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Introduction

▶ Focus on the linear IV model.
▶ Three complications:

1. Weak or irrelevant instruments;
2. Heteroskedasticity;
3. Many instruments (Bekker, 1994).

▶ With only 1. tests based on the continuous updating objective
function are optimal (Andrews et al., 2019).

▶ What if we add 2. and 3.?

2 / 16



In this presentation

▶ Discuss the problems with the continuous updating objective
function when there are many instruments.

▶ Show how an invariance assumption can overcome these
problems.

▶ Derive the joint distribution of the AR and score.
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Why many instruments?

▶ Number of instruments is non-negligible relative to the sample
size.

▶ Examples
▶ Bartik instrument

Goldsmith-Pinkham et al. (2020): elasticity of substitution of
workers using 124 cities and 38 country groups.

▶ Judge design dummies
Kling (2006): each judge can only handle a limited number of
cases.

▶ Interactions of instruments and covariates
Angrist and Krueger (1991): return to education using 329,509
observations and 1530 state-year-quarter dummies.
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Why many instruments?

▶ Previous examples are for independent observations.

▶ In practice data are often clustered.

▶ Many and weak instruments are more likely to be problematic
under clustered data due to reduced effective sample size.

▶ Ligtenberg (2023) proposes robust tests for clustered data.
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Many instruments and continuous updating

▶ Linear IV model with heteroskedasticity

yi = x ′
iβ0 + εi

xi = Π′zi + ηi ,

β0 ∈ Rp, Π ∈ Rk×p, i = 1, . . . , n.

▶ Moment conditions gi (β0) = E[zi (yi − x ′
iβ0)] = 0.

▶ Continuous updating objective function

Q(β) =
1

n

∑
i

gi (β)
′

[∑
i

gi (β)gi (β)
′

]−1∑
i

gi (β)

▶ With many instruments and heteroskedasticity the k × k
weighting matrix is problematic.
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How to handle the weighting matrix?

1. Change it for something that does not depend on the errors.
▶ Crudu et al. (2021) and Mikusheva and Sun (2022) do this for

the objective function.
▶ Matsushita and Otsu (2022) do this for the score.
▶ Changing the weighting matrix might not weigh the moment

conditions optimally.

2. Show that if the moment conditions satisfy an invariance
assumption, the weighting matrix does not obstruct finding
the limiting distribution.
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Invariant moment conditions

▶ Assume the moment conditions are reflection invariant:

gi (β0)
(d)
= rigi (β0) for ri = ±1 with probability 1/2.

▶ This allows for heteroskedasticity.

▶ Then under H0 : β = β0

Q(β0)
(d)
=

1

n

∑
i

rigi (β0)
′[r2i

∑
i

gi (β0)gi (β0)
′]−1

∑
i

rigi (β0)

=
1

n
r ′P(β0)r ,

with P(β) a projection matrix of the moment conditions.
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Many instrument Anderson-Rubin statistic

Lemma A2 of Chao et al. (2012):∑
i ,j Pij(β0)− k√

σ2
nk

(d)
=

r ′P(β0)r − k√
σ2
nk

⇝ N(0, 1).
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Score test

Same approach as for AR:

1. Use invariance to get score with ri .

2. Condition on {εi , zi}ni=1.

3. Use the randomness in ri to derive the conditional variance of
the score with ri .

4. Use the randomness in ri to derive a central limit theorem for
the standardised score.

5. Conclude that the conditional distribution implies an
unconditional distribution.

Result:

Σ
−1/2
n (β0)

(
1√
k
[
∑

i ,j Pij(β0)− k]
√
nS(β0)

)
⇝ N(0, I ).
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Monte Carlo

yi = xiβ0 + εi

xi = Π′zi + ηi .

▶ n = 800 observations, p = 1 endogenous regressor and β0 = 0.

▶ k = 100 instruments of which only one is relevant. We vary
its strength.

▶ There is endogeneity and conditional heteroskedasticity, but
the errors are reflection invariant.

Details
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Power weak instruments
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Power strong instruments
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Size with violated invariance
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Conclusion

▶ Many instruments are empirically relevant.

▶ The large dimensional weighting matrix of the continuous
updating objective is difficult to handle with many
instruments and heteroskedasticity.

▶ These problems can be circumvented when the moment
conditions are reflection invariant.

▶ We can derive an AR and score statistic.

▶ The AR and score tests are size correct and have good power.
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Many instrument Anderson-Rubin statistic

Assume:

1. rank[P(β0)] = k ;

2. Pii (β0) < 1 for all i ;

3. σ2
n = 2

k

∑
i ̸=j Pij(β0)

2 > 0.

Lemma A2 of Chao et al. (2012):∑
i ,j Pij(β0)− k√

σ2
nk

(d)
=

r ′P(β0)r − k√
σ2
nk

⇝ N(0, 1).
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Power of many instrument AR

▶ The many instrument AR has higher power than the AR
statistic for a fixed number of instruments.

▶ Let AR(β) = nQ(β).

▶ Let ϕ1(β) = 1 if
(kσ2

n)
−1/2(AR(β)− k) > (2k)−1/2(χ2(k)1−α − k).

▶ Let ϕ2(β) = 1 if AR(β) > χ2(k)1−α.

▶ Then if α < 0.3, P(ϕ1(β) = 1) > P(ϕ2(β) = 1).
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Score test

∂Q(β)

∂βi
= −1

n
x(i)′[I − diag(P(β)ι)]Z

∑
j

zjz ′
j ε

2
j

−1

Z ′ε

▶ To apply εizi
(d)
= riεizi we need to parameterise dependence of

xi = Π′zi + ηi on εi .

▶ ηi = εiai + ui with ui and εi independent.
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Conditional variance of the score

▶ The conditional variance of the score is
Ωij(β0) = E

[
n · S(i),r (β0)S(j),r (β0)

∣∣J ] = ΩL
ij(β0) + ΩH

ij (β0).

▶ If maxi=1,...,n Pii ≤ 0.9 then ΩH
ij (β0) is negative semi-definite.

▶ Under additional assumptions negative semi-definite changes
to negative definite. These additional assumptions are more
likely to hold if there are many instruments.
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Assumption for joint distribution

1. 1
n

∑n
i=1 ∥z̄i∥2 ≤ C < ∞ a.s.n.;

2. 1
n maxi=1,...,n ∥z̄i∥2 →a.s. 0;

3. 1
n maxi=1,...,n ∥Z̄ ′VDεei∥2 →a.s. 0;

4. 0 < C−1 ≤ λmin(
1
nZ

′Z ) ≤ λmax(
1
nZ

′Z ) ≤ C < ∞ a.s.n.,
0 < C−1 ≤ λmin(

1
nZ

′D2
εZ ) ≤ λmax(

1
nZ

′D2
εZ ) ≤ C < ∞

a.s.n.
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Details of Monte Carlo setup

yi = xiβ0 + εi

xi = Π′zi + ηi .

▶ n = 800, p = 1, β0 = 0.

▶ k = 100 with Zij ∼ N(0, 1). Π1 =
√

R
√
k/n and zeroes

elsewhere. R = 5 for weak IV and R = 50 for strong IV.

▶ ηi = |Z1i |εi + wi/2 with wi ∼ N(0, 1) and εi ∼ N(0, 1).

Back

24 / 16



Distribution of the many instrument AR
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Distribution of the many instrument AR
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Jackknife weak IV
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Jackknife strong IV
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Negative variance weak IV
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Negative variance strong IV
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Negative inverse elasticity of substitution

ylj = β log xlj + γ ′Xl + εlj

▶ ylj residual log wage gap between immigrant and native men
in skill group j and location l , xlj ratio of immigrant to native
hours worked in skill group j and location l of both men and
women, Xl location specific controls.

▶ Bartik instrument Blj =
∑38

k=1 zlk,1980gkj , with
zlk,1980 = Nlk,1980/(Nk,1980Pl ,2000 for Nlk,1980 number of
immigrants from country group k in 1980 in location l ,
Nk,1980 number of immigrants from country group k in 1980
and Pl ,2000 the population in 2000, and gkj the number of
immigrants from country group k in skill group j arriving
between 1990 and 2000.

▶ zlk,1980 can also be used separately as instruments.
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Negative inverse elasticity of substitution
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Negative inverse elasticity of substitution
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