

On GVC and Innovation: Evidence from Firm-Level Data

EEA Congress 2023

Yasmine Eissa

Cairo University, Egypt

Chahir Zaki

Cairo University, Egypt

Outline

- Introduction
- Firm Data
- Empirical Strategy
- Empirical Results
- Conclusion

Outline

- Introduction
- Firm Data
- Empirical Strategy
- Empirical Results
- Conclusion

Motivation

- Most developing countries are lagging behind the technological frontier (UNCTAD 2021).
- Widening technological gap reduces labor-cost competitiveness in developing countries.
- Traditional development processes moving to more productive economic activities are upended by frontier technologies.
- Upscaling of global value chains.
- The learning effect of international trade: Product cycle trade model Krugman (1979).
- Association between firms' *productivity* and **exporting** (De Loecker 2013), **importing** (Martinéz-Zarzozo et. Al 2021) and **GVC** (Del Prete et al. 2017).

Motivation ctd.

- Outsourcing activities transmit foreign knowledge and incentivize innovation: Grossman and Helpman (1991), Keller (2004), Aghion et al. (2021), Eissa and Zaki (2023) among others.
- GVC learning effect mirrored in technological and auxiliary services innovation.
- The learning effect varies in accordance with **firms' position** along the GVC.
- The heterogeneity of the GVC learning effect can be revealed from **sectoral** classifications.
- Sectors differ in terms of factor, skill level, and technological intensities.
- Sectoral heterogeneity learning effect unveils reasons behind the widening divergence paradox between advanced and developing countries in terms of technology production.

What we *do?*

⇒ What is the effect of **GVC participation** on **firms' innovation** performance?

⇒ Does the learning effect differ in accordance with sectoral heterogeneity?

- Relying on the WBES recent dataset
 - We distinguish between technological and auxiliary services innovation.
 - > We estimate the effect of GVC participation on each type.
 - We capture the heterogeneous learning effect at different factor, skill, and technology insensitive sectors.
- We control for GVC endogeneity using PSM and IV approaches.

GVC learning effect \rightarrow firms located in developing countries.

- Positive effect of GVC on technological innovation strengthened by capital-, skilled labor intensive manufacturing, and mediumhigh RD intensive activities.
- Positive effect of **GVC** and on **auxiliary services innovation**.

Outline

- Introduction
- Firm Data
- Empirical Strategy
- Empirical Results
- Conclusion

Definitions

Overall Innovation

- Licensed foreign technology
- Newly introduced product / service
- Also new to firm's market
- Newly introduced process
- Having a website
- Communicates by email
- R&D spending

Technological

- Licensed foreign technology
- Newly introduced product / service
- Also new to firm's market
- Newly introduced process
- R&D spending

Auxiliary services

- Having a website
- Communicating by

email

Innovation

• Relying on the recent WBES comprehensive dataset and based on the OSLO manual definitions of innovation:

$$Technological_{i} = \begin{cases} 1, & if tech, product, market, process, RD = 1 \\ 0, otherwise \end{cases}$$

Auxiliary services_i =
$$\begin{cases} 1, & if email, website = 1 \\ 0, otherwise \end{cases}$$

Definitions ctd.

GVC

• Relying on the recent WBES comprehensive dataset we measure the least and most strict definitions of GVC participation (Dovis and Zaki 2020):

$$GVC_{1i} = \begin{cases} 1, & if X_i \text{ and } M_i > 0\\ 0, otherwise \end{cases}$$
$$GVC_{4i} = \begin{cases} 1, & if X_i, M_i, C_i, and FS_i > 0\\ 0, otherwise \end{cases}$$

Where: X_i is the share of direct or indirect exports in total sales in firm i

 M_i is the share of foreign inputs / supplies of foreign origin in total inputs in firm *i*. C_i is international quality certification provision in firm *i*. FS_i is foreign owned shares provision in firm *i*.

Firms' GVC participation by region 2006-2021

Region	No GVC	GVC 1	GVC 4
Africa	87 %	11 %	2 %
EAP	85 %	12 %	3 %
ECA	73 %	23 %	4 %
LAC	77 %	20 %	3 %
MENA	80 %	18 %	2 %
South Asia	86 %	13 %	1 %

Factor intensity within and across GVC

Eissa & Zaki _ EEA 2023

Skill level vs innovation within and across GVC

Technology within and across GVC

Labor Market Characteristics

Skill / technology	Jordan	Tunisia	Egypt
No skill required	72 %	74 %	57 %
Skill required	28 %	26 %	43 %
Total	100	100	100
Low technology	90 %	93 %	90 %
Medium technology	10 %	7 %	10 %
Total	100	100	100

Outline

- Introduction
- Firm Data
- Empirical Strategy
- Empirical Results
- Conclusion

Econometric specification

$$Y_{ijst} = a_o + a_1 GVC_{ijst} + a_2 Z_{ijst} + \delta_j + \delta_s + \delta_t + \varepsilon_{ijst}$$

- Y_{ijst} is the innovation type in firm *i* country *j* sector *s* at time *t*.
- *GVC*_{*ijst*} is the likelihood of GVC participation.
- Z_{ijst} is a vector of control variables including the firm size and fixed assets purchase to control for firm absorptive capacity.
- δ_j , δ_s and δ_t are country, sector, and year fixed effects controlling for unobserved heterogeneity.
- ε_{ijst} is a residual error term.

Econometric specification

- To unveil the **sectoral heterogeneity** effect, each GVC definition is interacted with the three sectoral categorical variables separately.
- GVC endogeneity:
 - We employ **propensity score matching (PSM)** using the common support method. Common support covariates are firm size, buying physical capital, firm age, and government ownership.
 - We employ an **instrumental variables two stage least squares** methodology in which GVC measures are instrumented by firms' customs and trade obstacles.

Outline

- Introduction
- Firm Data
- Empirical Strategy
- Empirical Results
- Conclusion

Empirical results

- GVC positive effect on **technological** and **auxiliary services** innovation.
- GVC driven technological progress is strengthened with
 - Capital intensive manufacturing.
 - Skilled labor-intensive manufacturing.
 - **Medium/Medium-high RD** intensive activities.
- GVC 4 has a higher direct effect than GVC 1.
- Robust results using **PSM** and **IV** approaches.

Empirical results

	Technological		Auxiliary services	
	GVC 1	GVC 4	GVC 1	GVC 4
GVC	.019***	.057***	.153***	.152***
	(.001)	(.005)	(.003)	(.007)
Medium firms	.005***	.006***	.164***	.173***
	(.001)	(.001)	(.003)	(.003)
Large firms	.022***	.023***	.341***	.373***
	(.001)	(.001)	(.003)	(.003)
Physical capital	.01***	. 011***	.072***	.076***
	(.001)	(.001)	(.002)	(.002)
Contstant	021***	021***	015	013
	(.004)	(.004)	(.016)	(.017)
No. of obdervations	137,202	132,386	145,447	139,533
R ²	.035	.037	.311	.303
Fixed Effects	j, s, t	j, s, t	j, s, t	j, s, t

Robust standard errors are in parentheses, *** p<.01, ** p<.05, * p<.1. Fixed effects are removed for brevity. Physical capital is buying fixed assets like machinery, equipment, land, or buildings. Number of employees in small firms < 20, 20< medium firms < 99, large firms > 100.

Skill level intensity

- Following the resource intensity classification of the Empirical Trade Analysis Center, sectors are classified to **unskilled-, skilled- labor intensive manufacturing**, and **services**.
- With respect to services, both unskilled and **skilled labor** intensive manufacturing exert a direct positive effect on technological innovation.
- With respect to services, **skilled labor** intensive manufacturing strengthen the positive GVC effect on technological innovation.

Technology level intensity

- With respect to low-technology intensive activities, **medium-high** and **high** technology intensity exert a direct positive effect on both innovation types.
- GVC effect on **technological** innovation is strengthened with **medium** and **medium-high** RD intensive sectors.
- No interaction of high technology with GVC —— "inappropriate" (Acemoglu and Zilibotti, 2001).

Robustness Check 1: PSM

- Firms with same size, age, physical capital, and government ownership have positive probability of becoming treated and untreated (Heckman et al., 1999).
- Firms treated with GVC1 have higher technological and higher auxiliary services innovation than untreated firms.
- Firms treated with GVC4 have higher technological and higher auxiliary services innovation than untreated firms.

Robustness Check 1: PSM ctd.

	Technological		Auxiliary services	
	GVC 1	GVC 4	GVC 1	GVC 4
Difference	.032*** (.001)	.079*** (.002)	.313*** (.003)	.393*** (.009)
Controls	.008*** (.001)	.012*** (.001)	.345*** (.001)	.387*** (.001)
No. of Observations	137,658	132,827	145,906	139,977
R ²	.012	.012	.059	.015

Standard errors are in parentheses *** p<.01, ** p<.05, * p<.1 Firm size, physical capital, government ownership, and firm age are the covariates for common support. PSM test shows a less than 5% bias for each mean value of the common support covariates.

Robustness Check 2: IV 2SLS

	Technological		Auxiliary services	
	GVC 1	GVC 4	GVC 1	GVC 4
GVC	.096***	.768***	.678***	.482***
	(.008)	(.087)	(.028)	(.336)
Medium firms	003**	004***	.12***	.121***
	(.001)	(.001)	(.004)	(.006)
Large firms	0	038***	.188***	.024
	(.003)	(.008)	(.009)	(.027)
Physical capital	.006***	.003*	.044***	.03***
	(.001)	(.001)	(.003)	(.006)
Contstant	013***	004	.012	.015
	(.004)	(.006)	(.019)	(.023)
No. of obdervations	125,040	120,640	131,950	126,642
Fixed Effects	j, s, t	<i>j</i> , <i>s</i> , <i>t</i>	<i>j</i> , <i>s</i> , <i>t</i>	j, s, t

Outline

- Introduction
- Firm Data
- Empirical Strategy
- Empirical Results
- Conclusion

Conclusion

- Firms in developing countries have a GVC learning opportunity in terms of technological and auxiliary services innovation.
- Enhancing GVC participation in developing countries paves to **SDG9** aiming at fostering innovation and infrastructure.
- Capital intensive, skilled labor intensive manufacturing reinforces the positive GVC effect on technological innovation.
- Medium and medium-high RD intensive activities reinforces the positive GVC effect on technological innovation.
- Skilled labor and technology intensive activities exert a direct positive effect on technological and auxiliary services innovation.
- Enhancing skill level and fostering technology intensive activities are paramount to catching up to the fast-shifting technological frontier.

Policy Recommendations

- From a policy standpoint, our study offers three main recommendations aiming at realizing a GVC driven innovation progress in developing countries.
 - **Trade policy: Facilitating trade** by eliminating unnecessary trade costs is necessary to encouraging **GVC engagement** being the latter a chief innovation input.
 - Fiscal policy: Facilitating finance access to the end of Investing in physical and human capital is key to enhancing firms' absorptive capacities and stimulating innovation.
 - Engaging in **medium** and **medium-high technology** intensive activities strengthens the GVC effect on auxiliary services innovation.

References

- Aghion, P., Bergeaus, A., Gigout, T., Lequien, M., & Melitz, M. (2021). Exporting ideas: knowledge flows from expanding trade in goods. NBER.
- De Loecker, J. (2013). Detecting learning by exporting. *American Economic Journal: Microeconomics*, 5(3), 1–21.
- Del Prete, D., Giovannetti, G., & Marvasi, E. (2017). Global value chains participation and productivity gains for North American firms. *Rev World Econ*, 153:675-701.
- Dovis, M. & Zaki, C. (2020). Global value chains and local business environments: Which factors really matter in developing countries? *Review of Industrial Organization*, 57:481-583
- Eissa, Y., Zaki, C. On GVC and innovation: the moderating role of policy. J. Ind. Bus. Econ. (2023). <u>https://doi.org/10.1007/s40812-022-00255-9</u>
- Grossman, G., and Helpman, E. (1991). Innovation and growth in the global economy.Cambridge, MA: MIT Press.
- Keller, W. (2004) International Technology Diffusion. Journal of Economic Literature, 92, 752-782.

References ctd.

- Krugman, P. (1979). A model of innovation, technology transfer and the world distribution of income. *Journal of Political Economy*, 87, 253–6.
- Martinéz-Zarzoso, I., Said, M., & Zaki, C. (2021). Trade policy and input liberalization: The effect on Egyptian firms' productivity. *Rev Dev Economics*, 00, 1-21 DOI: 10.1111/rode.12787.
- UNCTAD (2021), Technology and innovation report: catching technological waves innovation with equity. United Nations ISBN: 978-92-1-113012-6

Thank you for your attention