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OVERVIEW

GOAL: inference for SCs in linear factor model frameworks

THIS PAPER:
1. For a simple factor model, answer:

• What parameters are we targeting?
• What are we identifying as the number of donor units grows?
• Under which conditions can we estimate them?
• Under what conditions is the target parameter a ”synthetic
control”?

2. Provide a Bayesian alternative (bsynth) to SC and derive a BvM
result

Today:

• Identification results
• (pseudo)-MLE with growing parameters
• New! Bayes estimator for SC =⇒ Credible Intervals
• BvM (Bayes ∼ Frequentist)
• Unification and Secession 1



BSYNTH PACKAGE FOR ADH 2015

synth <− bayesianSynth$new ( data = germany ,
time = year ,
id = country ,
t reated = D ,
outcome = gdp_pc )

(a) Treatment effect (b) Implicit weight marginals
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WHY USE BSYNTH?

1. Simple to implement in R!

2. Bayesian inference with few data points (intervals!)

3. Can easily incorporate priors on unit weights

4. Can approximate frequentist inference under some conditions (BvM)

5. Gives you the full posterior distribution, implicit weight distribution,
correlations between weights etc.
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INFERENCE FOR SYNTHETIC CONTROLS

1. Permutation Inference (Abadie et al. 2010, Firpo and Possebom
2018, Abadie 2020)

2. Projection Theory for ATE (Li 2020, Hsiao et al. 2012)
3. Conformal Inference (Chernozhukov et al. 2021a)
4. Large sample properties in factor models (Ferman 2021, Ferman
and Pinto 2019)

5. Bayesian inference (Pang, Liu, and Xu 2020, Arbour et al. 2021)

=⇒ Literature requires conditions on the weight vector w

• Good pre-treatment fit requirement.
• There exists a true w∗

• Sequence of w that gets diluted as J→ ∞

Today: re-write w in terms of the factor model and derive conditions
on the factor loadings
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TOY FACTOR MODEL I

Based on: Hsiao et al. 2012 and Ferman 2021

T0 time periods, J+ 1 units

Potential outcomes are given by

Yit(0) = λ′
iFt + ϵit,

Yit(1) = τit + Yit(0).

=⇒ Only unit 1 gets treated after T0.
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TOY FACTOR MODEL II

Target parameter (ATET):

τ1T0+1 = Y1T0+1 − Y1T0+1(0)︸ ︷︷ ︸
unobserved

Estimators: based on observations yJT0+1. Then, for w ∈ RJ

Ŷ1T0+1(0) = w′yJT0+1

Simplifying assumptions:

(A1)− factors
(a) we have only one factor such that λi, Ft ∈ R

(b) Ft ∼i.i.d N(0, σ2)
(A2)− idiosyncratic shocks

(a) ϵit ∼i.i.d N(0, 1)
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CONDITIONAL DISTRIBUTION

Under A1-A2 the conditional distribution of Y1t given realizations yJt is

Y1t|YJt = yJt ∼ N
(
µ̃, Σ̃

)
,

where

µ̃ =
J+1∑
j=2

w̃j(λ, σ)yjt,

Σ̃ = 1+ λ1σ
2(1−

J+1∑
j=2

w̃j(λ, σ)λj), and

w̃j(λ, σ) =
σ2λ1λj

1+
∑J+1

j=2 λ
2
j σ

2

derivations
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TARGET PARAMETER I

• The w̃ weights minimize the statistical risk.

Theorem (Linear Predictors)
Under assumptions A1-A2 it follows that

w̃ ∈ argminwE
[
(Y1(0)− y′Jw)′V(Y1(0)− y′Jw)

]
,

for any positive semi-definite matrix V.
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TARGET PARAMETER II

What parameters of the factor model can we recover?

Y1T0+1(0) = λ1FT0+1︸ ︷︷ ︸
predictive part

+ ϵiT0+1︸ ︷︷ ︸
new shock

Theorem (Predictor convergence)
Given A1-A2, if

1
∥λJ∥22

∑
j

|λj| → 0

as J→ ∞, then
y′JT0+1w̃

p→ λ1FT0+1
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TARGET PARAMETER III

Convergence in probability requires a density condition:

1
∥λJ∥22

∑
j

|λj| → 0

• Implies that ∥w̃J∥22 → 0 as J→ ∞ (Ferman 2021).
• Implies that we recover the treated unit factor loading:

∑
j

w̃jλj =
σ2λ1∥λJ∥22
1+ σ2∥λJ∥22

→ λ1.
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TARGET PARAMETER IV

When is w̃ a synthetic control?

w̃ ∈ ∆J = {w|w ≥ 0,
∑
j

wj = 1}

Theorem (Synthetic Control Characterization I)

For fixed J under A1-A2, w̃ ∈ ∆J iff the following conditions hold

1. sign(λ1) = sign(λj) for all j,

2.
∑

j λ
2
j − λ1

∑
j λj +

1
σ2 = 0.

Furthermore, for a fixed λ1, as J→ ∞ if 1
∥λJ∥22

∑
j |λj| → 0 then there exist no

sequences {λj} for which (2) and (1) hold simultaneously.
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TARGET PARAMETER V

• If λ1 is fixed, at the limit the SC will be biased.
• If we let λ1 be a function of the λj we can reconcile the condition.

Theorem (Synthetic Control Characterization II)

Given the previous theorem’s assumptions, there exist conditions on λ1

such that w̃ ∈ ∆J. In particular, our conditions are implied by

λ1 ∈ ∆(λJ)

So, we recover the sufficient conditions of Ferman 2021.
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RECAP

• The target weights are the linear CEF.
• Under some conditions we can recover the predictive part as
J→ ∞.

• The set of distributions s.t. we can do so with SC is small but
non-empty.

Next =⇒ Inference!
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INFERENCE: MLE I

Goal: estimate w̃J using a data set of pre-treatment outcomes
{y1t(0), yJt(0)}T0t=1.

Log-likelihood for parameter θ = (w,Σ):

lT0(θ) = − 12 log(2πΣ)−
1
T0

T0∑
t=1

1
2Σ

y1t − J+1∑
j=2

wjyjt

2

.

• For fixed J, like standard MLE.
• But we need J→ ∞!
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INFERENCE: MLE II

Theorem (MLE with growing J)
Let θ̂MLE ∈ argmaxθlT0(θ ∈ Θ) for a compact parameter space Θ, then
under A1-A2 and λj are uniformly bounded:

1. 1
T0

∑
t yJty

′
Jt = DT0 where

0 < lim infT0σmin(DT0) ≤ lim supT0σmax(DT0) < ∞,

2. maxt≤T0∥yJt∥22 = Op(J),

3. supβ,γ∈SJ(1)
∑

t |y
′
Jtβ|2|y′Jtγ|2 = Op(T0).

Then, it follows that if o(T0) = J(log J)3

∥ŵMLE − w̃∥22 = Op(J/T0).

If o(T0) = J2 log(J) then
√
T0α′(ŵMLE − w̃)/σα

d→ N(0, 1),

for any α ∈ RJ and
σ2α = (E[ϵ2Jt])−1α′D−1

T0 α. 15



INFERENCE: MLE II

Corollary
Under the conditions of the previous theorem, as J, T0 → ∞:

1. If o(T0) = J(log J)3 and 1
∥λJ∥22

∑
j |λj| → 0, then

y′JT0+1ŵMLE
p→ λ1FT0+1.

2. If o(T0) = J2 log(J) and 1
∥λJ∥22

∑
j |λj| → 0, then

√
T0(y′JT0+1ŵMLE − λ1FT0+1)/σyJT0+1

d→ N(0, 1).

• Intuition: T0 has to grow faster than J (quite faster).

• Based on methods by He and Shao 1996, 2000 and Bai and Wu 1994
(JMA).
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BAYESIAN SYNTHETIC CONTROL

Consider the following Bayesian model:

y1t|yJt,w, σy ∼ N(y′Jtw, σ2y),
wj|yJt ∼ N(µj, τ 2j ).

Bayes estimator
ŵBj = EB[wj|yt] =

∫
wjp(wj|yt)dwj.

Then, the predictive posterior distribution is normal with

1. Mean:

ŶB1t = y′JtEB[wj|yt] =
σ2y

σ2y +
∑

j τ
2
j
y′JtµJ +

∑
j τ

2
j

σ2y +
∑

j τ
2
j
y1t.

2. Variance:

VB(y′Jtw|yt) =
σ2y
∑

j τ
2
j

σ2y +
∑

j τ
2
j
.

Dirichlet prior: µj ∼ Dir(1)
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BVM

Theorem (BvM)

Under A1-A2, the assumptions the Corollary and

1. Prior conditions: ∥µJ∥22 → 0, {τj} such that
∑

j τ
2
j = O(Jα), for

0 < α < 1, as J→ ∞, and σy → 1.
2. Convex recovery: ∥λ1 − λ′

JµJ∥2 → 0 as J→ ∞.

Then, as T, J→ ∞ at rate o(T0) = J2 log(J),

y′JT0+1EB[w|yT0 ]
p→ λ1FT0+1,

and
∥ΦMLE

T0,J − QT0,J∥TV → 0,

where ΦMLE
T0+1,J denotes the MLE finite sample distribution and QT0+1,J

the Bayes posterior predictive distribution.

18



THEORY RECAP

1. We derived conditions on the factor loadings such that SC
recovers the target parameter.

2. In general, the set of such DGPs may be small, but intuitive
sufficient conditions exist.

3. Inference through pseudo-MLE.
4. Conditions exist for Bayesian SC to converge to frequentist in TV
(BvM).
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HARD SIMULATION

Grouped Linear Factor Model (as in Ferman and Pinto 2018)

yit(0) = λf(i)t + ϵit.

• λft follow an AR(1) with ρ = 0.5 and standard Gaussian innovations.

• ϵit ∼ N(0, σ2) with σ = 0.25.

• Only unit 1 is treated, but treatment effect is 0.

• f(1) = f(2) so unit 2 is the unbiased synthetic control.

• Fix T0 = T− 10 and take T→ ∞.

• J = 20.

Simulation of τ̂1 = 1
T−T0

∑
t τ̂1t

1. Distribution over 10000 draws of the frequentist SC.

2. Bayesian posterior distribution (MCMC).
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SIMULATION EVIDENCE AS T→ ∞
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SIMULATION EVIDENCE T→ ∞
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SIMULATION EVIDENCE T→ ∞
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SIMULATION EVIDENCE T→ ∞
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IMPLICIT WEIGHTS T→ ∞
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IMPLICIT WEIGHTS T→ ∞
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IMPLICIT WEIGHTS T→ ∞
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IMPLICIT WEIGHTS T→ ∞
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BSYNTH AND GERMAN RE-UNIFICATION

• Implementation of Bayesian model in BSYNTH R-package
• Results for German re-unification very similar to standard SC

(a) Treatment effect (b) Implicit weight marginals

Figure 2: Bayesian synthetic control for West Germany
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CATALAN UDI

• We find that the UDI lead to a 0.3%-1.6% decrease in GDP.

(a) Treatment effect (b) Implicit weight marginals

Figure 3: Bayesian synthetic control for Catalonia
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CONCLUSION

1. When are the target parameters synthetic controls under simple
factor model settings? density conditions

2. How can we do inference as J, T0 → ∞? pseudo-MLE
3. Can we use a Bayesian procedure to approximate the frequentist
SC? yes

Method:

1. bsynth R-package can estimate different models (GP) and offers
post-estimation functions

2. Application to the German re-unification and the Catalan UDI

Paper available at: https://arxiv.org/abs/2206.01779

Thanks!
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CONDITIONAL DISTRIBUTION II

Σ(2,J+1) =


1+ λ22σ

2 λ2λ3σ
2 · · · λ2λJ+1σ

2

λ2λ3σ
2 1+ λ23σ

2 · · · λ3λJ+1σ
2

...
...

. . .
...

λ2λJ+1σ
2 λ3λJ+1σ

2 · · · 1+ λ2J+1σ
2

 =
J+1∑
j=2

sjujuTj ,

where sj is the eigenvalue associated with the uj eigenvector. Observe that
the eigenvalues are given by s2 = · · · = sJ = 1 and sJ+1 = 1+

∑J+1
j=2 λ

2
j σ

2.

µ̃ = σ2λ1

J+1∑
j=2

J+1∑
i=2

λi[Σ
−1
(2,J+1)]jiyj

wj(λ, σ) = σ2λ1

J+1∑
i=2

λi

J+1∑
k=2

1
sk
[ukuTk]ji

=
σ2λ1λj

1+
∑J+1

j=2 λ
2
j σ

2
.
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INFERENCE DETAILS

Focus on the first assumption:
1
T0
∑
t
yJty′Jt = DT0 ,

where 0 < lim infT0σmin(DT0) ≤ lim supT0σmax(DT0) < ∞. Then, under the
other assumptions:∣∣∣∣∣α′

(∑
t

E((y1t − y′JtŵMLE)− (y1t − y′Jtw̃))yJt

)
− T0α′DT0(ŵMLE − w̃)

∣∣∣∣∣
≤ c

∑
t

|y′Jtα||y′Jt(ŵMLE − w̃)|2

Then, there exist a sequence of J× J matrices DT0 with bounded eigenvalues
such that for any δ > 0, uniformly in α ∈ SJ(1),

sup∥w−w̃∥≤δ(J/T0)1/2

∣∣∣∣∣α′

(∑
t

E((y1t − y′Jtw)− (y1t − y′Jtw̃))yJt

)
− T0α′DT0(ŵMLE − w̃)

∣∣∣∣∣
= o((T0J)1/2)
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BVM II

Proof idea:

∥ΦMLE − Q∥TV ≤
√
1
2DKL(ΦMLE||Q).

Lemma (KL Convergence (Barron 1986))
Let ΦJ,T be the MLE estimator distribution and QT,J be the smooth, bounded
Bayes posterior predictive distribution for fixed J and T0. Suppose that as
J, T→ ∞,

1. ΦJ,T → P∗,

2. QT,J → Q∗,

3. Q∗ and P∗ have the same mean and have bounded fourth moments.

Then, it follows that

DKL(ΦJ,T||QT,J) = DKL(Φ∗||Q∗) + O(1/(TJ)).
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BVM III

Then, we just need to compare the variances.

Lemma (Gaussian KL)
Suppose that Q and P are normal random variables with equal
means and k× k covariance matrices ΣQ and ΣP. Then,

DKL(P||Q) =
1
2

(
log

|ΣP|
|ΣQ|

− k+ tr(Σ−1
Q ΣP)

)
.
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