Racing with a rearview mirror: innovation lag and investment dynamics

Chantal Marlats, Nicolas Klein and Lucie Ménager (LEMMA, Université Paris Panthéon-Assas)

ESEM 2023 conference
August, 2023

Introduction

Situations where:

- Agents are racing for an innovation under uncertainty, i.e.,
- they want to be the first to achieve breakthrough with a risky technology;
- they are uncertain about the feasibility of the breakthrough.
- Outcomes of experimentation effort occur with delay.

Typical example: patent races for new drugs/ vaccines.
\rightarrow Strategic experimentation with positive informational externality, negative payoff externality and outcome lag.

The model

- time is continuous, no discounting;
- continuum of "short-lived" players: player t only plays at time t;
- each player t chooses $k_{t} \in[0,1]$ to invest in a risky technology at unit cost α;
- good news model of experimentation with delayed outcomes: the technology can be good $(\theta=1)$ or bad $(\theta=0)$:

The model

- time is continuous, no discounting;
- continuum of "short-lived" players: player t only plays at time t;
- each player t chooses $k_{t} \in[0,1]$ to invest in a risky technology at unit cost α;
- good news model of experimentation with delayed outcomes: the technology can be good $(\theta=1)$ or bad $(\theta=0)$:

The model

- time is continuous, no discounting;
- continuum of "short-lived" players: player t only plays at time t;
- each player t chooses $k_{t} \in[0,1]$ to invest in a risky technology at unit cost α;
- good news model of experimentation with delayed outcomes: the technology can be good $(\theta=1)$ or bad $(\theta=0)$:

The model

- time is continuous, no discounting;
- continuum of "short-lived" players: player t only plays at time t;
- each player t chooses $k_{t} \in[0,1]$ to invest in a risky technology at unit cost α;
- good news model of experimentation with delayed outcomes: the technology can be good $(\theta=1)$ or bad $(\theta=0)$:
- if $\theta=0$, the technology never yields any success;
- if $\theta=1$, the technology yields a success at every jump of a timeinhomogeneous Poisson process with rate $\lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta}$, with $0<\alpha<$ Probability of a breakthrough before t :

The model

- time is continuous, no discounting;
- continuum of "short-lived" players: player t only plays at time t;
- each player t chooses $k_{t} \in[0,1]$ to invest in a risky technology at unit cost α;
- good news model of experimentation with delayed outcomes: the technology can be good $(\theta=1)$ or bad $(\theta=0)$:
- if $\theta=0$, the technology never yields any success;
- if $\theta=1$, the technology yields a success at every jump of a timeinhomogeneous Poisson process with rate $\lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta}$, with $0<\alpha<$ Probability of a breakthrough before t :

The model

- time is continuous, no discounting;
- continuum of "short-lived" players: player t only plays at time t;
- each player t chooses $k_{t} \in[0,1]$ to invest in a risky technology at unit cost α;
- good news model of experimentation with delayed outcomes: the technology can be good $(\theta=1)$ or bad $(\theta=0)$:
- if $\theta=0$, the technology never yields any success;
- if $\theta=1$, the technology yields a success at every jump of a timeinhomogeneous Poisson process with rate $\lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta}$, with $0<\alpha<$ λ;
Probability of a breakthrough before $t: \begin{cases}0 & \text { if } t \leq \Delta \\ 1-e^{-\lambda \int_{0}^{t-\Delta} k_{s} d s} & \text { if } t>\Delta\end{cases}$
- efforts and outcomes are public;
- p_{t} : common belief at time t that $\theta=1$ (p_{0} : a priori belief):

$$
\dot{p}_{t}=-p_{t}\left(1-p_{t}\right) \lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta} \forall t
$$

- the winner takes all: if player t is the first to obtain a success (at $t+\Delta$), he gets 1 and other players obtain nothing.
\rightarrow player t competes only with players in $(t-\Delta, t)$.
- efforts and outcomes are public;
- p_{t} : common belief at time t that $\theta=1$ (p_{0} : a priori belief):

$$
\dot{p}_{t}=-p_{t}\left(1-p_{t}\right) \lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta} \forall t
$$

- the winner takes all: if player t is the first to obtain a success (at $t+\Delta$), he gets 1 and other players obtain nothing.
\rightarrow player t competes only with players in $[t-\Delta, t)$
- efforts and outcomes are public;
- p_{t} : common belief at time t that $\theta=1$ (p_{0} : a priori belief):

$$
\dot{p}_{t}=-p_{t}\left(1-p_{t}\right) \lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta} \forall t
$$

- the winner takes all: if player t is the first to obtain a success (at $t+\Delta$), he gets 1 and other players obtain nothing. \rightarrow player t competes only with players in $[t-\Delta, t)$.
- efforts and outcomes are public;
- p_{t} : common belief at time t that $\theta=1$ (p_{0} : a priori belief):

$$
\dot{p}_{t}=-p_{t}\left(1-p_{t}\right) \lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta} \forall t
$$

- the winner takes all: if player t is the first to obtain a success (at $t+\Delta$), he gets 1 and other players obtain nothing. \rightarrow player t competes only with players in $[t-\Delta, t)$.

Player t 's payoff:

$$
u\left(k_{t} ; k_{-t}\right)=
$$

- efforts and outcomes are public;
- p_{t} : common belief at time t that $\theta=1$ (p_{0} : a priori belief):

$$
\dot{p}_{t}=-p_{t}\left(1-p_{t}\right) \lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta} \forall t
$$

- the winner takes all: if player t is the first to obtain a success (at $t+\Delta$), he gets 1 and other players obtain nothing. \rightarrow player t competes only with players in $[t-\Delta, t)$.

Player t 's payoff:

$$
u\left(k_{t} ; k_{-t}\right)=\underbrace{-\alpha k_{t}}_{\text {instantaneous cost }}
$$

- efforts and outcomes are public;
- p_{t} : common belief at time t that $\theta=1$ (p_{0} : a priori belief):

$$
\dot{p}_{t}=-p_{t}\left(1-p_{t}\right) \lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta} \forall t
$$

- the winner takes all: if player t is the first to obtain a success (at $t+\Delta$), he gets 1 and other players obtain nothing. \rightarrow player t competes only with players in $[t-\Delta, t)$.

Player t 's payoff:

$$
u\left(k_{t} ; k_{-t}\right)=\underbrace{-\alpha k_{t}}_{\text {instantaneous cost }}+\underbrace{p_{t} \times \lambda k_{t} \times e^{-\lambda \int_{(t-\Delta) 1_{t}}^{t}{ }^{k_{s} d s}}}_{\text {expected benefit }}
$$

- efforts and outcomes are public;
- p_{t} : common belief at time t that $\theta=1$ (p_{0} : a priori belief):

$$
\dot{p}_{t}=-p_{t}\left(1-p_{t}\right) \lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta} \forall t
$$

- the winner takes all: if player t is the first to obtain a success (at $t+\Delta$), he gets 1 and other players obtain nothing. \rightarrow player t competes only with players in $[t-\Delta, t)$.

Player t 's payoff:

$$
u\left(k_{t} ; k_{-t}\right)=\underbrace{-\alpha k_{t}}_{\text {instantaneous cost }}+\underbrace{p_{t} \times \lambda k_{t} \times e^{-\lambda \int_{(t-\Delta) 1_{t}}^{t}{ }^{k_{s} d s}}}_{\text {expected benefit }}
$$

- efforts and outcomes are public;
- p_{t} : common belief at time t that $\theta=1$ (p_{0} : a priori belief):

$$
\dot{p}_{t}=-p_{t}\left(1-p_{t}\right) \lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta} \forall t
$$

- the winner takes all: if player t is the first to obtain a success (at $t+\Delta$), he gets 1 and other players obtain nothing. \rightarrow player t competes only with players in $[t-\Delta, t)$.

Player t 's payoff:

$$
u\left(k_{t} ; k_{-t}\right)=\underbrace{-\alpha k_{t}}_{\text {instantaneous cost }}+\underbrace{p_{t} \times \lambda k_{t} \times e^{-\lambda \int_{(t-\Delta) 1_{t \geq \Delta}^{t}} k_{s} d s}}_{\text {expected benefit }}
$$

- efforts and outcomes are public;
- p_{t} : common belief at time t that $\theta=1$ (p_{0} : a priori belief):

$$
\dot{p}_{t}=-p_{t}\left(1-p_{t}\right) \lambda k_{t-\Delta} \mathbb{1}_{t \geq \Delta} \forall t
$$

- the winner takes all: if player t is the first to obtain a success (at $t+\Delta$), he gets 1 and other players obtain nothing. \rightarrow player t competes only with players in $[t-\Delta, t)$.

Player t 's payoff:

$$
u\left(k_{t} ; k_{-t}\right)=\underbrace{-\alpha k_{t}}_{\text {instantaneous cost }}+\underbrace{p_{t} \times \lambda k_{t} \times e^{-\lambda \int_{(t-\Delta) 1_{t \geq \Delta}^{t} k_{s} d s}}}_{\text {expected benefit }}
$$

without outcome lag

t 's outcome is realized

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

with outcome lag

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

with outcome lag

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

with outcome lag

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

with outcome lag

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

with outcome lag

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t} \times e^{-\lambda \int_{t-\Delta}^{t} k_{s} d s}
$$

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

with outcome lag

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t} \times e^{-\lambda \int_{t-\Delta}^{t} k_{s} d s}
$$

without outcome lag

t 's outcome is realized

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t}>\frac{\alpha}{\lambda}:=\underline{p} \\ \in[0,1] & \text { if } p_{t}=\underline{p} \\ =0 & \text { if } p_{t}<\underline{p}\end{cases}
$$

with outcome lag

Expected payoff

$$
-\alpha k_{t}+p_{t} \lambda k_{t} \times e^{-\lambda \int_{t-\Delta}^{t} k_{s} d s}
$$

Investment

$$
k_{t} \begin{cases}=1 & \text { if } p_{t} e^{-\lambda \int_{t-\Delta}^{t} k_{s} d s}>\underline{p} \\ \in[0,1] & \text { if } p_{t} e^{-\lambda \int_{t-\Delta}^{t} k_{s} d s}=\underline{p} \\ =0 & \text { if } p_{t} e^{-\lambda \int_{t-\Delta}^{t} k_{s} d s}<\underline{p}\end{cases}
$$

Equilibrium analysis

Recall that player t 's expected payoff is:

$$
u\left(k_{t} ; k_{-t}\right)=k_{t}(-\alpha+\lambda \underbrace{p_{t} e^{-\lambda \int_{(t-\Delta)_{t}}^{t} \Delta^{k_{s} d s}}}_{:=\mu_{t}})
$$

Equilibrium analysis

Recall that player t 's expected payoff is:

Player t 's best response to k_{-t} :

$$
\Rightarrow k_{t}\left\{\begin{array}{lll}
=1 & \text { if } & \mu_{t}>\underline{p} \\
\in[0,1] & \text { if } & \mu_{t}=\underline{p} \\
=0 & \text { if } & \mu_{t}<\underline{p}
\end{array}\right.
$$

where $\underline{p}=\frac{\alpha}{\lambda}$.

The behavior of μ_{t} is key to the construction of the equilibrium.

The behavior of μ_{t} is key to the construction of the equilibrium.

$$
\begin{aligned}
& \dot{\mu}_{t}=-\mu_{t} \lambda\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right) \\
& \mu_{0}=p_{0}
\end{aligned}
$$

$\Rightarrow \mu_{t}$ weakly decreases when $t \leq \Delta$ or $k_{t-\Delta}=0$.

The behavior of μ_{t} is key to the construction of the equilibrium.

$$
\begin{aligned}
& \dot{\mu}_{t}=-\mu_{t} \lambda\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right) \\
& \mu_{0}=p_{0}
\end{aligned}
$$

$\Rightarrow \mu_{t}$ weakly decreases when $t \leq \Delta$ or $k_{t-\Delta}=0$.
\rightarrow investment is less and less attractive on $[0, \Delta]$ and during periods of no (past) competition.

Initial pessimism: $p_{0}<\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial pessimism: $p_{0}<\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial pessimism: $p_{0}<\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial pessimism: $p_{0}<\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial pessimism: $p_{0}<\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

If $p_{0} \leq \underline{p}$, then $k_{t}=0$ for all t.

Initial optimism: $p_{0}>\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial optimism: $p_{0}>\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial optimism: $p_{0}>\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial optimism: $p_{0}>\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial optimism: $p_{0}>\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial optimism: $p_{0}>\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial optimism: $p_{0}>\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial optimism: $p_{0}>\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

Initial optimism: $p_{0}>\underline{p}$

$$
\dot{\mu}_{t}=-\lambda \mu_{t}\left(k_{t}-p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta}\right), \mu_{0}=p_{0}
$$

If $p_{0}>\underline{p}$, there is $\tau>0$ such that $k_{t}= \begin{cases}1 & \text { for } t<\tau \\ p_{t} k_{t-\Delta} \mathbb{1}_{t \geq \Delta} & \text { for } t \geq \tau\end{cases}$

$$
p_{0}>\underline{p} e^{\Delta}
$$

Proposition At the unique Nash equilibrium, if $p_{0}>\underline{p} e^{\Delta}$, then

$$
k_{t}^{*}=\left\{\begin{array}{l}
1 \text { for } t<\tau \text { and, } \forall n \in \mathbb{N}, \\
\prod_{m=0}^{n} p_{t-m \Delta} \text { for } t \in[\tau+n \Delta, \tau+(n+1) \Delta)
\end{array}\right.
$$

\rightarrow investment is monotonically decreasing, with downward jumps at τ, $\tau+\Delta, \tau+2 \Delta, \ldots$

$$
\underline{p}<p_{0}<\underline{p} e^{\Delta}
$$

Proposition At the unique Nash equilibrium, if $\underline{p}<p_{0}<\underline{p} e^{\Delta}$, then

$$
k_{t}^{*}= \begin{cases}1 & \text { for } t<\tau \text { and, } \forall n \in \mathbb{N} \\ 0 & \text { for } t \in[\tau+n \Delta,(n+1) \Delta) \\ \prod_{m=0}^{n} p_{t-m \Delta} & \text { for } t \in[(n+1) \Delta, \tau+(n+1) \Delta)\end{cases}
$$

Proposition At the unique Nash equilibrium, if $\underline{p}<p_{0}<\underline{p} e^{\Delta}$, then

$$
k_{t}^{*}= \begin{cases}1 & \text { for } t<\tau \text { and, } \forall n \in \mathbb{N} \\ 0 & \text { for } t \in[\tau+n \Delta,(n+1) \Delta) \\ \prod_{m=0}^{n} p_{t-m \Delta} & \text { for } t \in[(n+1) \Delta, \tau+(n+1) \Delta)\end{cases}
$$

\rightarrow Investment is non-monotonic: jumps down at times $\tau+n \Delta$, jumps up at times $n \Delta$.

Proposition At the unique Nash equilibrium, if $\underline{p}<p_{0}<\underline{p} e^{\Delta}$, then

$$
k_{t}^{*}= \begin{cases}1 & \text { for } t<\tau \text { and, } \forall n \in \mathbb{N} \\ 0 & \text { for } t \in[\tau+n \Delta,(n+1) \Delta) \\ \prod_{m=0}^{n} p_{t-m \Delta} & \text { for } t \in[(n+1) \Delta, \tau+(n+1) \Delta)\end{cases}
$$

\rightarrow Investment is non-monotonic: jumps down at times $\tau+n \Delta$, jumps up at times $n \Delta$.
\Rightarrow more pessimistic generations may experiment more, because they fear less to be preempted

Asymptotics

- Investment converges to $0: \lim _{t \rightarrow \infty} k_{t}^{*}=0$ for any $p_{0}<1$;
- Same amount of experimentation as cooperative players:

$$
\int_{0}^{\infty} k_{t}^{*} d t=\hat{K} \text { for any } p_{0}>\underline{p}
$$

- Common belief converges to \underline{p} if $p_{0}>\underline{p}$.

Asymptotics

- Investment converges to $0: \lim _{t \rightarrow \infty} k_{t}^{*}=0$ for any $p_{0}<1$;
- Same amount of experimentation as cooperative players:
$k_{t}^{*} d t=\hat{K}$ for any $p_{0}>\underline{p} ;$
- Common belief converges to \underline{p} if $p_{0}>\underline{p}$.

Asymptotics

- Investment converges to $0: \lim _{t \rightarrow \infty} k_{t}^{*}=0$ for any $p_{0}<1$;
- Same amount of experimentation as cooperative players:

$$
\int_{0}^{\infty} k_{t}^{*} d t=\hat{K} \text { for any } p_{0}>\underline{p} ;
$$

- Common belief converges to \underline{p} if $p_{0}>\underline{p}$.

Asymptotics

- Investment converges to $0: \lim _{t \rightarrow \infty} k_{t}^{*}=0$ for any $p_{0}<1$;
- Same amount of experimentation as cooperative players:

$$
\int_{0}^{\infty} k_{t}^{*} d t=\hat{K} \text { for any } p_{0}>\underline{p}
$$

- Common belief converges to \underline{p} if $p_{0}>\underline{p}$.

Welfare analysis
The aggregate payoff in equilibrium is
$W\left(k^{*}\right)= \begin{cases}0 & \text { if } p_{0} \leq \underline{p} \\ p_{0}-\underline{p}+\underline{p} \ln \left(\frac{\underline{p}}{p_{0}}\right) & \text { if } p_{0} \in\left[\underline{p}, \underline{p} e^{\lambda \Delta}\right] \\ -\alpha \Delta+p_{0}-\underline{p}+\underline{p}\left(1-p_{0}\right) \ln \left(\frac{\Omega\left(\underline{p} e^{\lambda \Delta}\right)}{\Omega\left(p_{0}\right)}\right) & \text { if } p_{0} \geq \underline{p} e^{\lambda \Delta}\end{cases}$
\rightarrow increases with p_{0}; either does not depend on, or decreases with Δ.

Welfare analysis

The aggregate payoff in equilibrium is
$W\left(k^{*}\right)= \begin{cases}0 & \text { if } p_{0} \leq \underline{p} \\ p_{0}-\underline{p}+\underline{p} \ln \left(\frac{\underline{p}}{p_{0}}\right) & \text { if } p_{0} \in\left[\underline{p}, \underline{p} e^{\lambda \Delta}\right] \\ -\alpha \Delta+p_{0}-\underline{p}+\underline{p}\left(1-p_{0}\right) \ln \left(\frac{\Omega\left(\underline{p} e^{\lambda \Delta}\right)}{\Omega\left(p_{0}\right)}\right) & \text { if } p_{0} \geq \underline{p} e^{\lambda \Delta}\end{cases}$
\rightarrow increases with p_{0}; either does not depend on, or decreases with Δ.
Proposition The equilibrium is inefficient, i.e., $W\left(k^{*}\right)<W(\hat{k})$ if $p_{0}>\underline{p}$.
Argument: the cutoff strategy $\tilde{k}_{t}=\mathbb{1}_{t \leq \tau}$ replicates the equilibrium payoff. Yet for any cutoff strategy, the social planner can improve the total payoff by postponing the last "period" of experimentation after the cutoff.

Source of inefficiency: intermediate investment.

Thank you!

Concluding remarks

The outcome lag is a source of inefficiency because players are afraid to be preempted, thus do not fully experiment.
\Rightarrow is it possible to improve the aggregate payoff with another mechanism/reward scheme?

Concluding remarks

The outcome lag is a source of inefficiency because players are afraid to be preempted, thus do not fully experiment.
\Rightarrow is it possible to improve the aggregate payoff with another mechanism/reward scheme?

The family of Hidden outcomes mechanisms work as follows:

- Principal observes the outcomes but keeps them secret until some deadline T.
- If there has been at least one success between 0 and T, then the payoff 1 is shared among all those players who obtained a success according to some reward scheme (equal sharing, first takes all, etc...)

Aggregate payoff under a hidden mechanism: If $\int_{0}^{\infty} k_{t} d t<+\infty$,

$$
W^{H}(k)=
$$

Aggregate payoff under a hidden mechanism: If $\int_{0}^{\infty} k_{t} d t<+\infty$,

$$
W^{H}(k)=-\alpha \int_{0}^{\infty} k_{t} d t
$$

Aggregate payoff under a hidden mechanism: If $\int_{0}^{\infty} k_{t} d t<+\infty$,

$$
W^{H}(k)=-\alpha \int_{0}^{\infty} k_{t} d t+p_{0}\left(1-e^{-\lambda \int_{0}^{+\infty} k_{t} d t}\right)
$$

Aggregate payoff under a hidden mechanism: If $\int_{0}^{\infty} k_{t} d t<+\infty$,

$$
W^{H}(k)=-\alpha \int_{0}^{\infty} k_{t} d t+p_{0}\left(1-e^{-\lambda \int_{0}^{+\infty} k_{t} d t}\right)
$$

This expression is maximal when $\int_{0}^{\infty} k_{t} d t=\frac{1}{\lambda} \ln \left(\frac{p_{0}}{\underline{p}}\right)<\hat{K}$.

Aggregate payoff under a hidden mechanism: If $\int_{0}^{\infty} k_{t} d t<+\infty$,

$$
W^{H}(k)=-\alpha \int_{0}^{\infty} k_{t} d t+p_{0}\left(1-e^{-\lambda \int_{0}^{+\infty} k_{t} d t}\right)
$$

This expression is maximal when $\int_{0}^{\infty} k_{t} d t=\frac{1}{\lambda} \ln \left(\frac{p_{0}}{\underline{p}}\right)<\hat{K}$.
Interpretation

- at the best hidden outcomes mechanism, there is under experimentation;

Aggregate payoff under a hidden mechanism: If $\int_{0}^{\infty} k_{t} d t<+\infty$,

$$
W^{H}(k)=-\alpha \int_{0}^{\infty} k_{t} d t+p_{0}\left(1-e^{-\lambda \int_{0}^{+\infty} k_{t} d t}\right)
$$

This expression is maximal when $\int_{0}^{\infty} k_{t} d t=\frac{1}{\lambda} \ln \left(\frac{p_{0}}{\underline{p}}\right)<\hat{K}$.
Interpretation

- at the best hidden outcomes mechanism, there is under experimentation;
- $\max _{k} W^{H}(k)\left\{\begin{array}{l}=W\left(k^{*}\right) \text { if } p_{0} \in\left[\underline{p}, \underline{p} e^{\Delta}\right] \\ <W\left(k^{*}\right) \text { if } p_{0} \geq \underline{p} e^{\Delta}\end{array}\right.$

A hidden outcomes mechanism cannot improve the aggregate payoff.

Related literature

- Strategic experimentation
- Bolton \& Harris (1999) Keller, Rady, Cripps (2005), Keller \& Rady (2010), Klein \& Rady (2011), Keller \& Rady (2015),...
- Bonatti \& Hörner (2011, 2017), Heidhues, Rady, Strack (2015), Marlats \& Ménager (2021), \ldots
- Rosenberg, Solan, Vieille (2007), Murto \& Välimäki (2011), Rosenberg, Salomon, Vieille (2013), Renault, Solan, Vieille (2022),...
- Experimentation with a competition component (payoff externality)
- Moscarini \& Squintani (2010), Das \& Klein (2022),...
- Contest Design
- Halac, Kartik, Liu (2017), Bimpikis, Ehsani, Mostagir (2019),...
- Observation lags
- Gordon, Marlats, Ménager (2021)

