The Effect of Exit Rights on Cost-based Procurement Contracts

Rodrigo Andrade* Henrique Castro-Pires† Humberto Moreira‡

*World Bank
†University of Surrey
‡EPGE/FGV

August 28, 2021

¹The findings, interpretations, and conclusions expressed in this presentation and paper do not necessarily represent the views of the World Bank.
Procurement and exit-rights

- Principal hires a firm to complete a project at the lowest possible cost
- Information about a project's cost arrives over time
- Suppliers often have exit rights
 - Limited liability protection
 - Bankruptcy laws
Procurement and exit-rights

- Principal hires a firm to complete a project at the lowest possible cost
- Information about a project's cost arrives over time
- Suppliers often have exit rights
 - Limited liability protection
 - Bankruptcy laws
- How to design procurement contracts that assure the project completion?
What we do:

- Two-period model:
 1. Firm privately observes a signal about the expected intrinsic costs
 2. Firm learns actual intrinsic cost

- Firm has exit-rights at any point in time
Related literature

- **Dynamic mechanism design** Freixas et al. (1985), Myerson (1986), Courty and Li (2000), Pavan et al. (2014), Bergemann and Välimäki (2019), Gerardi and Maestri (2020)...

- **Mech design with ex-post participation constraints:** Ollier and Thomas (2013), Krämer and Strausz (2015, 2016), Bergemann et al. (2021), Moreira and Gottlieb (2021)...

- **Our main contributions:**
 - Effect of exit-rights on procurement contracts
 - Relation between competition and ex-post participation
Canonical procurement model

- Project’s cost: $C = \beta - e$
- Firm’s type: $\beta \in \{\beta_L, \beta_H\}$
- C is verifiable but not effort nor β
- Firm’s utility:
 \[
 U(T, C, e) = T - C - \psi(e)
 \]
 $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ strictly increasing, strictly convex, twice continuous differentiable
- Firm’s outside option normalized to 0
- Direct Mechanism: $(e_H, T_H), (e_L, T_L)$
Dynamic procurement model

- **Period 1:**
 - Firm privately observes signal $s \sim F \in \Delta((0, 1))$
 - $Pr(\beta = \beta_H) = s$
 - Principal offers a menu of contracts
 - Firm chooses a contract or the ex-ante outside option

- **Period 2:**
 - Firm learns β
 - Firm decides whether to exit (ex-post outside option value $\bar{u} \in \mathbb{R}$)
 - Firm chooses effort
 - Payments are realized
Principal’s problem

\[P : \min_{\{T_i(\cdot), e_i(\cdot)\}_{i \in \{L,H\}}} \int_{s}^{\bar{s}} \left\{ (1 - s)T_L(s) + sT_H(s) \right\} dF(s) \]

subject to (IC-1),(IC-2),(IR-1),(IR-2)

- \(T \) and \(e \) might depend on \(s \) and \(\beta \).
Principal’s problem

\[\mathcal{P} : \min_{\{e_i(\cdot), u_i(\cdot)\}_{i \in \{L, H\}}} \int_{s}^{\bar{s}} \{(1 - s)[u_L(s) + \beta_L - e_L(s) + \psi(e_L(s))] + s[u_H(s) + \beta_H - e_H(s) + \psi(e_H(s))}\} dF(s) \]

subject to (IC-1), (IC-2), (IR-1), (IR-2)

• \(u \) and \(e \) might depend on \(s \) and \(\beta \).
Main Result

Theorem

There exists $\bar{u}_3 < \bar{u}_2 < \bar{u}_1 < 0$ such that

- If $\bar{u} > \bar{u}_1$: no first-period screening, (IR-1) is slack, and (IR-2) binds
- If $\bar{u} \in (\bar{u}_2, \bar{u}_1]$: no first-period screening, (IR-1) binds, and (IR-2) binds
- If $\bar{u} \leq \bar{u}_3$: full first-period screening, (IR-1) binds, and (IR-2) is slack
 (under regularity conditions)

High \bar{u} ($> \bar{u}_2$): cost-plus contracts — payments only depend on realized costs.

Low \bar{u} ($< \bar{u}_3$): payments depend on self reported estimated costs.
Main Result

Theorem

There exists $\bar{u}_3 < \bar{u}_2 < \bar{u}_1 < 0$ such that

- If $\bar{u} > \bar{u}_1$: no first-period screening, (IR-1) is slack, and (IR-2) binds
- If $\bar{u} \in (\bar{u}_2, \bar{u}_1]$: no first-period screening, (IR-1) binds, and (IR-2) binds
- If $\bar{u} \leq \bar{u}_3$: full first-period screening, (IR-1) binds, and (IR-2) is slack (under regularity conditions)

- High \bar{u} ($> \bar{u}_2$): cost-plus contracts — payments only depend on realized costs.
- Low \bar{u} ($< \bar{u}_3$): payments depend on self reported estimated costs.
Main Intuition

(IC-1) requires information rents \([u_L(s) - u_H(s)]\) to be decreasing in \(s\).
Main Intuition

(IC-1) requires information rents \([u_L(s) - u_H(s)]\) to be decreasing in \(s\).

- High \(\bar{u}\):
 - (IR-2) binds \(\Rightarrow u_H(s) = \bar{u}\)

- Low \(\bar{u}\):
 - Slack (IR-2) = \(\Rightarrow u_H(s)\) works as an additional screening instrument.

- Absence of non-reponsiveness: screening is optimal.
Main Intuition

(IC-1) requires information rents \([u_L(s) - u_H(s)]\) to be decreasing in \(s\).

- **High \(\bar{u}\):**
 - (IR-2) binds \(\implies u_H(s) = \bar{u}\)
 - The lower \(s\) the more likely \(\beta = \beta_L \implies\) the costlier to increase \(u_L\)

- **Low \(\bar{u}\):** Absence of non-responsiveness: screening is optimal.

Non-responsiveness: conflict between monotonicity required for (IC-1) and desired by the principal.
(IC-1) requires information rents \([u_L(s) - u_H(s)]\) to be decreasing in \(s\).

- **High \(\bar{u}\):**
 - (IR-2) binds \(\implies u_H(s) = \bar{u}\)
 - The lower \(s\) the more likely \(\beta = \beta_L \implies\) the costlier to increase \(u_L\)
 - Non-responsiveness: conflict between monotonicity required for (IC-1) and desired by the principal.
Main Intuition

(IC-1) requires information rents \([u_L(s) - u_H(s)]\) to be decreasing in \(s\).

- **High \(\bar{u}\):**
 - (IR-2) binds \(\implies u_H(s) = \bar{u}\)
 - The lower \(s\) the more likely \(\beta = \beta_L \implies\) the costlier to increase \(u_L\)
 - Non-responsiveness: conflict between monotonicity required for (IC-1) and desired by the principal.

- **Low \(\bar{u}\):**
 - Slack (IR-2) \(\implies u_H(\cdot)\) works as an additional screening instrument.

9 / 15
Main Intuition

(IC-1) requires information rents \([u_L(s) - u_H(s)]\) to be decreasing in \(s\).

- **High \(\bar{u}\):**
 - (IR-2) binds \(\implies u_H(s) = \bar{u}\)
 - The lower \(s\) the more likely \(\beta = \beta_L \implies\) the costlier to increase \(u_L\)
 - Non-responsiveness: conflict between monotonicity required for (IC-1) and desired by the principal.

- **Low \(\bar{u}\):**
 - Slack (IR-2) \(\implies u_H(\cdot)\) works as an additional screening instrument.
 - Absence of non-responsiveness: screening is optimal.
Optimal ex-post profits in response to \bar{u}
Multiple Firms

1. Period 1:
 - Each of \(n \) firms privately observes signal \(s_i \in [s, \bar{s}] \subset (0, 1) \)
 - \(\Pr(\beta_i = \beta_H) = s_i \)
 - Signals and types are iid across firms
 - Principal selects one firm to execute the project

2. Period 2:
 - The selected firm:
 - Learns its \(\beta_i \)
 - Decides whether to exit (ex-post outside option value \(\bar{u} \leq 0 \))
 - Chooses effort
 - Payments are realized
Second-best allocation

Principal directly observes s but not β.
Second-best allocation

Principal directly observes s but not β.

- Selects the firm with the lowest signal.

- Given the selected firm’s signal s_i, regulate it as a monopolist.
Second-best allocation

Principal directly observes s but not β.

- Selects the firm with the lowest signal.
- Given the selected firm’s signal s_i, regulate it as a monopolist.

How costly it is to implement the second-best allocation with competition?
How costly it is to implement the second-best?

Proposition 1

Suppose \bar{u} is sufficiently low. As the number of firms increase, the principal’s expected cost of implementing the second-best allocation converges to the cost when she directly observes the first-period signals.
How costly it is to implement the second-best?

Proposition 1

Suppose \(\bar{u} \) is sufficiently low. As the number of firms increase, the principal's expected cost of implementing the second-best allocation converges to the cost when she directly observes the first-period signals.

Proposition 2

Suppose \(\bar{u} = 0 \). Then, the principal's expected cost of implementing the second-best allocation diverges to infinity when the number of firms increase.
Contrasting Propositions 1 and 2

- **High ex-post outside option:**
 - Reporting the lowest s
 - Firm is selected with probability 1
 - $u_L(s) > u_H(s) \geq 0$ implies rents bounded away from 0
 - Increasing number of firms \Rightarrow information rents explodes

- **Low ex-post outside option:**
 - Under-reporting s
 - \uparrow probability of being selected
 - $\downarrow u_H(s) \times \uparrow u_L(s)$
 - Firm gains if β_L but loses if β_H
 - Rents needed to prevent under-reporting go to 0 as n increases.
Contrasting Propositions 1 and 2

- High ex-post outside option:
 - Reporting the lowest \(s \):
 - Firm is selected with probability 1
 - \(u_L(s) > u_H(s) \geq 0 \) implies rents bounded away from 0
 - Increasing number of firms \(\Rightarrow \) information rents explodes

- Low ex-post outside option:
 - Under-reporting \(s \):
 - ↑ probability of being selected
 - ↓ \(u_H(s) \) × ↑ \(u_L(s) \)
 - Firm gains if \(\beta_L \) but loses if \(\beta_H \)
 - Rents needed to prevent under-reporting go to 0 as \(n \) increases.
Summary

- Dynamic procurement model: gradual information arrival and ex-post exit rights
- Optimal contracts as a function of ex-post reservation utility:
 - High: no first-period screening, (IR-1) is slack, and (IR-2) binds
 - Intermediary: no first-period screening, (IR-1) binds, and (IR-2) binds
 - Low: full first-period screening, (IR-1) binds, and (IR-2) is slack
- Competition achieves the second-best only for low ex-post reservation utilities
Thank you!
Revelation principle

- Direct mechanisms:
 - Recommended efforts: $e_\beta(s)$
 - Transfers: $T_\beta(s)$

- Satisfying incentive compatibility and participation in both periods
IC’s and IR’s

- Ex-post incentive compatibility:

 $$u_L(s) \geq T_H(s) - C_H(s) - \psi(e_H - \Delta \beta)$$

 $$u_H(s) \geq T_L(s) - C_L(s) - \psi(e_L + \Delta \beta)$$

 (IC-2s)
IC’s and IR’s

- Ex-post incentive compatibility:

 \[
 u_L(s) \geq T_H(s) - C_H(s) - \psi(e_H - \Delta \beta)
 \]

 \[
 u_H(s) \geq T_L(s) - C_L(s) - \psi(e_L + \Delta \beta)
 \]

 (IC-2s)

- Ex-ante incentive compatibility:

 \[
 (1 - s)u_L(s) + su_H(s) \geq (1 - s)u_L(\hat{s}) + su_H(\hat{s}), \quad \forall \hat{s}, s
 \]

 (IC-1s, \hat{s})
IC’s and IR’s

- **Ex-post incentive compatibility:**
 \[u_L(s) \geq T_H(s) - C_H(s) - \psi(e_H - \Delta \beta) \]
 \[u_H(s) \geq T_L(s) - C_L(s) - \psi(e_L + \Delta \beta) \]
 \[(IC-2_s) \]

- **Ex-ante incentive compatibility:**
 \[(1 - s)u_L(s) + su_H(s) \geq (1 - s)u_L(\hat{s}) + su_H(\hat{s}), \quad \forall \hat{s}, s \]
 \[(IC-1_{s,\hat{s}}) \]

- **Ex-ante and ex-post participation:**
 \[U(s) := (1 - s)u_L(s) + su_H(s) \geq 0, \quad \forall s \]
 \[u_H(s) \geq \bar{u}, \quad \forall s \]
 \[(IR-1) \]
 \[(IR-2) \]
Revelation principle with multiple firms

- Direct mechanisms:
 - Firm selection:
 \[x : [s, \bar{s}]^n \to \Delta\left(\{1, \ldots, N\}\right) \]
 - Recommended effort for the selected firm:
 \[e^i : [s, \bar{s}]^n \times \{\beta_L, \beta_H\} \to \mathbb{R}_+^n \]
 - Transfers:
 \[T^i : \{\beta_L, \beta_H\} \times [s, \bar{s}]^n \to \mathbb{R}_+^n \]

- Satisfying incentive compatibility and participation in both periods