Bayesian and Frequentist Inference for Synthetic Controls

Jaume Vives-i-Bastida (MIT) and Ignacio Martinez (Google)

EEA-ESEM 2023

OVERVIEW

GoAL: inference for SCs in linear factor model frameworks

THIS PAPER:

1. For a simple factor model, answer:

- What parameters are we targeting?
-What are we identifying as the number of donor units grows?
- Under which conditions can we estimate them?
- Under what conditions is the target parameter a "synthetic control"?

2. Provide a Bayesian alternative (bsynth) to SC and derive a BvM result

Today:

- Identification results
- (pseudo)-MLE with growing parameters
- New! Bayes estimator for SC \Longrightarrow Credible Intervals
- BvM (Bayes ~ Frequentist)
- Unification and Secession

BSYNTH PACKAGE FOR ADH 2015

synth <- bayesianSynth\$new(data = germany,
time = year,

$$
\mathrm{id}=\text { country }
$$

treated = D,

$$
\text { outcome }=\text { gdp_pc) }
$$

(a) Treatment effect

(b) Implicit weight marginals

WHY USE BSYNTH?

1. Simple to implement in R!
2. Bayesian inference with few data points (intervals!)
3. Can easily incorporate priors on unit weights
4. Can approximate frequentist inference under some conditions (BvM)
5. Gives you the full posterior distribution, implicit weight distribution, correlations between weights etc.

Inference for Synthetic Controls

1. Permutation Inference (Abadie et al. 2010, Firpo and Possebom 2018, Abadie 2020)
2. Projection Theory for ATE (Li 2020, Hsiao et al. 2012)
3. Conformal Inference (Chernozhukov et al. 2021a)
4. Large sample properties in factor models (Ferman 2021, Ferman and Pinto 2019)
5. Bayesian inference (Pang, Liu, and Xu 2020, Arbour et al. 2021)
\Longrightarrow Literature requires conditions on the weight vector w

- Good pre-treatment fit requirement.
- There exists a true w^{*}
- Sequence of w that gets diluted as $J \rightarrow \infty$

Today: re-write w in terms of the factor model and derive conditions on the factor loadings

TOY FACTOR MODEL I

Based on: Hsiao et al. 2012 and Ferman 2021
T_{0} time periods, $J+1$ units
Potential outcomes are given by

$$
\begin{aligned}
Y_{i t}(0) & =\lambda_{i}^{\prime} \mathrm{F}_{t}+\epsilon_{i t} \\
Y_{i t}(1) & =\tau_{i t}+Y_{i t}(0) .
\end{aligned}
$$

\Longrightarrow Only unit 1 gets treated after T_{0}.

Toy Factor Model II

Target parameter (ATET):

$$
\tau_{1 T_{0}+1}=Y_{1 T_{0}+1}-\underbrace{Y_{1 T_{0}+1}(0)}_{\text {unobserved }}
$$

Estimators: based on observations $\boldsymbol{y}_{J \pi_{0}+1}$. Then, for $w \in \mathbb{R}^{J}$

$$
\hat{\gamma}_{1 T_{0}+1}(0)=w^{\prime} y_{j T_{0}+1}
$$

Simplifying assumptions:
(A1) - factors
(a) we have only one factor such that $\lambda_{i}, F_{t} \in \mathbb{R}$
(b) $F_{t} \sim_{i . i . d} N\left(0, \sigma^{2}\right)$
(A2) - idiosyncratic shocks
(a) $\epsilon_{i t} \sim_{i, i . d} N(0,1)$

CONDITIONAL DISTRIBUTION

Under A1-A2 the conditional distribution of $Y_{1 t}$ given realizations $y_{j t}$ is

$$
Y_{1 t} \mid Y_{J t}=y_{J t} \sim N(\tilde{\mu}, \tilde{\Sigma})
$$

where

$$
\begin{aligned}
& \tilde{\mu}=\sum_{j=2}^{J+1} \tilde{w}_{j}(\boldsymbol{\lambda}, \sigma) y_{j t}, \\
& \tilde{\Sigma}=1+\lambda_{1} \sigma^{2}\left(1-\sum_{j=2}^{\rho+1} \tilde{w}_{j}(\boldsymbol{\lambda}, \sigma) \lambda_{j}\right), \text { and } \\
& \tilde{w}_{j}(\boldsymbol{\lambda}, \sigma)=\frac{\sigma^{2} \lambda_{1} \lambda_{j}}{1+\sum_{j=2}^{j+1} \lambda_{j}^{2} \sigma^{2}}
\end{aligned}
$$

TARGET PARAMETER I

- The \tilde{w} weights minimize the statistical risk.

Theorem (Linear Predictors)

Under assumptions A1-A2 it follows that

$$
\tilde{w} \in \operatorname{argmin}_{w} \mathbb{E}\left[\left(Y_{1}(0)-y_{j}^{\prime} w\right)^{\prime} V\left(Y_{1}(0)-y_{j}^{\prime} w\right)\right],
$$

for any positive semi-definite matrix V.

Target Parameter II

What parameters of the factor model can we recover?

$$
Y_{1 T_{0}+1}(0)=\underbrace{\lambda_{1} F_{T_{0}+1}}_{\text {predictive part }}+\underbrace{\epsilon_{i T_{0}+1}}_{\text {new shock }}
$$

Theorem (Predictor convergence)

Given A1-A2, if

$$
\frac{1}{\left\|\boldsymbol{\lambda}_{j}\right\|_{2}^{2}} \sum_{j}\left|\lambda_{j}\right| \rightarrow 0
$$

as $J \rightarrow \infty$, then

$$
y_{J_{0}+1}^{\prime} \tilde{w} \xrightarrow{p} \lambda_{1} F_{T_{0}+1}
$$

Target Parameter III

Convergence in probability requires a density condition:

$$
\frac{1}{\|\boldsymbol{\lambda}\|_{2}^{2}} \sum_{j}\left|\lambda_{j}\right| \rightarrow 0
$$

- Implies that $\left\|\tilde{w}_{\|}\right\|_{2}^{2} \rightarrow 0$ as $J \rightarrow \infty$ (Ferman 2021).
- Implies that we recover the treated unit factor loading:

$$
\sum_{j} \tilde{w}_{j} \lambda_{j}=\frac{\sigma^{2} \lambda_{1}\left\|\boldsymbol{\lambda}_{j}\right\|_{2}^{2}}{1+\sigma^{2}\left\|\boldsymbol{\lambda}_{j}\right\|_{2}^{2}} \rightarrow \lambda_{1} .
$$

TARGEt Parameter IV

When is \tilde{w} a synthetic control?

$$
\tilde{w} \in \Delta^{\prime}=\left\{w \mid w \geq 0, \sum_{j} w_{j}=1\right\}
$$

Theorem (Synthetic Control Characterization I)

For fixed I under A1-A2, $\tilde{w} \in \Delta^{\prime}$ iff the following conditions hold

1. $\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{j}\right)$ for all j,
2. $\sum_{j} \lambda_{j}^{2}-\lambda_{1} \sum_{j} \lambda_{j}+\frac{1}{\sigma^{2}}=0$.

Furthermore, for a fixed λ_{1}, as $J \rightarrow \infty$ if $\frac{1}{\left\|\lambda_{j}\right\|_{2}^{2}} \sum_{j}\left|\lambda_{j}\right| \rightarrow 0$ then there exist no sequences $\left\{\lambda_{j}\right\}$ for which (2) and (1) hold simultaneously.

Target Parameter V

- If λ_{1} is fixed, at the limit the SC will be biased.
- If we let λ_{1} be a function of the λ_{j} we can reconcile the condition.

Theorem (Synthetic Control Characterization II)

Given the previous theorem's assumptions, there exist conditions on λ_{1} such that $\tilde{w} \in \Delta^{\prime}$. In particular, our conditions are implied by

$$
\lambda_{1} \in \boldsymbol{\Delta}\left(\boldsymbol{\lambda}_{\jmath}\right)
$$

So, we recover the sufficient conditions of Ferman 2021.

Recap

- The target weights are the linear CEF.
- Under some conditions we can recover the predictive part as $J \rightarrow \infty$.
- The set of distributions s.t. we can do so with SC is small but non-empty.

Next \Longrightarrow Inference!

INFERENCE: MLE I

Goal: estimate \tilde{w}_{j} using a data set of pre-treatment outcomes $\left\{y_{1 t}(0), y_{j t}(0)\right\}_{t=1}^{T_{0}}$.
Log-likelihood for parameter $\boldsymbol{\theta}=(w, \Sigma)$:

$$
l_{T_{0}}(\theta)=-\frac{1}{2} \log (2 \pi \Sigma)-\frac{1}{T_{0}} \sum_{t=1}^{T_{0}} \frac{1}{2 \Sigma}\left(y_{1 t}-\sum_{j=2}^{\mu+1} w_{j} y_{j t}\right)^{2}
$$

- For fixed J, like standard MLE.
- But we need $J \rightarrow \infty$!

INFERENCE: MLE II

Theorem (MLE with growing J)

Let $\hat{\boldsymbol{\theta}}_{\text {MLE }} \in \operatorname{argmax}_{\boldsymbol{\theta}} \operatorname{lT}_{T_{0}}(\boldsymbol{\theta} \in \Theta)$ for a compact parameter space Θ, then under A1-A2 and λ_{j} are uniformly bounded:

1. $\frac{1}{T_{0}} \sum_{t} y_{t t} y_{t t}^{\prime}=D_{T_{0}}$ where
$0<\lim \inf _{T_{0}} \sigma_{\min }\left(D_{T_{0}}\right) \leq \lim \sup _{T_{0}} \sigma_{\max }\left(D_{T_{0}}\right)<\infty$,
2. $\max _{t \leq T_{0}}\left\|y_{t}\right\|_{2}^{2}=O_{p}(J)$,
3. $\sup _{\boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathcal{S}_{\mathcal{J}}(1)} \sum_{t}\left|y_{t t}^{\prime} \boldsymbol{\beta}\right|^{2}\left|\boldsymbol{y}_{\boldsymbol{t}}^{\prime} \gamma\right|^{2}=O_{p}\left(T_{0}\right)$.

Then, it follows that if $O\left(T_{0}\right)=J(\log ر)^{3}$

$$
\left\|\hat{w}_{M L E}-\tilde{w}\right\|_{2}^{2}=O_{p}\left(J / T_{0}\right)
$$

If $o\left(T_{0}\right)=J^{2} \log (J)$ then

$$
\sqrt{T_{0}} \alpha^{\prime}\left(\hat{\mathbf{w}}_{\text {MLE }}-\tilde{\mathbf{w}}\right) / \sigma_{\alpha} \xrightarrow{d} N(0,1),
$$

for any $\boldsymbol{\alpha} \in \mathbb{R}^{\prime}$ and

$$
\sigma_{\alpha}^{2}=\left(\mathbb{E}\left[\epsilon_{t}{ }^{2}\right]\right)^{-1} \boldsymbol{\alpha}^{\prime} D_{T_{0}}^{-1} \boldsymbol{\alpha}
$$

INFERENCE: MLE II

Corollary

Under the conditions of the previous theorem, as $J, T_{0} \rightarrow \infty$:

1. If $O\left(T_{0}\right)=J(\log J)^{3}$ and $\frac{1}{\left\|\lambda_{j}\right\|_{2}^{2}} \sum_{j}\left|\lambda_{j}\right| \rightarrow 0$, then

$$
y_{J_{0}+1+1}^{\prime} \hat{W}_{\text {MLE }} \xrightarrow{p} \lambda_{1} F_{T_{0}+1} .
$$

2. If $o\left(T_{0}\right)=\rho^{2} \log (J)$ and $\frac{1}{\left\|\lambda_{j}\right\|_{2}^{2}} \sum_{j}\left|\lambda_{j}\right| \rightarrow 0$, then

$$
\sqrt{T_{0}}\left(y_{J_{0}+1}^{\prime} \hat{w}_{\text {MLE }}-\lambda_{1} F_{T_{0}+1}\right) / \sigma_{y_{J_{0}+1}} \xrightarrow{d} N(0,1) .
$$

- Intuition: T_{0} has to grow faster than J (quite faster).
- Based on methods by He and Shao 1996, 2000 and Bai and Wu 1994 (JMA).

BAYESIAN SYNTHETIC CONTROL

Consider the following Bayesian model:

$$
\begin{aligned}
y_{1 t} \mid y_{j t}, w, \sigma_{y} & \sim N\left(y_{j t}^{\prime} w, \sigma_{y}^{2}\right), \\
w_{j} \mid y_{j t} & \sim N\left(\mu_{j}, \tau_{j}^{2}\right) .
\end{aligned}
$$

Bayes estimator

$$
\hat{w}_{j}^{B}=\mathbb{E}_{B}\left[w_{j} \mid \boldsymbol{y}_{t}\right]=\int w_{j} p\left(w_{j} \mid y_{t}\right) d w_{j}
$$

Then, the predictive posterior distribution is normal with

1. Mean:

$$
\hat{Y}_{1 t}^{B}=y_{j t}^{\prime} \mathbb{E}_{B}\left[w_{j} \mid y_{t}\right]=\frac{\sigma_{y}^{2}}{\sigma_{y}^{2}+\sum_{j} \tau_{j}^{2}} y_{j t}^{\prime} \mu_{j}+\frac{\sum_{j} \tau_{j}^{2}}{\sigma_{y}^{2}+\sum_{j} \tau_{j}^{2}} y_{1 t} .
$$

2. Variance:

$$
\mathbb{V}_{B}\left(y_{j t}^{\prime} w \mid y_{t}\right)=\frac{\sigma_{y}^{2} \sum_{j} \tau_{j}^{2}}{\sigma_{y}^{2}+\sum_{j} \tau_{j}^{2}}
$$

Dirichlet prior: $\mu_{j} \sim \operatorname{Dir}(1)$

BVM

Theorem (BvM)

Under A1-A2, the assumptions the Corollary and

1. Prior conditions: $\left\|\mu_{j}\right\|_{2}^{2} \rightarrow 0,\left\{\tau_{j}\right\}$ such that $\sum_{j} \tau_{j}^{2}=O\left(J^{\alpha}\right)$, for $0<\alpha<1$, as $J \rightarrow \infty$, and $\sigma_{y} \rightarrow 1$.
2. Convex recovery: $\left\|\lambda_{1}-\lambda_{j}^{\prime} \boldsymbol{\mu}_{\jmath}\right\|_{2} \rightarrow 0$ as $J \rightarrow \infty$.

Then, as $T, J \rightarrow \infty$ at rate $o\left(T_{0}\right)=J^{2} \log (J)$,

$$
y_{J_{0}+1}^{\prime} \mathbb{E}_{B}\left[w \mid y_{T_{0}}\right] \xrightarrow{p} \lambda_{1} F_{T_{0}+1},
$$

and

$$
\left\|\Phi_{T_{0}, J}^{M L E}-Q_{T_{0}, J}\right\|_{T V} \rightarrow 0
$$

where $\Phi_{T_{0}+1, j}^{M L E}$ denotes the MLE finite sample distribution and $Q_{T_{0}+1, J}$ the Bayes posterior predictive distribution.

THEORY RECAP

1. We derived conditions on the factor loadings such that SC recovers the target parameter.
2. In general, the set of such DGPs may be small, but intuitive sufficient conditions exist.
3. Inference through pseudo-MLE.
4. Conditions exist for Bayesian SC to converge to frequentist in TV (BvM).

Hard simulation

Grouped Linear Factor Model (as in Ferman and Pinto 2018)

$$
y_{i t}(0)=\lambda_{f(i) t}+\epsilon_{i t} .
$$

- $\lambda_{f t}$ follow an $A R(1)$ with $\rho=0.5$ and standard Gaussian innovations.
- $\epsilon_{\text {it }} \sim N\left(0, \sigma^{2}\right)$ with $\sigma=0.25$.
- Only unit 1 is treated, but treatment effect is 0 .
- $f(1)=f(2)$ so unit 2 is the unbiased synthetic control.
- Fix $T_{0}=T-10$ and take $T \rightarrow \infty$.
- $J=20$.

Simulation of $\hat{\tau}_{1}=\frac{1}{T-T_{0}} \sum_{t} \hat{\tau}_{1 t}$

1. Distribution over 10000 draws of the frequentist SC.
2. Bayesian posterior distribution (MCMC).

SIMULATION EVIDENCE AS $T \rightarrow \infty$

SIMULATION EVIDENCE $T \rightarrow \infty$

SIMULATION EVIDENCE $T \rightarrow \infty$

SIMULATION EVIDENCE $T \rightarrow \infty$

IMPLICIT WEIGHTS $T \rightarrow \infty$

BSYNTH AND GERMAN RE-UNIFICATION

- Implementation of Bayesian model in BSYnth R-package
- Results for German re-unification very similar to standard SC

Figure 2: Bayesian synthetic control for West Germany

CATALAN UDI

- We find that the UDI lead to a $0.3 \%-1.6 \%$ decrease in GDP.

Figure 3: Bayesian synthetic control for Catalonia

Conclusion

1. When are the target parameters synthetic controls under simple factor model settings? density conditions
2. How can we do inference as $J, T_{0} \rightarrow \infty$? pseudo-MLE
3. Can we use a Bayesian procedure to approximate the frequentist SC? yes

Method:

1. bsynth R-package can estimate different models (GP) and offers post-estimation functions
2. Application to the German re-unification and the Catalan UDI

Paper available at: https://arxiv.org/abs/2206.01779
Thanks!

CONDItIonal DIStRIBUTION II

$$
\Sigma_{(2, J+1)}=\left(\begin{array}{cccc}
1+\lambda_{2}^{2} \sigma^{2} & \lambda_{2} \lambda_{3} \sigma^{2} & \ldots & \lambda_{2} \lambda_{\jmath+1} \sigma^{2} \\
\lambda_{2} \lambda_{3} \sigma^{2} & 1+\lambda_{3}^{2} \sigma^{2} & \ldots & \lambda_{3} \lambda_{\jmath+1} \sigma^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{2} \lambda_{J+1} \sigma^{2} & \lambda_{3} \lambda_{\jmath+1} \sigma^{2} & \ldots & 1+\lambda_{J+1}^{2} \sigma^{2}
\end{array}\right)=\sum_{j=2}^{J+1} s_{j} u_{j} u_{j}^{\top}
$$

where s_{j} is the eigenvalue associated with the u_{j} eigenvector. Observe that the eigenvalues are given by $s_{2}=\cdots=s_{\jmath}=1$ and $s_{J+1}=1+\sum_{j=2}^{J+1} \lambda_{j}^{2} \sigma^{2}$.

$$
\begin{gathered}
\tilde{\mu}=\sigma^{2} \lambda_{1} \sum_{j=2}^{J+1} \sum_{i=2}^{J+1} \lambda_{i}\left[\sum_{(2, J+1)}^{-1}\right]_{j i} y_{j} \\
w_{j}(\boldsymbol{\lambda}, \sigma)=\sigma^{2} \lambda_{1} \sum_{i=2}^{J+1} \lambda_{i} \sum_{k=2}^{J+1} \frac{1}{S_{k}}\left[u_{k} u_{k}^{T}\right]_{j i} \\
=\frac{\sigma^{2} \lambda_{1} \lambda_{j}}{1+\sum_{j=2}^{J+1} \lambda_{j}^{2} \sigma^{2}}
\end{gathered}
$$

InFERENCE DETAILS

Focus on the first assumption:

$$
\frac{1}{T_{0}} \sum_{t} y_{j t} y_{j t}^{\prime}=D_{T_{0}}
$$

where $0<\lim \inf _{T_{0}} \sigma_{\min }\left(D_{T_{0}}\right) \leq \lim \sup _{T_{0}} \sigma_{\max }\left(D_{T_{0}}\right)<\infty$. Then, under the other assumptions:

$$
\begin{array}{r}
\left|\boldsymbol{\alpha}^{\prime}\left(\sum_{t} \mathbb{E}\left(\left(y_{1 t}-y_{j t}^{\prime} \hat{w}_{M L E}\right)-\left(y_{1 t}-y_{j t}^{\prime} \tilde{w}\right)\right) y_{j t}\right)-T_{0} \boldsymbol{\alpha}^{\prime} D_{T_{0}}\left(\hat{w}_{M L E}-\tilde{w}\right)\right| \\
\leq c \sum_{t}\left|y_{j t}^{\prime} \boldsymbol{\alpha} \| y_{J t}^{\prime}\left(\hat{w}_{M L E}-\tilde{w}\right)\right|^{2}
\end{array}
$$

Then, there exist a sequence of $J \times J$ matrices $D_{T_{0}}$ with bounded eigenvalues such that for any $\delta>0$, uniformly in $\boldsymbol{\alpha} \in \mathcal{S}_{\mathcal{J}}(1)$,

$$
\begin{array}{r}
\sup _{\|w-\tilde{w}\| \leq \delta\left(J / T_{0}\right)^{1 / 2}}\left|\boldsymbol{\alpha}^{\prime}\left(\sum_{t} \mathbb{E}\left(\left(y_{1 t}-y_{J t}^{\prime} w\right)-\left(y_{1 t}-y_{J t}^{\prime} \tilde{w}\right)\right) y_{J t}\right)-T_{0} \boldsymbol{\alpha}^{\prime} D_{T_{0}}\left(\hat{w}_{M L E}-\tilde{w}\right)\right| \\
=o\left(\left(T_{0} J\right)^{1 / 2}\right)
\end{array}
$$

BVM II

Proof idea:

$$
\left\|\Phi_{M L E}-Q\right\|_{T V} \leq \sqrt{\frac{1}{2} D_{K L}\left(\Phi_{M L E} \| Q\right)}
$$

Lemma (KL. Convergence (Barron 1986))

Let $\Phi_{J, T}$ be the MLE estimator distribution and $Q_{T, J}$ be the smooth, bounded Bayes posterior predictive distribution for fixed J and T_{0}. Suppose that as $J, T \rightarrow \infty$,

1. $\Phi_{J, T} \rightarrow P^{*}$,
2. $Q_{T, J} \rightarrow Q^{*}$,
3. Q^{*} and P^{*} have the same mean and have bounded fourth moments.

Then, it follows that

$$
D_{K L}\left(\Phi_{J, T} \| Q_{T, J}\right)=D_{K L}\left(\Phi^{*} \| Q^{*}\right)+O(1 /(T J)) .
$$

BvM III

Then, we just need to compare the variances.

Lemma (Gaussian KL)

Suppose that Q and P are normal random variables with equal means and $k \times k$ covariance matrices Σ_{Q} and Σ_{p}. Then,

$$
D_{K L}(P \| Q)=\frac{1}{2}\left(\log \frac{\left|\Sigma_{P}\right|}{\left|\Sigma_{Q}\right|}-k+\operatorname{tr}\left(\Sigma_{Q}^{-1} \Sigma_{P}\right)\right) .
$$

