Explaining the Fall in Female Labor Supply in Urban China

Pengzhan Qian

Queen Mary University of London

EEA 2023

• Female labor force participation rate (FLFP) is a key indicator of gender equality.

- Female labor force participation rate (FLFP) is a key indicator of gender equality.
- FLFP contributes significantly to economic growth.

- Female labor force participation rate (FLFP) is a key indicator of gender equality.
- FLFP contributes significantly to economic growth.
 E.g. 20-40% of the economic growth in the U.S. between 1960 and 2010 can be attributed to the increased FLFP (Hsieh et al., 2019).

Female Labor Participation Rate: 25-54

Female Labor Participation Rate: 25-54

Female Labor Participation Rate: 25-54

• FLFP declines nearly 10% over 20 years (v.s. less than 2% decline for males).

- FLFP declines nearly 10% over 20 years (v.s. less than 2% decline for males).
- Economic transition from the planned economy only explains a small part.

- FLFP declines nearly 10% over 20 years (v.s. less than 2% decline for males).
- Economic transition from the planned economy only explains a small part.
- Occurred when the real earnings increased substantially, which should increase FLFP.

- FLFP declines nearly 10% over 20 years (v.s. less than 2% decline for males).
- Economic transition from the planned economy only explains a small part.
- Occurred when the real earnings increased substantially, which should increase FLFP.
- Occurred in urban/industrialized area, cannot fit the "U" shape theory of female labor supply (FLFP would increase in urban areas as the service sector develops).

- FLFP declines nearly 10% over 20 years (v.s. less than 2% decline for males).
- Economic transition from the planned economy only explains a small part.
- Occurred when the real earnings increased substantially, which should increase FLFP.
- Occurred in urban/industrialized area, cannot fit the "U" shape theory of female labor supply (FLFP would increase in urban areas as the service sector develops).
- After the COVID: FLFP declined in many countries and not fully recovered (Goldin, 2022; Bluedorn et al., 2023).

This Paper

- Research question: Why did FLFP decline in urban China?
- Fact: The fall is driven by differences in FLFP of married women without college education *across cohorts*.
- Approach: Evaluate the importance of multiple channels with a household life-cycle model to explain the difference in FLFP across cohorts.

Outline

- Motivation
- Related Literature
- Data and Background
- Potential Channels
- Model and Estimation
- Counterfactual Studies

Data and Background

- Urban Household Survey (UHS): large-scale, cross-section official survey.
- Focus on:
 - 1950-1970 cohorts: data is available from 1986-2014.
 - age 25-54: women retire at 50-55 in China.
 - married women: 87% of women of studied cohorts were married.
 Warriage
- Education attainments:

Education Definition	Definition	Population Share		
Lagation		1950 Cohort	1970 Cohort	
High	>=college	11%	40%	
Medium	senior high school	37%	25%	
Low	<=junior high school	52%	36%	

Basic Fact: FLFP declined in urban China.

Figure: LFP in UHS data, adjusted for a mass layoff around 2000 and delayed retirement after 2010. SUE Layoff Delayed Retirement (Vigration)

Driven by low and medium-educated women.

Market Channel: Real earnings increased significantly ...

Figure: In(annual earnings) of low and medium-educated people (in 2009 price).

Market Channel: ...the gender pay gap also widened.

Figure: Gender pay gap across years by education groups. Note: The hourly rate is only available between 2002 and 2006.

• Marriage - Fertility - Childcare

- Marriage Fertility Childcare
- Increased assortative marriage.
 - People with similar education tend to marry each other more.
 - Decrease husbands' earnings for low-educated women (may increase FLFP) but the effect is ambiguous for medium-educated women.

- Marriage Fertility Childcare
- Increased assortative marriage.
 - People with similar education tend to marry each other more.
 - Decrease husbands' earnings for low-educated women (may increase FLFP) but the effect is ambiguous for medium-educated women.
- Higher childcare cost.
 - No quality information.
 - Childcare cost/Household expenditure increases from 3% to 9%.
 - May reduce FLFP.

- Marriage Fertility Childcare
- Increased assortative marriage.
 - People with similar education tend to marry each other more.
 - Decrease husbands' earnings for low-educated women (may increase FLFP) but the effect is ambiguous for medium-educated women.
- Higher childcare cost.
 - No quality information.
 - Childcare cost/Household expenditure increases from 3% to 9%.
 - May reduce FLFP.
- Decreased fertility rate.
 - The 1950 cohort was not covered by the "one-child policy" and the younger cohorts were fully covered.
 - May increase FLFP.

In and not in the model

- In the model:
 - Gender-specific earning process.
 - Change in marriage, fertility rate, childcare cost.
- Not in the model:
 - Time investment on children (high-educated women do not exit the market).
 - Changes in hours (no hour data).

• A model focus on labor supply with exogenous education, marriage, and fertility choices.

- A model focus on labor supply with exogenous education, marriage, and fertility choices.
- The man always works.
- In each period, a shock of productivity ϵ is realized and the woman chooses whether to work. If she works, she accumulates experience (S). If she doesn't work, her experience depreciates by δ .
- Her annual earnings follows a Mincer-type equation:

$$\ln y = b_0 + b_1 S + b_2 S^2 + \epsilon$$

- A model focus on labor supply with exogenous education, marriage, and fertility choices.
- The man always works.
- In each period, a shock of productivity ϵ is realized and the woman chooses whether to work. If she works, she accumulates experience (S). If she doesn't work, her experience depreciates by δ .
- Her annual earnings follows a Mincer-type equation:

$$\ln y = b_0 + b_1 S + b_2 S^2 + \epsilon$$

• In each period, the woman may have a child exogenously. When the child is younger than 6 years old, if she works she needs to pay a childcare fee.

- A model focus on labor supply with exogenous education, marriage, and fertility choices.
- The man always works.
- In each period, a shock of productivity ϵ is realized and the woman chooses whether to work. If she works, she accumulates experience (S). If she doesn't work, her experience depreciates by δ .
- Her annual earnings follows a Mincer-type equation:

$$\ln y = b_0 + b_1 S + b_2 S^2 + \epsilon$$

- In each period, the woman may have a child exogenously. When the child is younger than 6 years old, if she works she needs to pay a childcare fee.
- No saving in the current version. The woman tries to maximize her lifetime utility.

Summary of the Timeline

Estimation of Parameters

External Estimated	Values or Sources
Risk Aversion Parameter ($ ho$)	1.5
Discount Factor (β)	0.98
Men's earnings parameters $(ilde{b_0}, ilde{b_1}, ilde{b_2})$	Data (estimated by OLS)
Assortative marriage, Fertility rate, Childcare cost	Data

Estimation of Parameters

External Estimated	Values or Sources
Risk Aversion Parameter ($ ho$)	1.5
Discount Factor (β)	0.98
Men's earnings parameters $(ilde{b_0}, ilde{b_1}, ilde{b_2})$	Data (estimated by OLS)
Assortative marriage, Fertility rate, Childcare cost	Data
Internal Estimated	Target Moment
Women's earnings parameters (b_0, b_1, b_2)	
Depreciation rate (δ)	average FLFP and earnings
Variance in potential earnings (σ)	
Preference parameters (γ_1, γ_2)	Jointly estimated across cohorts

Validity of the Model

• Compare the elasticity of labor supply in the model (change earnings level b_0 , $\tilde{b_0}$) and data (estimate by a probit regression).

	Own Elasticity			Cross Elasticity		
Age group	Model	Data 95% C.I.	Within	Model	Data 95% C.I.	Within
Panel A: Iov	v-educate	ed				
25-54	0.47	[0.13, 1.08]	yes	-0.21	[-0.54, -0.13]	yes
25-34	0.21	[0.24, 1.33]		-0.07	[-0.73, -0.17]	
35-44	0.47	[0.16, 0.70]	yes	-0.18	[-0.38, -0.12]	yes
45-54	0.74	[-1.18, 1.42]	N/A	-0.39	[-0.68, 0.42]	N/A
Panel B: me	edium-ed	ucated				
25-54	0.14	[0.04, 0.16]	yes	-0.10	[-0.10, -0.04]	yes
25-34	0.09	[0.06, 0.19]	yes	-0.07	[-0.13, -0.05]	yes
35-44	0.16	[0.11, 0.22]	yes	-0.10	[-0.14, -0.08]	yes
45-54	0.16	[-0.33, 0.06]	N/A	-0.12	[-0.05, 0.14]	N/A

Validity of the Model

• Compare the elasticity of labor supply in the model (change earnings level b_0 , $\tilde{b_0}$) and data (estimate by a probit regression).

	Own Elasticity			Cross Elasticity		
Age group	Model	Data 95% C.I.	Within	Model	Data 95% C.I.	Within
Panel A: Iov	w-educate	ed				
25-54	0.47	[0.13, 1.08]	yes	-0.21	[-0.54, -0.13]	yes
25-34	0.21	[0.24, 1.33]		-0.07	[-0.73, -0.17]	
35-44	0.47	[0.16, 0.70]	yes	-0.18	[-0.38, -0.12]	yes
45-54	0.74	[-1.18, 1.42]	N/A	-0.39	[-0.68, 0.42]	N/A
Panel B: me	edium-ed	ucated				
25-54	0.14	[0.04, 0.16]	yes	-0.10	[-0.10, -0.04]	yes
25-34	0.09	[0.06, 0.19]	yes	-0.07	[-0.13, -0.05]	yes
35-44	0.16	[0.11, 0.22]	yes	-0.10	[-0.14, -0.08]	yes
45-54	0.16	[-0.33, 0.06]	N/A	-0.12	[-0.05, 0.14]	N/A

Fit of the Model (low-educated)

Fit of the Model (low-educated)

Fit of the Model (medium-educated)

Fit of the Model (medium-educated)

• Why FLFP has declined across cohorts?

- Why FLFP has declined across cohorts?
 - "What's the counterfactual FLFP if couples in the 1950 cohort could earn the same as the 1970 cohort?"
 - "How much can changes in couples' earnings explain the declined FLFP?"

- Why FLFP has declined across cohorts?
 - "What's the counterfactual FLFP if couples in the 1950 cohort could earn the same as the 1970 cohort?"
 - "How much can changes in couples' earnings explain the declined FLFP?"
- A partial equilibrium effect. But given the ΔFLFP and cohort population share, this two cohorts counterfactual study would increase total labor supply by at most 3% — potential general equilibrium effect would be small.

Counterfactual Study: Earnings related parameters

	Low-educated		Medium-	educated
	Cohort 50-60	Cohort 50-70	Cohort 50-60	Cohort 50-70
Total Change	-4.8%	-8.9%	-0.8%	-2.7%

	Low-educated		Medium-educated	
	Cohort 50-60	Cohort 50-70	Cohort 50-60	Cohort 50-70
Total Change	-4.8%	-8.9%	-0.8%	-2.7%
Panel A:				
Couple's Earnings	-2.6%	-7.3%	1.0%	-1.9%
gap in return	1.9%	-17.1%	-3.2%	-45.9%
gap in wage	-4.5%	9.8%	4.2%	44.0%

	Low-educated		Medium-educated	
	Cohort 50-60	Cohort 50-70	Cohort 50-60	Cohort 50-70
Total Change	-4.8%	-8.9%	-0.8%	-2.7%
Panel A:				
Couple's Earnings	-2.6%	-7.3%	1.0%	-1.9%
gap in return	1.9%	-17.1%	-3.2%	-45.9%
gap in wage	-4.5%	9.8%	4.2%	44.0%
Panel B:				
Couple's Earnings $+\delta+\sigma$	-2.7%	-6.4%	-0.7%	0.5%

	Low-educated		Medium-educated	
	Cohort 50-60	Cohort 50-70	Cohort 50-60	Cohort 50-70
Total Change	-4.8%	-8.9%	-0.8%	-2.7%
Panel A:				
Couple's Earnings	-2.6%	-7.3%	1.0%	-1.9%
gap in return	1.9%	-17.1%	-3.2%	-45.9%
gap in wage	-4.5%	9.8%	4.2%	44.0%
Panel B:				
Couple's Earnings $+\delta+\sigma$	-2.7%	-6.4%	-0.7%	0.5%
Panel C:				
Family Structures	-2.1%	-2.5%	-0.1%	-3.3%
assortative marriage	0.1%	1.1%	-0.3%	-0.4%
fertility rate	0.3%	0.8%	0.0%	0.1%
childcare cost	-2.4%	-4.4%	0.2%	-2.8%

Conclusion

• The unusual trend of declined FLFP in urban China could be explained by a classical model.

Conclusion

- The unusual trend of declined FLFP in urban China could be explained by a classical model.
- Counterfactual study:
 - The widened gender pay gap explains 70% \sim 80% of changes in FLFP between cohort 1950 and cohort 1970.
 - This 2-cohorts difference explains 40-50% of the declined FLFP between 1989-2009. Decomposition
 - Changes in family structures have significant and heterogeneous effects.

• Limited evidence of taste discrimination.

- Limited evidence of taste discrimination.
- Potential statistical discrimination (Xiao, 2021).

- Limited evidence of taste discrimination.
- Potential statistical discrimination (Xiao, 2021).
- A missing first-order effect?
 - Increased in both manufacturing and service sectors and most occupations after controlling for ages.
 - Even increased in government employees.

- Limited evidence of taste discrimination.
- Potential statistical discrimination (Xiao, 2021).
- A missing first-order effect?
 - Increased in both manufacturing and service sectors and most occupations after controlling for ages.
 - Even increased in government employees.
- Looking for your comments and suggestions!
 - E-mail: p.qian@qmul.ac.uk
 - Twitter: @Pengzhan_Econ

Figure: Never married rate in urban China. (Back)

Figure: Adjust FLFP due to the SOE layoff. Back

Figure: FLFP of Age 45-49 and 50-54. Note: FLFP of age 50-54 has increased significantly since 2010.

Figure: LFP (age 50-54) in UHS and Census. Note: UHS only includes permanent residents while the census includes both permanent residents and immigrants.

Figure: FLFP of high-educated mother in cohort 1970 with young children (age \leq 6) and probability density function (PDF) of having young children. Note: FLFP does not decline much when most high-educated women have young children. Back

- Measuring assortative marriage is more difficult than it seems.
- Chiappori, Costa Dias, and Meghir (2020) propose a model-based measurement: separable extreme value. (Back)

	E1	E2
	(n)	(1-n)
E1 (m)	r	m-r
E2 (1-m)	n-r	1-n-m+r

$$H_{SEV} = \ln\left[\frac{r(1+r-m-n)}{(n-r)(m-r)}\right]$$

$$H_{L} = \frac{r}{mn}$$

$$H_{WS} = \frac{r^{2}}{mn} + \frac{(1+r-m-n)^{2}}{(1-m)(1-n)}$$
(1)

Back