The Effect of Exit Rights on Cost-based Procurement Contracts¹

Rodrigo Andrade^{*} Henrique Castro-Pires[†] Humberto Moreira[‡]

*World Bank

[†]University of Surrey

[‡]EPGE/FGV

August 28, 2021

¹The findings, interpretations, and conclusions expressed in this presentation and paper do not necessarily represent the views of the World Bank.

Procurement and exit-rights

- Principal hires a firm to complete a project at the lowest possible cost
- Information about a project's cost arrives over time
- Suppliers often have exit rights
 - Limited liability protection
 - Bankruptcy laws

Procurement and exit-rights

- Principal hires a firm to complete a project at the lowest possible cost
- Information about a project's cost arrives over time
- Suppliers often have exit rights
 - Limited liability protection
 - Bankruptcy laws
- How to design procurement contracts that assure the project completion?

What we do:

- Two-period model:
 - I Firm privately observes a signal about the expected intrinsic costs
 - Pirm learns actual intrinsic cost
- Firm has exit-rights at any point in time

Related literature

- **Optimal procurement contracts:** Baron and Besanko (1984), Laffont and Tirole (1986, 1987, 1990), Calveras et al. (2004), Guasch (2004), Krämer and Strausz (2011)...
- Dynamic mechanism design Freixas et al. (1985), Myerson (1986), Courty and Li (2000), Pavan et al. (2014), Bergemann and Välimäki (2019), Gerardi and Maestri (2020)...
- Mech design with ex-post participation constraints: Ollier and Thomas (2013), Krämer and Strausz (2015, 2016), Bergemann et al. (2021), Moreira and Gottlieb (2021)...
- Our main contributions:
 - Effect of exit-rights on procurement contracts
 - Relation between competition and ex-post participation

Canonical procurement model

- Project's cost: $C = \beta e$
- Firm's type: $\beta \in \{\beta_L, \beta_H\}$
- C is verifiable but not effort nor β
- Firm's utility:

$$U(T,C,e)=T-C-\psi(e)$$

- $\psi:\mathbb{R}_+\to\mathbb{R}_+$ strictly increasing, strictly convex, twice continuous differentiable
- Firm's outside option normalized to 0
- Direct Mechanism: $(e_H, T_H), (e_L, T_L)$

Dynamic procurement model

- Period 1:
 - Firm privately observes signal $s \ \sim F \in \Delta ig((0,1)ig)$
 - * $Pr(\beta = \beta_H) = s$
 - Principal offers a menu of contracts
 - Firm chooses a contract or the ex-ante outside option
- Period 2:
 - Firm learns β
 - Firm decides whether to exit (ex-post outside option value $\bar{u} \in \mathbb{R}$)
 - Firm chooses effort
 - Payments are realized

Principal's problem

$$\mathcal{P}: \min_{\substack{\{T_i(\cdot), e_i(\cdot)\}_{i \in \{L,H\}}}} \int_{\underline{s}}^{\overline{s}} \{(1-s)T_L(s) + sT_H(s)\} dF(s)$$

subject to (IC-1),(IC-2),(IR-1),(IR-2)

• T and e might depend on s and β .

Link

Principal's problem

$$\mathcal{P}: \min_{\{e_i(\cdot), u_i(\cdot)\}_{i \in \{L,H\}}} \int_{\underline{s}}^{\overline{s}} \{(1-s) [u_L(s) + \beta_L - e_L(s) + \psi(e_L(s))] + s [u_H(s) + \beta_H - e_H(s) + \psi(e_H(s))] \} dF(s)$$

subject to (IC-1),(IC-2),(IR-1),(IR-2)

• u and e might depend on s and β .

Link

Main Result

Theorem

There exists $\bar{u}_3 < \bar{u}_2 < \bar{u}_1 < 0$ such that

- If $\bar{u} > \bar{u}_1$: no first-period screening, (IR-1) is slack, and (IR-2) binds
- If $\bar{u} \in (\bar{u}_2, \bar{u}_1]$: no first-period screening, (IR-1) binds, and (IR-2) binds
- If ū ≤ ū₃: full first-period screening, (IR-1) binds, and (IR-2) is slack (under regularity conditions)

Main Result

Theorem

There exists $\bar{u}_3 < \bar{u}_2 < \bar{u}_1 < 0$ such that

- If $\bar{u} > \bar{u}_1$: no first-period screening, (IR-1) is slack, and (IR-2) binds
- If $\bar{u} \in (\bar{u}_2, \bar{u}_1]$: no first-period screening, (IR-1) binds, and (IR-2) binds
- If ū ≤ ū₃: full first-period screening, (IR-1) binds, and (IR-2) is slack (under regularity conditions)
- High \bar{u} (> \bar{u}_2): cost-plus contracts payments only depend on realized costs.
- Low \bar{u} (< \bar{u}_3): payments depend on self reported estimated costs.

(IC-1) requires information rents $[u_L(s) - u_H(s)]$ to be decreasing in s.

(IC-1) requires information rents $[u_L(s) - u_H(s)]$ to be decreasing in s.

• (IR-2) binds
$$\implies u_H(s) = \bar{u}$$

(IC-1) requires information rents $[u_L(s) - u_H(s)]$ to be decreasing in s.

- (IR-2) binds $\implies u_H(s) = \bar{u}$
- The lower s the more likely $\beta = \beta_L \implies$ the costlier to increase u_L

(IC-1) requires information rents $[u_L(s) - u_H(s)]$ to be decreasing in s.

- (IR-2) binds $\implies u_H(s) = \bar{u}$
- The lower s the more likely $\beta = \beta_L \implies$ the costlier to increase u_L
- Non-responsiveness: conflict between monotonicity required for (IC-1) and desired by the principal.

(IC-1) requires information rents $[u_L(s) - u_H(s)]$ to be decreasing in s.

• High \bar{u} :

- (IR-2) binds $\implies u_H(s) = \bar{u}$
- The lower s the more likely $\beta = \beta_L \implies$ the costlier to increase u_L
- Non-responsiveness: conflict between monotonicity required for (IC-1) and desired by the principal.

• Low *ū*:

▶ Slack (IR-2) $\implies u_H(\cdot)$ works as an additional screening instrument.

(IC-1) requires information rents $[u_L(s) - u_H(s)]$ to be decreasing in s.

- (IR-2) binds $\implies u_H(s) = \bar{u}$
- The lower s the more likely $\beta = \beta_L \implies$ the costlier to increase u_L
- Non-responsiveness: conflict between monotonicity required for (IC-1) and desired by the principal.
- Low *ū*:
 - Slack (IR-2) $\implies u_H(\cdot)$ works as an additional screening instrument.
 - Absence of non-reponsiveness: screening is optimal.

Optimal ex-post profits in response to \bar{u}

Multiple Firms

- Period 1:
 - Each of *n* firms privately observes signal $s_i \in [\underline{s}, \overline{s}] \subset (0, 1)$
 - * $Pr(\beta_i = \beta_H) = s_i$
 - ★ Signals and types are iid across firms
 - Principal selects one firm to execute the project
- Period 2:
 - The selected firm:
 - **★** Learns its β_i
 - * Decides whether to exit (ex-post outside option value $ar{u} \leq$ 0)
 - ★ Chooses effort
 - Payments are realized

Second-best allocation

Principal directly observes s but not β .

Principal directly observes s but not β .

- Selects the firm with the lowest signal.
- Given the selected firm's signal s_i , regulate it as a monopolist.

Principal directly observes s but not β .

- Selects the firm with the lowest signal.
- Given the selected firm's signal s_i , regulate it as a monopolist.

How costly it is to implement the second-best allocation with competition?

How costly it is to implement the second-best?

Proposition 1

Suppose \bar{u} is sufficiently low. As the number of firms increase, the principal's expected cost of implementing the second-best allocation converges to the cost when the she directly observes the first-period signals.

How costly it is to implement the second-best?

Proposition 1

Suppose \bar{u} is sufficiently low. As the number of firms increase, the principal's expected cost of implementing the second-best allocation converges to the cost when the she directly observes the first-period signals.

Proposition 2

Suppose $\bar{u} = 0$. Then, the principal's expected cost of implementing the second-best allocation diverges to infinity when the number of firms increase.

Contrasting Propositions 1 and 2

- High ex-post outside option:
 - Reporting the lowest <u>s</u>:
 - $\star\,$ Firm is selected with probability 1
 - ★ $u_L(\underline{s}) > u_H(\underline{s}) \ge 0$ implies rents bounded away from 0
 - $\star\,$ Increasing number of firms \Rightarrow information rents explodes

Contrasting Propositions 1 and 2

- High ex-post outside option:
 - Reporting the lowest <u>s</u>:
 - \star Firm is selected with probability 1
 - * $u_L(\underline{s}) > u_H(\underline{s}) \ge 0$ implies rents bounded away from 0
 - $\star\,$ Increasing number of firms \Rightarrow information rents explodes
- Low ex-post outside option:
 - Under-reporting s:
 - \star \uparrow probability of being selected
 - * $\downarrow u_H(s) \times \uparrow u_L(s)$
 - ★ Firm gains if β_L but loses if β_H
 - ▶ Rents needed to prevent under-reporting go to 0 as *n* increases.

- Dynamic procurement model: gradual information arrival and ex-post exit rights
- Optimal contracts as a function of ex-post reservation utility:
 - ▶ High: no first-period screening, (IR-1) is slack, and (IR-2) binds
 - ▶ Intermediary: no first-period screening, (IR-1) binds, and (IR-2) binds
 - ▶ Low: full first-period screening, (IR-1) binds, and (IR-2) is slack
- Competition achieves the second-best only for low ex-post reservation utilities

Thank you!

Revelation principle

- Direct mechanisms:
 - Recommended efforts: $e_{\beta}(s)$
 - Transfers: $T_{\beta}(s)$
- Satisfying incentive compatibility and participation in both periods

$\mathsf{IC}\mathsf{'s}$ and $\mathsf{IR}\mathsf{'s}$

• Ex-post incentive compatibility:

$$u_{L}(s) \geq T_{H}(s) - C_{H}(s) - \psi(e_{H} - \Delta\beta)$$

$$u_{H}(s) \geq T_{L}(s) - C_{L}(s) - \psi(e_{L} + \Delta\beta)$$
(IC-2_s)

IC's and IR's

• Ex-post incentive compatibility:

$$u_{L}(s) \geq T_{H}(s) - C_{H}(s) - \psi(e_{H} - \Delta\beta)$$

$$u_{H}(s) \geq T_{L}(s) - C_{L}(s) - \psi(e_{L} + \Delta\beta)$$
(IC-2_s)

• Ex-ante incentive compatibility:

$$(1-s)u_L(s)+su_H(s)\geq (1-s)u_L(\hat{s})+su_H(\hat{s}), \quad orall \hat{s},s \qquad \qquad (\mathsf{IC-1}_{s,\hat{s}})$$

IC's and IR's

• Ex-post incentive compatibility:

$$u_{L}(s) \geq T_{H}(s) - C_{H}(s) - \psi(e_{H} - \Delta\beta)$$

$$u_{H}(s) \geq T_{L}(s) - C_{L}(s) - \psi(e_{L} + \Delta\beta)$$
(IC-2_s)

• Ex-ante incentive compatibility:

$$(1-s)u_L(s)+su_H(s)\geq (1-s)u_L(\hat{s})+su_H(\hat{s}), \quad orall \hat{s}, s \qquad (\mathsf{IC-1}_{s,\hat{s}})$$

• Ex-ante and ex-post participation:

$$egin{aligned} U(s) &:= (1-s)u_L(s) + su_H(s) \geq 0, & orall s \ & u_H(s) \geq ar{u}, & orall s \end{aligned}$$
 (IR-1)

Revelation principle with multiple firms

- Direct mechanisms:
 - Firm selection:

$$x: [\underline{s}, \overline{s}]^n \to \Delta\Big(\{1, ..., N\}\Big)$$

Recommended effort for the selected firm:

$$e^{i}:[\underline{s},\overline{s}]^{n}\times\{\beta_{L},\beta_{H}\}\rightarrow\mathbb{R}^{n}_{+}$$

► Transfers:

 $T^i: \{\beta_L, \beta_H\} \times [\underline{s}, \overline{s}]^n \to \mathbb{R}^n_+$

• Satisfying incentive compatibility and participation in both periods