Berninghaus, S. K., Ehrhart, K.-M., and Ott, M. (2006). A network experiment in continuous time: The influence of link costs. *Experimental Economics*, 9(3):237–251.
- Callander, S. and Plott, C. R. (2005). Principles of network development and evolution: An experimental study. *Journal of Public Economics*, 89(8):1469–1495.
- Caria, A. S. and Fafchamps, M. (2020). Can people form links to efficiently access information? *The Economic Journal*, 130(631):1966–1994.
- Falk, A. and Kosfeld, M. (2012). It's all about connections: Evidence on network formation. *Review of Network Economics*, 11(3).
- Friedman, D. and Oprea, R. (2012). A continuous dilemma. *American Economic Review*, 102(1):337–63.
- Goeree, J. K., Riedl, A., and Ule, A. (2009). In search of stars: Network formation among heterogeneous agents. *Games and Economic Behavior*, 67(2):445–466.