Win as a Team or Fail as Individuals Cooperation and Non-Cooperation in the Climate Tax Game

Marten Hillebrand (University of Freiburg) joint with Elmar Hillebrand (EEFA Research Institute) ESEM Conference 2023, Barcelona August 28, 2023

The Climate Problem

- Large and growing literature on economics of climate change.
- Dynamic general equilibrium theory to study optimal climate policies:
 - ◊ Golosov et al. (2014, ECMA)
 - Hambel, Kraft & Schwartz (2021, JIE)
 - ♦ Hillebrand & Hillebrand (2019, JET).
- Game theory to study cooperation and non-cooperation:
 - ◊ Battaglini & Harstad (2016, JPE)
 - ♦ Harstad (2012, ReStud)
 - ♦ Harstad (2012, JEEA).
- This paper:
 - o dynamic general equilibrium model of climate change
 - multiple heterogeneous countries, trade
 - optimal climate policies under cooperation and non-cooperation
 - transfer polices inducing full cooperation of countries.

This Talk

The Model

- Olimate Policy and Equilibrium
- Optimal Climate Policy under
 - I. non-cooperation
 - II. full cooperation
 - III. partial cooperation (coalitions).
- Optimal Transfers
- Extensions

1. The Model

Model setup

- Discrete time *t* = 0, 1, 2, ...
- $L \ge 2$ countries/regions, set of players $\mathbb{L} := \{1, \dots, L\}$.
- Building blocks of the model:
 - A. Production sectors:
 - A.1 final sector
 - A.2 resource sector.
 - B. Climate model
 - C. Consumption sector
 - D. Markets and trade.

Stage A.1: Final production in region ℓ

• Final sector in region $\ell \in \mathbb{L}$:

• gross production function $F_t^{\ell}: \mathbb{R}^2_+ \longrightarrow \mathbb{R}_+$ determining final output

$$Y_t^{\ell} = \underbrace{(1 - D^{\ell}(S_t))}_{\text{climate damage}} F_t^{\ell}(K_t^{\ell}, X_t^{\ell}).$$

- $\circ~$ capital K_t^ℓ and fossil energy X_t^ℓ as inputs
- standard restrictions (C^2 , concavity, monotonicity) on F_t^ℓ
- time-dependence allows for various sources of exogenous growth
- climate damage depending on climate state S_t .
- Climate damage function $D^{\ell}: \mathbb{R}_+ \longrightarrow [0,1]$

$$D^{\ell}(S_t) := 1 - \exp\left(-\frac{\gamma^{\ell}}{S_t}\right).$$

Marginal climate damage will be $\gamma^{\ell} Y_t^{\ell}$.

Stage A.2: Resource extraction in region ℓ

• Resource sector extracts fossil fuels (oil, coal, gas):

- given initial stock $R_0^{\ell} \ge 0$
- constant extraction cost $c_x > 0$ per unit
- extraction path $(X_t^{\ell,s})_{t\geq 0}$ satisfies feasibility constraint:

$$\sum_{t=0}^{\infty} X_t^{\ell,s} \le R_0^{\ell}.$$

• World resource supply in period *t*:

$$\overline{X}_t^s := \sum_{\ell \in \mathbb{L}} X_t^{\ell, s}.$$

B. Climate model

• Global emissions from burning fossil fuels in final production:

$$\overline{X}_t := \sum_{\ell \in \mathbb{L}} X_t^{\ell}.$$

• Climate state S_t represents total atmospheric CO₂ concentration:

$$S_t = \sum_{n=0}^{\infty} \delta_n \overline{X}_{t-n}$$

 $\delta_n \ge 0$: share of emissions left in atmosphere after *n* periods.

- Historical emissions $(\overline{X}_{-t})_{t\geq 1}$ before t = 0 are given.
- Specification includes Golosov et al. (2014), Gerlagh & Liski (2018).

C. Consumption sector in region ℓ

- Representative consumer:
 - o income from capital, profits, lump-sum transfers
 - decision on $(C_t^{\ell}, K_{t+1}^{\ell,s})_{t\geq 0}$
 - time-additive preferences over lifetime consumption:

$$U((C_t^{\ell})_{t\geq 0}) = \sum_{t=0}^{\infty} \beta^t u(C_t^{\ell}), \quad 0 < \beta < 1.$$

• period utility consistent w/ balanced growth (King et al.(1988)):

$$u(C) = \begin{cases} \frac{C^{1-\sigma}-1}{1-\sigma} & \text{for } \sigma > 0, \sigma \neq 1\\ \log C & \text{for } \sigma = 1. \end{cases}$$
(1)

Aggregate consumption and capital formation is

$$\overline{C}_t := \sum_{\ell \in \mathbb{L}} C_t^{\ell} \quad \text{ and } \quad \overline{K}_{t+1}^s := \sum_{\ell \in \mathbb{L}} K_{t+1}^{\ell,s}.$$

D. Markets and trade

• International markets for

• capital:

$$\sum_{\ell \in \mathbb{L}} K_t^{\ell} = \overline{K}_t^s \qquad \rightsquigarrow r_t$$

• exhaustible resources:

$$\sum_{\ell\in\mathbb{L}}X_t^\ell=\overline{X}_t^s\qquad \rightsquigarrow v_t.$$

• consumption good (numeraire):

$$\sum_{\ell \in \mathbb{L}} Y_t^\ell = \sum_{\ell \in \mathbb{L}} C_t^\ell + \sum_{\ell \in \mathbb{L}} K_{t+1}^\ell + c_x \sum_{\ell \in \mathbb{L}} X_t^\ell.$$

• Frictionless markets, intertemporal borrowing and lending.

2. Climate Policy and Equilibrium

Climate policy

- Climate policy chosen by region $\ell \in \mathbb{L}$:
 - emissions taxes $(\tau_t^\ell)_{t\geq 0}$
 - lump-sum transfers $(T_t^{\ell})_{t\geq 0}$.
- Tax τ_t^{ℓ} paid by final sector per unit of fossil energy X_t^{ℓ} .
- Feasible transfers under cooperation and non-cooperation:
 - non-cooperation:

$$T_t^{\ell} = \underbrace{\tau_t^{\ell} X_t^{\ell}}_{t} \qquad . \tag{2}$$

regional tax revenue

• full cooperation:

$$T_t^{\ell} = \theta^{\ell} \cdot \underbrace{\sum_{k \in \mathbb{L}} \tau_t^k X_t^k}_{\text{global tax revenue}} .$$
(3)

Transfer policy $(\theta^{\ell})_{\ell \in \mathbb{L}}$ satisfies $\sum_{\ell \in \mathbb{L}} \theta^{\ell} = 1$.

Equilibrium

Definition

A decentralized equilibrium consists of a feasible climate policy $(\tau_t^{\ell}, T_t^{\ell})_{t\geq 0}$ for each region $\ell \in \mathbb{L}$, an allocation

$$A^* = ((K_t^{\ell*}, X_t^{\ell*}, C_t^{\ell*})_{\ell \in \mathbb{L}})_{t \ge 0},$$

and a price system

$$P^* = (r_t^*, v_t^*)_{t \ge 0}$$

consistent with *market clearing*, *optimal behavior* of consumers and all producers, the exhaustible *resource constraint*, and the *climate model*.

Lemma

The equilibrium consumption distribution $\mu = (\mu^{\ell})_{\ell \in \mathbb{L}}$ is constant:

$$C_t^\ell = \mu^\ell \overline{C}_t$$
 for all $t = 0, 1, 2, \dots$

3. Optimal Climate Policy

Case I: Non-cooperation

• All players $\ell \in \mathbb{L}$:

- choose regional taxes $(\tau_t^{\ell,\mathrm{nc}})_{t\geq 0}$ to maximize *domestic utility*
- take as given in their decision:
 - \diamond aggregate emissions $(\overline{X}_t^{-\ell})_{t\geq 0}$ of all other regions
 - ♦ international prices $(r_t, v_t)_{t \ge 0}$.
- transfer entire tax revenue to domestic consumers.

Theorem

The non-cooperative tax policy $(\tau_t^{\ell,\mathrm{nc}})_{t\geq 0}$ is determined by the rule

$$\tau_t^{\ell, \mathrm{nc}} = \sum_{n=0}^{\infty} \beta^n \left(\overline{C}_{t+n} / \overline{C}_t\right)^{-\sigma} \times \delta_n \times \gamma^{\ell} Y_{t+n}^{\ell}.$$

and is the sum of all discounted future domestic climate damages.

Case II: Full cooperation

- All countries coordinate on a globally optimal climate policy
- Optimal policy maximizes utility of a world representative consumer.

Theorem

The optimal climate tax policy is uniform across countries and of the form

$$\tau_t^{\ell,\text{opt}} \equiv \tau_t^{\text{opt}} := \sum_{n=0}^{\infty} \beta^n \left(\overline{C}_{t+n} / \overline{C}_t\right)^{-\sigma} \times \delta_n \times \sum_{k \in \mathbb{L}} \gamma^k Y_{t+n}^k.$$

and is the sum of all discounted future global climate damages.

• Compare this to the non-cooperative tax policy

$$\tau_t^{\ell,\mathrm{nc}} = \sum_{n=0}^{\infty} \beta^n \left(\overline{C}_{t+n}/\overline{C}_t\right)^{-\sigma} \times \delta_n \times \gamma^{\ell} Y_{t+n}^{\ell}.$$

which internalizes only domestic damages!

Case III: Partial cooperation/coalition formation

- Each region $\ell \in \mathbb{L}$ joins some coalition $\mathbb{L}' \subset \mathbb{L}$.
- Coalition structure \mathscr{L} is a partition of \mathbb{L} into $N \ge 1$ coalitions:

$$\mathscr{L} = \left\{ \mathbb{L}_1, \dots, \mathbb{L}_N \right\}, \quad \bigcup_{n=1}^N \mathbb{L}_n = \mathbb{L}.$$
(4)

• Each coalition maximizes aggregate utility of its members.

Theorem

The optimal tax chosen by each coalition member $\ell \in \mathbb{L}' \in \mathscr{L}$ is

$$\tau_t^{\ell} = \tau_t^{\mathbb{L}', \text{opt}} := \sum_{n=0}^{\infty} \beta^n \left(\overline{C}_{t+n} / \overline{C}_t\right)^{-\sigma} \times \delta_n \times \sum_{k \in \mathbb{L}'} \gamma^k Y_{t+n}^k.$$

Corollary: The grand coalition $\mathbb{L}' = \mathbb{L}$ chooses $\tau_t^{\mathbb{L}', \text{opt}} = \tau_t^{\text{opt}}!$

4. Optimal Transfers

Transfer policies

- Regions choose transfer policy $\theta = (\theta^{\ell})_{\ell \in \mathbb{L}}$ to redistribute tax revenue.
- Regional consumption $(C_t^{\ell,nc})_{t\geq 0}$ under non-cooperation.
- Aggregate consumption $(\overline{C}_t^{opt})_{t\geq 0}$ under full-cooperation

Lemma

For each $\ell \in \mathbb{L}$, the following holds:

(i) There exists a minimal consumption share $\mu_{\min}^{\ell} \ge 0$ such that

$$U\left(\left(\mu_{\min}^{\ell} \times \overline{C}_{t}^{\text{opt}}\right)_{t \ge 0}\right) = U\left(\left(C_{t}^{\ell, \text{nc}}\right)_{t \ge 0}\right).$$
(5)

(ii) There exists a critical transfer share $\theta_{\min}^{\ell} > 0$ such that

$$\theta^{\ell} \ge \theta_{\min}^{\ell} \implies \mu^{\ell} \ge \mu_{\min}^{\ell}.$$

The critical transfer shares satisfy $\sum_{\ell \in \mathbb{L}} \theta_{\min}^{\ell} < 1$.

Optimal transfer policies

Theorem

Any transfer policy $\theta = (\theta^{\ell})_{\ell \in \mathbb{L}}$ which satisfies

$$\theta^{\ell} \ge \theta_{\min}^{\ell} \quad \text{for all} \quad \ell \in \mathbb{L}$$

makes each $\ell \in \mathbb{L}$ better-off under cooperation relative to non-cooperation.

Extensions

- Aggregate shocks and uncertainty
- Trade frictions
- Process of coalition formation

• ...

Thank you very much for your attention!