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Motivation: The effect of imprisonment on recidivism

• Does incarceration prevent future crime (recidivism)?

• The results in the literature so far are mixed: crime-reducing, no effect or even a

crime-inducing effect of prison

• Maybe there is heterogeneity of effects, maybe even inside states?
• In some counties prisons are good at rehabilitating, in others they have reverse effect
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This paper in a nutshell

1 Estimate the effect of incarceration on recidivism in the US based on judge

instruments when allowing for effect heterogeneity

Single estimate might mask coexistence of null, positive and negative effects

2 Proposition of a two-step method to allow for selection of valid IVs in presence of
LATEs

1 Find clubs of propensity scores (i.e. imprisonment rates) and apply clustering

2 Inside each club find largest group of same reduced form estimates (i.e. recidivism rate)

3 Estimate grouped heterogeneous treatment effects for all pairs of clubs using only the

largest group of (valid) instruments (i.e. judges)
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Assumptions

LATE Assumptions: For two distinct IV values z 6= z ′:

• Assumption 1: Validity (Exogeneity and Exclusion restriction)
(i) Random assignment: Z ⊥ (D(z),Y (z ′, d)) and
(ii) Exclusion: Y (z , d) = Y (z ′, d) = Y (d)

• Assumption 2: Monotonicity Pr(D(z) ≥ D(z ′)) = 1
• Assumption 3: First Stage: E (D|Z = z)− E (D|Z = z ′) 6= 0

• Clubs: Sets of judges with comparable probability to incarcerate
• Group: Set of judges inside club with same judge-specific mean of the outcome

• Assumption 4: Plurality: Largest group of judges in each club fulfils LATE
assumptions

Model Assumptions detail
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Method: Visualization of Clubs and Groups

Mean incarceration per judge

Mean recidivism
per judge

Club 1 Club 2
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Method: Visualization of Clubs and Groups

Mean incarceration per judge

Mean recidivism
per judge

Group of 
invalid
judges

Group of 
valid judges
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Method: Group-pair LATEs

LATE = RC1 − RC2

PC1 − PC2

• RC1, RC2: Recidivism rate for Group 1 and 2
• PC1, PC2: Imprisonment rate for Group 1 and 2
• LATE is the effect of imprisonment on recidivism for the sub-population of people

who are sentenced to jail by a judge in Group 1, but would not have been
sentenced by a judge in Group 2

• If we group judges into 4 clubs, we get only 6 estimates (instead of several thousands
from a judge-wise comparison)
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Method: AHC Visualization

Classification of mean imprisonment and recidivism via Agglomerative Hierarchical
Clustering (AHC) (Ward, 1963; Apfel and Liang, 2021) Details

��

Step: 0, Nr. of clusters: 6

��

Step: 1, Nr. of clusters: 5

��

Step: 2, Nr. of clusters: 4

��

Step: 3, Nr. of clusters: 3

��

Step: 4, Nr. of clusters: 2

��

Step: 5, Nr. of clusters: 1
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Method: AHC Visualization

Select the number of clusters via a stopping rule: Stop when the F-test for equality of all
first-stage parameters in the cluster does not reject any more

��

Step: 3, Nr. of clusters: 3
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Method

• Idea: Club pairs that fulfil LATE assumptions produce same LATE
• Step I: Classify Judges into Clubs

• Find clubs of IVs with the same propensity score Pz

• Step II: Find largest groups of judges with same reduced form inside each club
• Estimate LATEs for group-pairs
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Application: Incarceration and future crime

Recidivismojt = β0 + Prisonojtβ + uojt Equation of Interest
Prisonojt = γ0 + Zojtγ + εojt First Stage

• o: Offender ID, j : Judge ID, t: Time period (2009-2014)
• Recidivism-Dummy: 1 if offender has reoffended within 3 years
• Prison-Dummy: 1 if offender has been convicted
• Adult offenders in US state Minnesota: Data obtained by linking Minnesota Judicial
Branch case database with Minnesota Sentencing Guidelines dataset
• Judges assigned randomly according to the Minnesota Order for Assignment of Cases
• Controls: race-, gender-, offensetype-, year-dummies, severity of crime, age, the
squares of the latter two and race-gender interaction dummies
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Application: Incarceration and future crime

• Number of judges: 78
• Cases with presumptive sentences of up to three years (minor crimes), e.g. robbery,
assault, theft, stalking, fleeing from the police, lottery fraud
• Number of cases per judge:

• Min: 202
• Mean: 307
• Max: 935

Descriptives
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Application: Clusters based on imprisonment rate

Club Mean Nr

1 0.81 26
2 0.67 6
3 0.84 18
4 0.77 14
5 0.72 10
6 0.56 3
7 0.15 1

Table: First step: Club allocation
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Application: Judges sorted by imprisonment rate
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Application: Imprisonment & Recidivism rate
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Application: Group-pair LATEs
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Figure: Effect of Imprisonment on Recidvism - AHC (group-pair LATEs)
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Application: Group-pair LATEs (significant only)

Table: Effect of Imprisonment on Recidivism - AHC

OLS 2SLS 1-5 2-3 3-5 5-6
Prison 0.061 0.095 0.294 0.135 0.286 -0.248

(0.0095) (0.022) (0.154) (0.078) (0.121) (0.114)
J 27 17 18 10
N 23958 23958 7156 5787 5758 2703
Diff -0.083 0.166 -0.111 -0.163
Cluster-robust standard errors in parentheses.
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Conclusion

This paper...
• suggests a cluster method to detect grouped LATEs
• suggests a cluster method to select valid instruments
• applies the method to estimate heterogeneous effects on incarceration on recidivism
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Thank you for your attention!
Comments & Questions?
rebecca.groh@tum.de
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Appendix: Simulation: Setting w/o Invalidity

• V ∼ Unif (0, 1)
• U = 0.5V + Unif (0, 1)
• D = 1(Zp > V )
• Z matrix of judge dummy
• Three clubs: p = (0.9ι4, 0.7ι4, 0.5ι2)
• Y = (D · 0.5 + D · U + U)4

• J = 10
• Number of cases: Unif (3, 5) multiplied by 10 (few cases setting) or by 100 (many
cases setting).
• 1000 repetitions
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Simulation: Setting with Invalidity

• Y = (D · 0.5 + D · U + Zγ + U)4

•
γinv = 0.1, 0ι3

0ι2,−0.1,−0.2
0ι2

• Club 1: Three judges are valid and one is invalid (majority and plurality holds)
Club 2: Two judges are valid and two are invalid but invalidity has different
magnitudes (that is, majority is violated but plurality holds)
Club 3: All judges are valid
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Simulation: Extent of effect heterogeneity

Overall Oracle Clubs 2SLS
Setting Invalidity OLS 2SLS 1-2 1-3 2-3

few cases no 18.94 20.39 30.78 26.47 22.08
yes 22.75 24.52 29.13 32.02 43.59

many cases no 18.90 20.39 30.29 26.19 20.10
yes 22.60 24.40 28.67 31.62 36.26

• Overall 2SLS using judge dummies as IVs would ignore effect heterogeneity.
• Hansen test rejects due to effect heterogeneity and invalidity.
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Simulation: 1st clustering based on first stage parameters
• #clubs: Mean number of clusters selected by AHC
• #corr: fraction of times the correct number of clubs has been selected

Setting Invalidity Method #clubs #corr Hansen p

few cases
no Oracle 3 1 0.51

AHC 2.36 0.36 0.48

yes Oracle 3 1 0.00
AHC 2.35 0.35 0.15

many cases
no Oracle 3 1 0.51

AHC 3.02 0.98 0.49

yes Oracle 3 1 0.00
AHC 3.02 0.99 0.00

• If number of cases is sufficiently large, clustering works well (even if some judge
violate LATE assumptions)

• Invalid IV setting: Hansen test still rejects due to invalidity
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Simulation: Estimation after 1st clustering

2SLS
Setting Invalidity Method 1-2 1-3 2-3

many cases
no Oracle 30.23 26.15 20.01

AHC Clubs 30.29 26.19 20.09

yes Oracle 30.16 26.08 19.94
AHC Clubs 28.67 31.62 36.25

• Invalid IV setting: LATEs are biased
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Simulation: 2nd clustering based on reduced form parameters

• Separately for each club (i.e. constant imprisonment rate) we perform a 2nd
clustering based on RF parameters (Hansen test as stopping rule)
• If plurality holds (i.e. largest group of judges are valid), we can identify the valid
judges.

Setting Method ValDet InvDet Hansen p

few cases Oracle 1 1 0.50
AHC 0.96 0.33 0.34

many cases Oracle 1 1 0.51
AHC 0.99 0.86 0.44

• Again clustering works well if number of cases is large enough
• Hansen test does not reject any longer.
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Simulation: Estimation after 1st and 2nd clustering

• Average LATE estimates for the three possible comparisons

Method 1-2 1-3 2-3
Oracle 30.28 26.13 20.12

AHC Clubs & Groups 28.74 26.12 22.37

• Estimation of the LATEs work very well if we drop the invalid judges

Rebecca Groh (TUM) August 29, 2023 30 / 23



Appendix: LATE assumptions

There exist three compliance types under Assumption 3:
Type Potential treatment Interpretation in application

variable

Compliers (C) D1 = 1, D0 = 0 > 2 children only if same sex
Defiers (F) D1 = 0, D0 = 1 > 2 children only if opposite sex
Always-takers (A) D1 = 1, D0 = 1 > 2 children in any case
Never-takers (N) D1 = 0, D0 = 0 2 children in any case

Which are distributed in the data as

Z=1 Z=0

D=1 C,A A
D=0 N C,N

Back
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Model

Potential outcomes model (Rubin, 1974)

D = 1(ψ(Z ) > V ) First Stage relationship

Y = η(D,U) Outcome

• V and U are unobservable
• ψ(·) is a nonparametric function of Z
• Binary instruments Z
• Potential treatment: D(z)
• Potential outcome: Y (d , z)
• Propensity score: Pr(D = 1|Z = z) = Pz
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Model II: Key implication

Under the LATE Assumptions (Exogeneity and Exclusion, Monotonicity and First Stage),
the Wald estimator identifies the LATE ∆z,z ′

Central implication
Two IV pairs with values (z , z ′) and (z ′′, z∗) identify the same LATE
iff their propensity scores are equal p(z) = p(z ′′) and p(z ′) = p(z∗):

∆z,z ′ = E [Y (1)− Y (0)|p(z) > V ≥ p(z ′)] = ∆z ′′,z∗

Intuition: We are looking at the same section of the population in terms of V
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Model III: LATE

∆z,z ′ = E (Y |Z = z)− E (Y |Z = z ′)
Pr(D = 1|Z = z)− Pr(D = 1|Z = z ′)

= E [Y (1)− Y (0)|D(z) = 1,D(z ′) = 0]
= E [Y (1)− Y (0)|p(z) > V ≥ p(z ′)]

Back
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Method IV: First-step selection of clubs

1 Cluster the mean incarceration per judge via Agglomerative Hierarchical Clustering

(AHC) (Ward, 1963; Apfel and Liang, 2021) Details

2 Select the number of clusters via a stopping rule: Stop when the F-test for equality of

all first-stage parameters in the cluster does not reject any more
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Method V: Dealing with invalidity

1 Create a set of instrumental variables from two clubs

2 Test overidentifying restrictions (Hansen-Sargan test)

3 Select valid IVs

• Apply Agglomerative Hierarchical Clustering on the judge-specific means of recidivism

Details

• Search for largest cluster (group) inside each club found in the preceding step
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Method VI: Agglomerative Hierarchical Clustering

1 Input: Calculate all propensity scores p̂j with a first-stage regression

2 Initialization: Each p̂j has its own cluster. The total number of clusters in the
beginning hence is J .

3 Joining: The two clusters k and l which are closest in terms of their weighted
Euclidean distance Jk ·Jl

Jk+Jl
||p̄k − p̄l ||2 are joined to a new cluster.

4 Merging: Recalculate the cluster means. Recalculate the pair-wise Euclidean
distances with the new cluster.

5 Iteration: The joining and merging steps are repeated until all just-identified
point-estimates are in one cluster. For each joining step, the number of clusters
decreases by 1.

Back
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Method VII: Consistent classification

Consistent classification
As (J ,T )→∞, classification is individually consistent if the probability of wrongly
assigning judges goes to zero for all judges, for all clubs.
Possible wrong assignments:
• Not assigning a judge from a certain club C0

k to an estimated club Ĉk
• Assign a judge from club C0

k to an estimated club Ĉk to which it doesn’t belong

Back
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Descriptives

Variable Overall D = 1 D = 0 Diff pval

Recidivism 0.292 0.3 0.219 0.08 4.4e-37
Female 0.183 0.173 0.276 -0.1 4.3e-53
Age at Sentence 33.04 33.02 33.2 -0.18 0.28
Race

White 0.59 0.585 0.638 -0.05 6.9e-13
Black 0.261 0.267 0.204 0.06 6.3e-24
Amerindian 0.073 0.074 0.065 0.01 0.021
Hispanic 0.05 0.047 0.074 -0.03 5.6e-12
Asian 0.026 0.027 0.018 0.01 5e-05
Unknown 0 0 0 0 0.73

Crime Type
Property Crime 0.332 0.324 0.412 -0.09 9.7e-32
Crime against a Person 0.299 0.306 0.235 0.07 8e-28
Drug Crime 0.238 0.242 0.2 0.04 7.5e-12
Sex Offenses 0.056 0.056 0.054 0 0.49
Weapons Offense 0.007 0.007 0.009 0 0.19
Other 0.068 0.065 0.091 -0.03 1.3e-09

Severity 3.44 3.46 3.25 0.21 6.1e-09

Back
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