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Motivation

� Asymmetric features of economic recessions and expansions have already been already described by

J.M. Keynes in his General Theory.

� Since then, various non-linear and non-Gaussian features of the Business Cycle have been described in

the literature (see for example Pitt et al. (2012))

� Vulnerable Growth by Adrian, Boyarchenko, and Giannone (2019): Relates asymmetries in future US

GDP growth rates to current national financial conditions

� Deterioration of financial conditions coincide with a decrease in future GDP growth while the volatility and

skewness of the conditional distribution of future GDP Growth increase

� Growth at Risk: Lower quantiles vary significantly over time while the upper quantiles are relatively stable

� Semi-parametric two-step approach used by Adrian et al. (2019) makes it difficult to statistically test

the empirical results

� More recent contributions of Plagborg-Møller et al. (2020) and Brownlees and Souza (2021) put the

importance of time-varying moments into question.
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Motivation

This Paper:

� Propose a parametric Skewed Stochastic Volatility model (SSV) to estimate Growth at Risk

� Non-linear, non-Gaussian State Space Model that enables statistical inference of the estimated states

and the effect of exogenous driving variables on the moments of the conditional density

� Bayesian estimation approach using a tempered Particle MCMC algorithm that allows for model

comparison and selection using Bayes Ratio.

� Modification of the Tempered Particle filter of Herbst and Schorfheide (2019) to account for

time-varying skewness

Foreshadowing of results:

� Significant time variation in the second and third moment of the one-period ahead forecasting density

� SSV model chosen over symmetric SV model based on Bayes Ratio and log predictive densities

� Skewness is important to capture downside risks in times of economic turmoil
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Adrian, Boyarchenko, and Giannone (2019): Semi-parametric Approach

Semi-parameteric approach

� First Step: Estimate 5, 25, 75 and 95% quantiles using Quantile Regressions:

gdpt+1 = β0,τ + β1,τnfcit + εt+1

where

βτ = argmin
∑(

τ · 1(yt>x′
tβτ )

|yt − x ′tβτ |+ (1− τ) · 1(yt<x′
tβτ )

|yt − x ′tβτ |
)

� Second Step: Fit a skewed t-distribution to match the predicted quantiles q̂

µ̂t , σ̂t , α̂t , ν̂t = argmin
∑
q̂

(
q̂ − sT−1(q|µt , σt , αt , νt)

)2

Drawbacks of the semi-parametric approach:

� Time variation of the distribution is not parametrically characterized

� Difficult to conduct parameter inference or multi-step forecasts

� Potential problems of quantile crossing

This Paper: Estimate the evolution of the full forecasting density using a parametric model
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Skewed Normal Distribution

PDF of the Skew Normal Distribution

The skewed normal distribution (Azzalini (2013)):

f (x |µ, σ, α) = 2

σ
√
2π

e−
(x−µ)2

2σ2

∫ α
(x−µ)

σ

−∞

1√
2π

e−
t2

2 dt (1)

� For α = 0 it is equal to the normal distribution.

� All three moments of interest are captured by the

parameters µ, σ, α.

� Kurtosis is a non-linear combination of scale (σ)

and shape (α) parameter.

→ Parsimonious Parametrization

→ Estimation also works with skew T
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Stochastic Volatility Model with Skewness

Skewed Normal Stochastic Volatility Model

yt = γ0 +
L∑

l=1

γlxt,j +
P∑

p=1

βpyt−p + εt with εt ∼ skew N (0, σt , αt) (2)

ln(σt) = δ1,0 +
Jσ∑
j=1

δ1,jxt,j +
Kσ∑
k=1

β1,k ln(σt−k) + ν1,t ν1,t ∼ N (0, σv1) (3)

αt = δ2,0 +
Jα∑
j=1

δ2,jxt,j +
Kα∑
k=1

β2,kαt−k + ν2,t ν2,t ∼ N (0, σv2) (4)

� National financial conditions can affect all moments of the one-period forecasting density

� Shift in mean in (2)

� Spread of quantile range (3)

� Skewness of the distribution (4)

� SSV model nests a symmetric stochastic volatility (SV) model δ2,0 = δ2,j = β2,k = σν2 = 0 ∀j , k
� Equations (2)-(4) form a non-linear, non-Gaussian state space model
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Related Literature

Modelling time-varying skewness in conditional densities of time series:

Observation-driven models:

1. ARCH and GARCH models: Hansen (1994) Engle and Manganelli (2004) and Engle (2011)

2. Monache, Polis, and Petrella (2021): Generalized Autoregressive Score Model (Creal, Koopman, and

Lucas (2013))

Parameter-driven models:

1. Iseringhausen (2021): Time varying skewness model, nfcit only impacts skewness

2. Montes-Galdon and Ortega (2022): Bayesian VAR with time-varying skewness but no impact of nfcit on

volatility
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Stochastic Volatility Model with Skewness

� Non-Gaussianity/non-linearity generally prevent use of Kalman filter and EM (Durbin and

Koopman (2001))

� Metropolis Hastings (MH) with Particle Filtering (PF) for Stochastic Volatility Models (e.g. Doucet,

Freitas, and Gordon (2001), Andrieu, Doucet, and Holenstein (2010), Flury and Shephard (2011))

Particle Metropolis Hastings

Static model parameters (MH):

θ = (γ0, ..., β1, ..., δ1,0, ..., β1,1, ..., , σν,1, δ2,0, ..., β2,1, ..., , σν,2)

Posterior: p(θ|y1:T , s1:T ) =
p(y1:T |θ, s1:T )p(s1:T |θ)p(θ)

p(y1:T )

Time-varying model parameters (PF):

st = (lnσt , αt)

Filtering Distribution: p(st |y1:t , θ) =
p(yt |st , θ)p(st |y1:t−1, θ)

p(yt |y1:t−1, θ)
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Estimate States: Tempered Particle Filter

� Particle Filter sequentially approximates the filtering distribution using importance sampling ( IS )

� Common choice of proposal distribution depends on the distributions of the states

q(st |y1:t , θ) =
M∑
i=1

W i
t−1p(st |s it−1, θ) with

M∑
i

W i
t−1 = 1

which gives Wt,i ∝ p(yt |st,i , θ)
� In case of outliers and extreme values for yt , the proposal is not optimal and particles deteriorate.

� The quality of the particle approximation {st,i ,Wt,i}Mi=1 at time t is gauged by the inefficiency ratio

Inefft =
1

M

M∑
i=1

W 2
i,t

� Tempered Particle Filter (Herbst and Schorfheide (2019)) uses annealed importance sampling to

improve the approximation of the filtering distribution if the Inefficiency Ratio becomes to high.

Especially if GDP growth is volatile, the tempered particle filter becomes more accurate compared

to the Bootstrap particle filter. MSE
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Tempered Particle Filter I

To increase efficiency of the filter for the SSV I modify the tempering schedule to jointly temper the variance

and tilt the density towards the actual level:

Intuition: Start from a symmetric distribution with large variance and temper the likelihood until

{st,i}Mi=0 fits the data well. Details

� Start with initial weights:

Wt,i (ϕ0) ∝ p0(yt |st,i , θ) = skew N (yt |µt , σt,i/ϕ0, ϕ0αt,i ) with 0 < ϕ0 < 1 and lim
n→Nϕ

ϕn = 1

� While n < NϕN
:

� Resample s̃t,i ∼ MN ({st,i}Mi=1|{W̃t,i (ϕn)}Mi=0) with W̃t,i (ϕn) ∝ pn(yt |st,i )
� Find new ϕn,t such that

ϕn,t = argmin
1

M

M∑
i

[
Wi,n(ϕn)

1
M

∑M
i=1 Wi,n(ϕn)

]2

− r∗ where r∗ =

1
M

∑M
i=1

(
1

σi,t

)2

(
1
M

∑M
i=1

1
σi,t

)2 +∆r

� Mutate s̃t,i → ŝt,i using a Transition Kernel

ŝt,i ∼ Kn(ŝt |s̃t , ŝt−1)

with invariant distribution pn(yt |st,i , θ)
� If ϕn,t = 1 set n = NϕN
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Tempering the Skewness I
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Figure 1: Particle approximation of each bridge distribution based on simulated data. Each density represents an approximation

of the filtering distribution of log σt , The mean of the distribution moves from -0.19 (left) or 1.46 (right) to about 1.73

� Tempering only the scale of the distribution (left) results in 7 iterations, additionally tempering the

shape parameter αt,i reduces the tempering steps to only 3 iterations (right).

� ϕ0 is significantly smaller if only the variance is tempered (0.00049 vs. 0.67).
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Tempering the Skewness: US Data

1973 1983 1993 2003 2013
Year

5

0

5

10

15

%
 G

DP
 G

ro
wt

h

US GDP Growth

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
Year

0

2

4

6

8

No
. o

f T
em

pe
rin

g 
St

ep
s

Comparison: Tempering Skewness
TPF
TPF (adjusting Skewness)

Figure 2: Additionally tempering the shape of the measurement density requires fewer tempering steps.

� Tempering steps increase during times of high volatility.

� In 1975Q2, 1975Q4 or 1977Q1, the number of tempering steps required decreases by more than 60 %

� Based on Monte Carlo study, additionally tempering the skewness decreases number of tempering steps

and run time by about 25%
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Model Data and Priors

� Model is estimated based on data from Adrian et al. (2019) Data

� yt is the one-period ahead US GDP growth rate gdpt+1

� nfcit is exogenous variable in equations for the level, volatility and skewness

� Lagged values in state equations are chosen based on Bayes ratio

� Mixture of diffuse and mildly informative priors on measurement equation. Priors

� To avoid discarding draws of constrained parameters, the model is reparametrized:

ψi = tan(βi ) and ξi = log(σνi )

to sample from the target distribution of θ̃ =∈ RS

� To improve mixing properties of the chain an estimate Σ̂ is obtained from a pre-run of the algorithm.

� 4 chains with 10000 draws each are run in parallel, first half of each chain is discarded as burn-in sample.
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Estimation Results: Static Parameters

Estimated Skewed Normal Stochastic Volatility Model

gdpt+1 = 2.29−0.69nfcit + εt+1 with εt ∼ skewed N (0, σt , αt) (5)

ln(σt) = 0.87+0.24nfcit + 0.11 ln(σt−1) + ν1,t (6)

αt = 0.22−0.29nfcit + ν2,t (7)

ν1,t ∼ N (0, 0.092) and ν2,t ∼ N (0, 0.020)

� Effect of national financial conditions on the different moments of the forecasting densities is in line

with the stylized facts described in Adrian, Boyarchenko, and Giannone (2019)

� As financial conditions deteriorate, the expected growth rate decreases while the interquartile range and

downside risks to GDP growth increase.
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Posterior Distributions
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Figure 3: Posterior distributions of δ1,1 and δ2,1 obtained with the MCMC-Algorithm based on 20000 draws. Mean Equation

Equation Param Mean SD [0.16 , 0.84] [0.05 , 0.95]

Intercept γ0 2.29 0.4 [1.9, 2.67] [1.623, 2.94]

Mean Effect γ1 -0.69 0.36 [-1.05, -0.34] [-1.31, -0.12]

Volatilty δ1,1 0.24 0.1 [0.15, 0.34] [0.1, 0.41]

Skewness δ2,1 -0.29 0.23 [-0.48, -0.1] [-0.6, 0.04]
14



Time-varying Parameters
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Figure 4: Filtered states given mean posterior values. The Tempered particle filter is tuned to target an Inefficiency Ratio with

∆r = 0.01, using 2 Mutation steps and M = 10000 particles. Shaded areas denote 68% and 90% credible sets.

� Significant variation of the second and third moment based on 68% and 90% credible sets.

� Inverse relationship → Estimated volatility increases while skewness decreases.

� Skewness is not centered around 0 → Upside risks in times of economic moderation (Similar to

Monache, Polis, and Petrella (2021))
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Growth at Risk: Conditional Densities
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Figure 5: Right: Estimated time-varying upper and lower 5% and 25% quantiles of the conditional forecasting densities.

Left:Expected shortfall/longrise (SFt(q) =
1
q

∫ q
0 F−1

yt+1|µ̂t ,σ̂t ,α̂t
(x)dx and LRt(q) =

1
q

∫ 1
1−q F

−1
yt+1|µ̂t ,σ̂t ,α̂t

(x)dx) for the

q = 5, 15, 25, 35 percent quantiles.

� Conditional forecasting densities exhibit characteristics in Adrian, Boyarchenko, and Giannone (2019)

with stable upper quantiles and high variation in the lower quantiles.

� Downside risks are larger in size with a higher variance, especially in 1970s and 80s.
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Does Skewness Matter?

Based on the estimated model results for asymmetric densities is still mixed

� Filtered state for α̂t are significantly different from 0

� 90% credible sets for the static parameters of the skewness equation overlap the zero.

� Stability of the upper quantiles can also be attributed to the inverse relationship of the mean and

variance (see Adrian, Duarte, et al. (2020), Carriero, Clark, and Marcellino (2020) or Caldara, Scotti,

and Zhong (2021))

Estimate a symmetric Stochastic Volatility (SV) model and compare it with the SSV model based on the

Bayes Ratio and the log data densities:

� Imposing the restriction that δ2,0 = δ2,1 = σν2 = 0

Bayes Factor log Odds log p(y |MSSV ) log p(y |MSV )

1612.18 7.38 -435.78 -443.16

Table 1: Bayes Factor and the log of the marginal data densities for the SSV and the SV-Model.

The Bayes factor gives decisive evidence for the SSV-Model.
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Upside and Downside Entropy
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Figure 6: Upside and Downside Entropy for the SSV and SV model. Entropy

� Upside entropy is fairly equal for both models but differences in downside entropy.

� Asymmetries matter in times of economic crisis → Similar implications as in Montes-Galdón, Paredes

and Wolf (2022)
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Conclusion

Estimating a stochastic volatility model with skewness using the tempered Particle MCMC algorithm yields

the following results:

� Point estimates of the parameters match the implications of other findings in literature.

� Effect of nfcit on mean and volatility is significant given the 90 % -Credible Interval

� The estimated densities exhibit the features found by Adrian et al. 2019

� SSV model is favored by the data compared to SV model.

� Skewness tempering decreases run time of the tempered particle filter for asymmetric measurement

densities.

Ongoing research:

� Explore larger set of exogenous variables (e.g. real economy factor) and European Data. EA-Preliminary

� Multivariate model with endogenous nfcit (joint work with Montes-Galdón and Ortega).

� Joined estimation of static parameters and latent states combining Tempered Importance Sampling and

Particle Learning (Carvalho et al. (2010)).
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Appendix

Additional Material
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Data: Adrian et. al (2019)
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Figure 7: US GDP growth rates and NFCI index fromm 1973Q1 to 2016Q4.
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Priors

Model Parameter Distribution Param 1 Param 2

γ0 N 2.69 5

γ1 N -1 0.5

δ1,0 N 0 5

δ1,1 N 0 5

δ1,2 N 0 0.5

δ2,0 N 0 0.5

δ2,1 N 0 0.5

σν1 IG 1 0.25

σν2 IG 1 0.15

Table 2: Priors for the static model parameters in the Metropolis Hastings Algorithm. N denotes normal priors with Param 1

and Param 2 giving mean and variances. IG denotes the inverse Gamma distribution with Param 1 and Param 2 for α and β.

back
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Importance Sampling

Idea: Approximate an integral over a complex target distribution π(x) by weighted draws from a simpler

proposal distribution q(x).

Example: Expected Value Eπ[x ]

Eπ[x ] =

∫
xiπ(xi )dx

=

∫
xi
π(xi )

q(xi )︸ ︷︷ ︸
wi

q(xi )dx

≈ 1

T

T∑
i=1

Wixi , xi ∼ q(x)

Draws from q(x) are reweighted using the

normalized importance weights

Wi =
wi∑
wi

6 4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Example: Importance Sampling
Proposal: q(x) N(0, 5)
Target: (x)

Approximation of mixed Gaussian using 50000

weighted draws from a univariate normal distribution.

back
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Skewed Tempered Particle Filter
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Figure 8: MSE of 500 filtered states obtained with the Bootstrap and the Tempered Particle Filter based on simulated data

from Eq.1-3.
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Posterior Distributions of Mean Equation
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Figure 9: Posterior distributions of γ1 and γ2 obtained with the MCMC-Algorithm based on 20000 draws.
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Tempered Particle Filter II

� The initial weights are given as

wt,i (ϕ0) =
2ϕ

1/2
0√

2πσt,i
exp

(
−ϕ0(yt − µt)

2

2σ2
t,i

)∫ αt,iϕ
3/2
0

(yt−µt )
σt,i

−∞
exp

(
−t2

2

)
dt

� The unnormalized weights at the nth tempering step are given

w̃t,i (ϕn) =

(
ϕn
ϕn−1

) 1
2

exp

(
−(ϕn − ϕn−1)(yt − µt)

2σt,i

)2

Λ̃t,i (ϕn)

with

Λ̃t,i (ϕn) =

∫ αt,iϕ
3/2
n

(yt−µt )
σt,i

−∞ exp
(

−t2

2

)
dt∫ αt,iϕ

3/2
n−1

(yt−µt )
σt,i

−∞ exp
(

−t2

2

)
dt

� Λ̃i,t(ϕn) introduces additional variance to W̃i

� Since

lim
ϕn→0

Λ̃i,t(ϕn) = 1

additionally tempering the skewness results in less tempering iterations

back
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Upside and Downside Entropy

Upside and Downside Entropy

LU
Mi ,t = −

∫ F̂−1
Mi ,t

(0.5)

−∞
(log ĝ(y)− log f̂Mi ,t(y))f̂Mi ,t(y)dy (8)

LD
Mi ,t = −

∫ ∞

F̂−1
Mi ,t

(0.5)

(log ĝ(y)− log f̂Mi ,t(y))f̂Mi ,t(y)dy (9)

where ĝ(y) is ML-estimator of the unconditional density and f̂Mi ,t(y) is the estimated conditional density

under model Mi

� Relative measure of the divergence between two distributions in the upper and lower tails.

� If downside/upside entropy is high/low, more/less probability mass in the lower/upper tails of the

conditional relative to the unconditional distribution

back
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European Data: Time-varying Parameters
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Figure 10: Filtered states given mean posterior values. The Tempered particle filter is tuned to target an Inefficiency Ratio

with ∆r = 0.01, using 2 Mutation steps and M = 10000 particles. Shaded areas denote 68% and 90% credible sets.

� Significant variation of the second and third moment based on 68% and 90% credible sets.

� Inverse relationship less pronounced compared to US findings ρ̂[σ̂t,eu, α̂t,eu] = −0.61532399

� Skewness seems to be more centered around 0 with wider credible sets.

28



Growth at Risk: Conditional Densities in the Euro Area
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Figure 11: Estimated time-varying upper and lower 5% and 25% quantiles of the conditional forecasting densities.

Conditional forecasting densities of GDP growth conditional on Composite Indicator of Systemic Stress

(CISS): Different behavior of the conditional forecasting densities is less pronounced in compared to the

results of US data. back
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