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Introdution

Situations where:

•
Agents are raing for an innovation under unertainty, i.e.,

� they want to be the �rst to ahieve breakthrough with a risky teh-

nology;

� they are unertain about the feasibility of the breakthrough.

•
Outomes of experimentation e�ort our with delay.

Typial example: patent raes for new drugs/ vaines.

→ Strategi experimentation with positive informational externality,

negative payo� externality and outome lag.
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The model

•
time is ontinuous, no disounting;

•
ontinuum of �short-lived� players: player t only plays at time t;

•
eah player t hooses kt ∈ [0, 1] to invest in a risky tehnology at unit

ost α;

•
good news model of experimentation with delayed outomes: the

tehnology an be good (θ = 1) or bad (θ = 0):

� if θ = 0, the tehnology never yields any suess;

� if θ = 1, the tehnology yields a suess at every jump of a time-

inhomogeneous Poisson proess with rate λkt−∆1t≥∆, with 0 < α <

λ;

Probability of a breakthrough before t:

{

0 if t ≤ ∆

1− e−λ
∫
t−∆
0 ksds

if t > ∆
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•
e�orts and outomes are publi;

• pt: ommon belief at time t that θ = 1 (p0: a priori belief):

ṗt = −pt(1− pt)λkt−∆1t≥∆ ∀ t

•
the winner takes all: if player t is the �rst to obtain a suess (at

t+∆), he gets 1 and other players obtain nothing.

→ player t ompetes only with players in [t−∆, t).
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ṗt = −pt(1− pt)λkt−∆1t≥∆ ∀ t

•
the winner takes all: if player t is the �rst to obtain a suess (at

t+∆), he gets 1 and other players obtain nothing.

→ player t ompetes only with players in [t−∆, t).

Player t's payo�:

u(kt; k−t) =

4/20



•
e�orts and outomes are publi;

• pt: ommon belief at time t that θ = 1 (p0: a priori belief):

ṗt = −pt(1− pt)λkt−∆1t≥∆ ∀ t

•
the winner takes all: if player t is the �rst to obtain a suess (at

t+∆), he gets 1 and other players obtain nothing.

→ player t ompetes only with players in [t−∆, t).

Player t's payo�:

u(kt; k−t) = −αkt
︸ ︷︷ ︸

instantaneous ost

4/20



•
e�orts and outomes are publi;

• pt: ommon belief at time t that θ = 1 (p0: a priori belief):
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without outome lag

0 t

t invests kt

t's outome is realized
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Expeted payo�

−αkt + ptλkt × e−λ
∫

t

t−∆
ksds

Investment

kt







= 1 if pte
−λ

∫
t

t−∆
ksds > p

∈ [0, 1] if pte
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∫
t

t−∆
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= 0 if pte
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t

t−∆
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Equilibrium analysis

Reall that player t's expeted payo� is:

u(kt; k−t) = kt




−α+ λ pte

−λ
∫

t

(t−∆)1
t≥∆

ksds

︸ ︷︷ ︸

:=µt
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−α+ λ pte
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t
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t≥∆

ksds
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Player t's best response to k−t:

⇒ kt







= 1 if µt > p

∈ [0, 1] if µt = p

= 0 if µt < p

where p = α
λ
.

6/20



t

µt

∆

p

kt = 1

kt = 0

The behavior of µt is key to the onstrution of the equilibrium.

7/20



t

µt

∆

p

kt = 1

kt = 0

The behavior of µt is key to the onstrution of the equilibrium.

µ̇t = −µtλ(kt − ptkt−∆1t≥∆)
µ0 = p0

⇒ µt weakly dereases when t ≤ ∆ or kt−∆ = 0.

7/20



t

µt
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kt = 1

kt = 0

The behavior of µt is key to the onstrution of the equilibrium.

µ̇t = −µtλ(kt − ptkt−∆1t≥∆)
µ0 = p0

⇒ µt weakly dereases when t ≤ ∆ or kt−∆ = 0.

→ investment is less and less attrative on [0,∆] and during periods of

no (past) ompetition.
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Initial pessimism: p0 < p

µ̇t = −λµt(kt − ptkt−∆1t≥∆), µ0 = p0

t
∆

p
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Initial pessimism: p0 < p

µ̇t = −λµt(kt − ptkt−∆1t≥∆), µ0 = p0

t
∆

p

p0 µt

If p0 ≤ p, then kt = 0 for all t.
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Initial optimism: p0 > p

µ̇t = −λµt(kt − ptkt−∆1t≥∆), µ0 = p0

t

p

p0

τ

µt

kt = 1 kt = ptkt−∆1t≥∆

If p0 > p, there is τ > 0 suh that kt =

{
1 for t < τ

ptkt−∆1t≥∆ for t ≥ τ
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Proposition At the unique Nash equilibrium, if p0 > pe∆, then

k∗t =







1 for t < τ and, ∀ n ∈ N,
n∏

m=0

pt−m∆ for t ∈ [τ + n∆, τ + (n+ 1)∆)

→ investment is monotonially dereasing, with downward jumps at τ ,

τ +∆, τ + 2∆, . . .
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1 for t < τ and, ∀n ∈ N,
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n∏

m=0

pt−m∆ for t ∈ [(n+ 1)∆, τ + (n+ 1)∆)
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1 for t < τ and, ∀n ∈ N,

0 for t ∈ [τ + n∆, (n+ 1)∆)
n∏

m=0

pt−m∆ for t ∈ [(n+ 1)∆, τ + (n+ 1)∆)

→ Investment is non-monotoni: jumps down at times τ + n∆, jumps up

at times n∆.

⇒ more pessimisti generations may experiment more, beause they fear

less to be preempted.
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Asymptotis

•
Investment onverges to 0: lim

t→∞
k∗t = 0 for any p0 < 1;

•
Same amount of experimentation as ooperative players:

∫ ∞

0

k∗t dt = K̂ for any p0 > p;

•
Common belief onverges to p if p0 > p.
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Welfare analysis

The aggregate payo� in equilibrium is

W (k∗) =







0 if p0 ≤ p

p0 − p+ p ln
(

p

p0

)

if p0 ∈
[
p, peλ∆

]

−α∆+ p0 − p+ p(1− p0) ln

(
Ω(peλ∆)

Ω(p0)

)

if p0 ≥ peλ∆

→ inreases with p0; either does not depend on, or dereases with ∆.
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The aggregate payo� in equilibrium is

W (k∗) =







0 if p0 ≤ p

p0 − p+ p ln
(

p

p0

)

if p0 ∈
[
p, peλ∆

]

−α∆+ p0 − p+ p(1− p0) ln

(
Ω(peλ∆)

Ω(p0)

)

if p0 ≥ peλ∆

→ inreases with p0; either does not depend on, or dereases with ∆.

Proposition The equilibrium is ine�ient, i.e., W (k∗) < W (k̂) if p0 > p.

Argument: the uto� strategy k̃t = 1t≤τ repliates the equilibrium

payo�. Yet for any uto� strategy, the soial planner an improve the

total payo� by postponing the last �period� of experimentation after the

uto�.

Soure of ine�ieny: intermediate investment.
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Thank you!

17/20



Conluding remarks

The outome lag is a soure of ine�ieny beause players are afraid to

be preempted, thus do not fully experiment.

⇒ is it possible to improve the aggregate payo� with another

mehanism/reward sheme?
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Conluding remarks

The outome lag is a soure of ine�ieny beause players are afraid to

be preempted, thus do not fully experiment.

⇒ is it possible to improve the aggregate payo� with another

mehanism/reward sheme?

The family of Hidden outomes mehanisms work as follows:

•
Prinipal observes the outomes but keeps them seret until some

deadline T .

•
If there has been at least one suess between 0 and T , then the payo�

1 is shared among all those players who obtained a suess aording

to some reward sheme (equal sharing, �rst takes all, et...)
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Aggregate payo� under a hidden mehanism: If
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0
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This expression is maximal when

∫∞

0
ktdt =

1
λ
ln
(

p0

p

)

< K̂.

Interpretation

•
at the best hidden outomes mehanism, there is under experimenta-

tion;

• max
k

WH(k)







= W (k∗) if p0 ∈ [p, pe∆]

< W (k∗) if p0 ≥ pe∆

A hidden outomes mehanism annot improve the aggregate payo�.
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