Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000	00000	000	00000000	000000000000000000000000000000000000	0000

The Long-Run Impact of Increasing School Funding on Labor Market Outcomes

Formerly 'Was that much (education) spending worth it at all? The Long-Run Impact of a School Funding Reform on Later-Life Outcomes in Norway'

Presented by Daniel Duque

Introduction ●000	Institutional Background	Data 000	Empirical Framework	Results 000000000000000000000000000000000000	Conclusions 0000
Motivat	tion				

- Education is often the second largest area in social spending, and it is not decreasing (4.1% of OECD GDP in 2000-19).
- Why? Increasing funding overused to address concerns about enrollment, school quality, and student achievement inequality.

• Has it been working though? We don't know much. Norway has an unique setting to explore impacts of higher education funding:

- It is among the top education spending countries.
- 2 Decentralized but heavily regulated educational system.
- S Also heavily unionized labor market [Balsvik et al., 2015].

Introduction 0●00	Institutional Background	Data 000	Empirical Framework	Results 000000000000000000000000000000000000	Conclusions 0000
This Pa	aper l				

- Follows the money to fund primary and lower-secondary education, from Central Government to local administrations, reaching schools and, ultimately, students.
- Matches detailed municipal and individual data, allowing to explore the education funding immediate and long-run effects.
- Finds that higher funding leads to (1) hiring teachers, but no effect to class size and (2) students' labor market, education and migration outcomes about 20 years later.
- Finds higher effects on students exposed earlier in their lives, with equality-enhancing impacts.
- Finds that municipalities with lower dependency of grants crowd-out school funding, with no impact on students.

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
00●0	00000	000		000000000000000000000000000000000000	0000
This pa	aper II				

- Exploits a large funding reform, which shifted education funding from the Central Administration at the municipal level.
- The reform, that took place in 1986, lifted the differentiation between educational level in the grant size formula → relative increase of transfers level in municipalities with a higher share of younger children.
- Employs an event-study design, with a wide range of controls and fixed-effects.
- Interacts the school funding shock at the municipal level with different cohorts, finding consistent patterns of individual outcomes' effects by exposure to higher education spending and school inputs.

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
000●	00000	000		000000000000000000000000000000000000	0000
Contrib	oution				

• The literature on the effects of education spending rely heavily on school state funding reforms. Many studies have found sizable effects on outcomes.

Card & Payne (2002), Pirim et al. (2014), Jackson et al. (2015), Hyman (2017), Lafortune et al. (2018) & Biasi (2019)

- Literature expects that higher central administration funds might be crowded-out, but evidence is mixed. Gordon [2004], Reiling et al. [2021], Hanushek & Cascio et al. [2013]
- There is also a strong literature on school inputs and their role on learning and outcomes later on. Angrist (1999), Hanushek & Luque (2003), Hanushek & Rivkin (2012), Fredriksson et al. (2013), Leuven & Løkken (2017) & Borgen et al. (2022)

Gap to be filled: how do the funding-spending-input-outcome links actually work? Do administrations respond differently to those education revenue shocks?

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000	00000		0000000	000000000000000000000000000000000000000	0000

- Motivation and Lit. Review
- **2** Institutional Background
- Oata
- empirical Framework
- Sesults
- Onclusions

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000	0●000	000		000000000000000000000000000000000000	0000

Education system in Norway

- Municipalities are responsible for primary 1st-6th grades (7 to 12 years old children) and lower-secondary education 7th-9th grades (13 to 15 years old children).
- Education accounts for 40% of all municipal social spending.
- Day-to-day responsibilities of purchases, staffing and student admissions are devolved at the school level.
- Municipalities are primarily responsible for defining the level and distribution of resources among schools.
- The Ministry of Education and Research sets national policy by national education laws and curriculum.

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
	00000				

Grants for municipal schools until 1985

- Central Administration grants account for 30% of all municipal revenues.
- Those had to cover 25-85% of local education expenditures, according to teaching hours, which were valued by a certain amount (*Cost Factor*).
- In 1985, Primary Education teaching hours were valued at NOK 130.05 (2011 PPP \$29.4), whereas Lower-Secondary Education were valued at NOK 146.80 (2011 PPP \$33.2).
- Other minor criteria: (tax revenues & others)

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
	00000				

New grant distribution scheme

- In the 1986 reform, Norway introduced a block grant, which replaced about 50 earmarked grants, including in education.
- The block grant was distributed according to three sector Cost Matrices, which calculated points based on some 'neutral' characteristics and associated weights.
- Under this new criteria, there was no differentiation between primary and lower-secondary education.
- Thus, municipalities with primary school students had a relative increase in the grant transfers amount.

Introduction 0000	Institutional Background	Data 000	Empirical Framework	Results 000000000000000000000000000000000000	Conclusions 0000

Cost Matrix for Education

How it used to be:

$$\textit{Grant}_{m,t} = \sum_{l} (\textit{CF}_{l,t} \times \textit{Hours}_{l,m,t}) + \epsilon_{l,m,t}$$

How it has changed to:

Criteria	Weight
Teaching hours in 1985	0.47
Number of inhabitants 7-15 years	0.41
Others	0.12

Source: langorgen2013kommunenes

No differentiation between primary and lower-secondary levels! Only the total sum of students was taken into account.

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000	00000	●00	00000000	000000000000000000000	0000

- Motivation and Lit. Review
- Institutional Background
- Oata
- empirical Framework
- Sesults
- Onclusions

Introduction 0000	Institutional Background 00000	Data 0●0	Empirical Framework	Results 000000000000000000000000000000000000	Conclusions
Data					

For fiscal data, I will use the 'Strukturtall for kommunenes økonomi' documents, available on Statisk Sentralbyrå (SSB).

For treatment and control variables, I will either use Norwegian register data or municipal data available at *Kommunedatabasen*.

For individual outcomes, I will use Norwegian register data.

I will link all Norwegian individuals to municipalities they were living by the time of the reform, analyzing their outcomes later in life, around their 30s (Haider and Solon, 2006 and Böhlmark & Lindquist, 2006).

Institutional Background

Data

000

Results

Treatment Variable distribution

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000		000	●0000000	000000000000000000000000000000000000	0000

- Motivation and Lit. Review
- Institutional Background
- Oata
- **O Empirical Framework**
- Sesults
- Onclusions

Estimating the Grant Size in the Data

- It is possible to observe the education grant size until 1985.
- I use that to estimate its relationship to the share of primary school students.
- Similar fashion as presented in Frean et al. (2017) for a "simulated" measure of health care eligibility.
- Formula 1 describes the model to assess the determinants of the education transfer amount to municipalities.

$$y_{i,t} = X'_{i,k}\alpha_k + \gamma_m + \delta_t + \epsilon_{m,t}$$
(1)

where $X_{i,k}$ is a matrix of variables that may influence the distribution of resources for education.

Estimated shock (*Shock*_{m,85} = $\hat{\alpha} \times \frac{7 \text{ to } 12 \text{ years old population in 1985}}{7 \text{ to } 15 \text{ years old population in 1985}}$) in \$ 1000 per pupil.

$$Y_{m,t} = \sum_{t=1979}^{1991} [\pi_t Shock_{m,85}] + \sum_{t=1979}^{1991} [\phi_{k,t} X_{k,m,\bar{t}}] + \alpha_1 \Delta Pop_{m,t} + \alpha_2 Sh.715_{m,t} + \gamma_m + \delta_t + \vartheta_{ct,t} + \epsilon_{m,t}$$
(2)

 π_t represents the elasticity of the outcome with respect to the treatment each year t. The baseline is 1985.

Discussing the controls and fixed effects

- **County-by-year**: controls for any change in the region (ex: oil shock)
- **1982-85 Share of Tax Revenue-by-Year**: part of the criteria for pre-reform grants distribution
- **1980-85 Share of Educ. Exp.-by-Year**: part of the criteria for pre-reform grants distribution
- **1983 Health Sector Matrix Points-by-Year**: part of the criteria for post-reform grants distribution
- Share of 7-15 children over Pop.: controls for education demand differential changes.
- Pre-Reform Annual Percentage Demographic Changes: controls for public services demand differential changes.

Individual Level Effects

Similar framework to the previous one, but replacing year by year of birth (cohort c).

Treatment variable will use cohort groups (g) on the interaction.

$$Y_{i} = \sum_{g=-1}^{3} [\pi_{g} Share_{m,85}] + \sum_{c=1964}^{1983} [\phi_{k,c} X_{k,i}] + \gamma_{m} + \delta_{c} + \vartheta_{ct,c} + \epsilon_{i}$$
(3)

Individual controls: (i) Man/Foreigner dummies ; (ii) Mother and Father Level of Education ; (iii) Within siblings birth order

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
			00000000		

Cohort	Group	1986	1987	1988	1989	1990	1991
1964		22	23	24	25	26	27
1965	Never Expected	21	22	23	24	25	26
1966	Never Exposed	20	21	22	23	24	23
1967		19	20	21	22	23	24
1968		18	19	20 -	21	22	23
1969	Not exposed	17	18	19	20	21	22
1970	[Baseline in Regressions]	16	17	18	19	20	21
1971		15	16	17	18	19	20
1972		14	15	16	17	18	19
1973	Marginally exposed	13	14	15	16	17	18
1974		12	13	14	15	16	17
1975		11	12	13	14	15	16
1976		10	11	12	13	14	15
1977	Exposed at Lower Secondary School	9	10	11	12	13	14
1978	Exposed at Lower Secondary School	8	9	10	11	12	13
1979		7	8	9	10	11	12
1980		6	7	8	9	10	11
1981	Eveneed at Drimony School	5	6	7	8	9	10
1982	Exposed at Primary School	4	5	6	7	8	9
1983		3	4	5	6	7	8

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000		000	000000●0	000000000000000000000000000000000000	0000

Alternative specification

- Robustness check: imposing an alternative structure, by interacting the school funding shock with continuous variables.
- This allows to examine how the effects of the shock vary depending on the length of time the cohort was exposed and their age at the time of exposure.

 $Y_{i} = \pi_{1} Shock_{m} \times Exposure_{i} + \pi_{2} Shock_{m} \times Exposure_{i} \times Age \text{ in } 1985_{i} + \sum_{c \neq 1970} [X'_{i} \phi_{c}] + \gamma_{m} + \delta_{c} + \vartheta_{ct,c} + \epsilon_{i} \quad (4)$

• This model does not test for pre-trends, but it enlightens whether there are any age- or length-specific.

Introduction 0000	Institutional Background	Data 000	Empirical Framework	Results 000000000000000000000000000000000000	Conclusions 0000

Data and Treatment Assignment

Sample: children born between 1964 and 1983, who lived in a municipality m by the year of 1985 (last one before the reform).

Problem: Attrition. Grant shock is not fully experienced by the whole sample due to migration.

	Whole Data	Movers in 1986/91
Sample Size	1,177,056	269,246 (22.9%)
Mothers' Years of Study	11.60	11.54
Fathers' Years of Study	12.14	12.17
Men	.512	.452
Scad. Foreigners	.005	.010
Other. Foreigners	.019	.026

So all estimates should be seen as Intention to Treat.

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000	00000	000	00000000	●000000000000000000000000000000000000	0000

- Motivation and Lit. Review
- Institutional Background
- Oata
- Impirical Framework
- In the second second
- Onclusions

Introduction 0000	Institutional Background	Data 000	Empirical Framework	Results o●ooooooooooooooooooooo	Conclusions
Grant	per pupil dete	rmina	ants		
VA	RIABLES			Education Grant	t (\$)
Tea	achers per Pupil			4,531*** (1.426)	
Sha	are of 7-12 years o	old chil	dren (over 7-15)	-858.1**	
				(428.4)	
Sha	are of Education E	Expend	iture	234.1	
Mu	Municipal Per Capita Tax Revenues (In)				
Sha	are of 7-15 years o	old chil	dren	-16,448***	
				(2,166)	
Ōb	servations			1,590	
R-s	quared			0.962	

*** p<0.01, ** p<0.05, * p<0.1

Introduction Institutional Background Data Empirical Framework Results Conclusions

First Stage: Estimated Grant Shock on Spending

FEs: Municipality; Year; County-By-Year; 1982-5 Avg. % Tax Revenue-by-Year; 1980-5 Avg. % Educ. Exp.-by-Year; 1983 Health Matrix Points-by-Year.

Controls: Population Annual Increase Pre-Reform Trend (0-4; 5-9; 10-14; 15-19; 20-29; 30-49; 50-64; 65-79; 80+); Share of the Pop. aged 7-15 over Total

Introduction Institutional Background Data Empirical Framework Results Conclusions

By the way: no effect on any other sector

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000		000	00000000	0000●0000000000000000	0000

Discussing the First stage

- Transition to a new grants scheme in 1986 did not lead to major changes in a short time.
- 1986 and 1987: previous rule level in the distribution was weighted by 90%.
- 1988: the previous year level was weighted 80%.
- Variation in the underlying criteria does not lead to immediate treatment impact.

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
				000000000000000000000000000000000000000	

Municipal Outcomes regressions I

FEs: Municipality; Year; County-By-Year; 1982-5 Avg. % Tax Revenue-by-Year; 1980-5 Avg. % Educ. Exp.-by-Year; 1983 Health Matrix Points-by-Year.

Controls: Population Annual Increase Pre-Reform Trend (0-4; 5-9; 10-14; 15-19; 20-29; 30-49; 50-64; 65-79; 80+); Share of the Pop. aged 7-15 over Total

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
				000000000000000000000000000000000000000	

Municipal Outcomes regressions II

FEs: Municipality; Year; County-By-Year; 1982-5 Avg. % Tax Revenue-by-Year; 1980-5 Avg. % Educ. Exp.-by-Year; 1983 Health Matrix Points-by-Year.

Controls: Population Annual Increase Pre-Reform Trend (0-4; 5-9; 10-14; 15-19; 20-29; 30-49; 50-64; 65-79; 80+); Share of the Pop. aged 7-15 over Total

ction Institutional Background 00000

ckground Dat

Empirical Framework

 Conclusions

Individual level regressions (effect of +\$1000 on grants)

background Data	Empirical Francework	Nesulus	Conclusions
		000000000000000000000000000000000000000	

Individual level effects by time of exposure and age

	(1)	(2)					
VARIABLES	Labor Income	Years of Study					
Shock $ imes$ Years of Exposure	4,341***	0.641***					
	(1,590)	(0.199)					
Shock \times Years of Exposure \times Age	-319.9*	-0.063***					
	(170.1)	(0.021)					
Observations		1 023 285					
D squared	0.262	0.020					
R-squareu	0.202	0.229					
Robust standard err	Robust standard errors in parentheses						
*** p<0.01, ** p<0.05, * p<0.1							

Introduction	Institutional Background	Data	Empirical Framework

 Conclusions

Effect by Parental Education

VARIABLES	Years o	f Study	Labor Ir	ncome
	(1)	(2)	(3)	(4)
Never Exposed	-0.442	-1.537	2,355	-2,567
	(0.646)	(1.097)	(3,536)	(6,222)
Marginally Exposed	-0.251	-0.045	2,700	7,053
	(0.640)	(0.905)	(3,570)	(6,238)
Exposed in Lower-	0.418	0.342	10,087*	15,624**
Secondary School	(0.802)	(1.044)	(5,374)	(6,290)
Exposed in Primary	1.806*	0.975	22,373***	4,508
School	(0.951)	(1.127)	(6,749)	(7,798)
Observations	524,678	498,607	508,233	473,037
R-squared	0.095	0.169	0.256	0.217
Parental Education	Low	High	Low	High

Quantile Regressions

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
				000000000000000000000000000000000000000	

Quantile Regressions

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
				000000000000000000000000000000000000000	

Quantile Regressions

Introduction 0000	Institutional Background	Data 000	Empirical Framework	Results 000000000000000000000000000000000000	Conclusions 0000
Hetero	geneity Analys	sis			

- There might be differences among certain types of municipalities.
- Certain types of municipalities might also crowd-out Central Administration grants (Wu, 2019).
- Cascio et al. (2013): municipalities that are more able to crowd-out to higher external education funding, lowering their own investments, show lower or no actual increases on school spending.

Introduction 0000	Institutional Background 00000	Data 000	Empirical Framework	Results 000000000000000000000000000000000000	Conclusions

Municipalities by centrality

- 7 levels of geographical location in relation to towns of different sizes.
- Measured by the Norwegian Statistics Bureau in 1980.
- 3 groups: from rural (levels 1 and 2) to central (level 7).

Why centrality? Lower per capita tax revenues + Higher dependency on central administration grants

 \rightarrow Less ability to crowd-out education funding.

	Per Pupil	Share of	Share of Educ.
	Educ. Spending	Tax Revenues	Federal Funding
Rural	6890.9	.414	0.525
Neither	5452.2	.538	0.426
Central	6031.0	.584	0.321
E			

Obs: Expenditure in 2011 PPP dollars

Institutional Background Results

Municipal Results by Centrality

Rural Municipalities

Institutional Background

Results

1991

Municipal Results by Centrality

Introduction	Institutional Background	Data	Empirical Framework	Results	C
				000000000000000000000	

onclusions

Municipal Results by Centrality

Ye	ears of Stu	dy	Labor Income			
(1)	(2)	(3)	(4)	(5)	(6)	
-1.134	0.918	0.573	2,429	418.4	7,077	
(0.772)	(1.365)	(1.300)	(3,764)	(7,317)	(8,473)	
-0.549	0.989	-0.789	5,881	4,279	-1,520	
(0.726)	(1.083)	(1.268)	(4,461)	(6,740)	(7,413)	
-0.228	2.098	-1.510	12,472**	14,443*	12,021	
(0.944)	(1.362)	(1.339)	(6,244)	(7,449)	(10,595)	
0.741	2.317	0.175	12,118*	11,273	9,896	
(1.038)	(1.866)	(1.644)	(6,772)	(10,378)	(14,491)	
227,265	315,740	480,280	219,650	303,681	457,939	
0.204	0.216	0.253	0.295	0.267	0.247	
Rural	Neither	Central	Rural	Neither	Central	
	(1) -1.134 (0.772) -0.549 (0.726) -0.228 (0.944) 0.741 (1.038) -227,265 0.204 Rural	Years of Stur (1) (2) -1.134 0.918 (0.772) (1.365) -0.549 0.989 (0.726) (1.083) -0.228 2.098 (0.944) (1.362) 0.741 2.317 (1.038) (1.866) -227,265 315,740 0.204 0.216 Rural Neither	Years of Study (1) (2) (3) -1.134 0.918 0.573 (0.772) (1.365) (1.300) -0.549 0.989 -0.789 (0.726) (1.083) (1.268) -0.228 2.098 -1.510 (0.944) (1.362) (1.339) 0.741 2.317 0.175 (1.038) (1.866) (1.644) -227,265 315,740 480,280 0.204 0.216 0.253 Rural Neither Central	Years of Study L (1) (2) (3) (4) -1.134 0.918 0.573 2,429 (0.772) (1.365) (1.300) (3,764) -0.549 0.989 -0.789 5,881 (0.726) (1.083) (1.268) (4,461) -0.228 2.098 -1.510 12,472** (0.944) (1.362) (1.339) (6,244) 0.741 2.317 0.175 12,118* (1.038) (1.866) (1.644) (6,772) -227,265 315,740 480,280 -219,650 0.204 0.216 0.253 0.295 Rural Neither Central Rural	Years of StudyLabor Incom(1)(2)(3)(4)(5) -1.134 0.9180.5732,429418.4(0.772)(1.365)(1.300)(3,764)(7,317) -0.549 0.989 -0.789 5,8814,279(0.726)(1.083)(1.268)(4,461)(6,740) -0.228 2.098 -1.510 12,472**14,443*(0.944)(1.362)(1.339)(6,244)(7,449)0.7412.3170.17512,118*11,273(1.038)(1.866)(1.644)(6,772)(10,378) $227,265$ $315,740$ $480,280$ $219,650$ $303,681$ 0.2040.2160.2530.2950.267RuralNeitherCentralRuralNeither	

Groups defined by centrality measure from Statistics Norway, which varies from 1 to 7 (1-2: rural; 3-6: neither; 7: central)

*** p<0.01, ** p<0.05, * p<0.1

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000	00000	000	00000000	000000000000000000000	•000

- Motivation and Lit. Review
- Institutional Background
- Oata
- Impirical Framework
- 6 Results
- Onclusions

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
					0000

Conclusions and topics for further investigation

- Municipalities increased expenditure and school inputs (teachers, teaching hours, public schools)
- Small effects on educational attainment, but more sizeable impacts on labor market income and migration, especially for those exposed at Primary School.
- Results are stronger for children from under-educated parents and at lower ends at the distribution.
- Results driven by rural municipalities, that have lower per capita revenue and higher dependency on central administration grants.

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
0000	00000	000	00000000	000000000000000000000	00●0

Thank you!

Introduction	Institutional Background	Data	Empirical Framework	Results	Conclusions
					0000

*Correlations

